Inter- and Intraspecific Variation Patterns of Leaf Phenotypic Traits in Two Sympatric Pine Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Measurements
2.3. Data Analysis
3. Results
3.1. Variation of Needle Traits in the Two Pine Species
3.2. Sources of Needle Traits’ Variation in the Two Pine Species
3.3. Cluster Analysis
3.4. Redundancy Analysis
4. Discussion
4.1. Phenotypic Variation and Plasticity
4.2. Phenotypic Variation Patterns of Leaf Traits among and within Species
4.3. Adaptive Phenotypes in the Context of Changing External Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sultan, S. Phenotypic Plasticity as An Intrinsic Property of Organism. In Phenotypic Plasticity & Evolution; Pfennig, D.W., Ed.; CRC Press: London, UK; New York, NY, USA, 2021; pp. 1–24. [Google Scholar]
- Thompson, M.J.; Capilla-Lasheras, P.; Dominoni, D.M.; Reale, D.; Charmantier, A. Phenotypic variation in urban environments: Mechanisms and implications. Trends Ecol. Evol. 2022, 37, 171–182. [Google Scholar] [CrossRef]
- Pfennig, D.W. Key Questions about Phenotypic Plasticity. In Phenotypic Plasticity & Evolution; Pfennig, D.W., Ed.; CRC Press: London, UK; New York, NY, USA, 2021; pp. 55–88. [Google Scholar]
- Levis, N.A.; Pfennig, D.W. Evaluating ‘Plasticity-First’ Evolution in Nature: Key Criteria and Empirical Approaches. Trends Ecol. Evol. 2016, 31, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Hendry, A.P. Key Questions on the Role of Phenotypic Plasticity in Eco-Evolutionary Dynamics. J. Hered. 2016, 107, 25–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diouf, I.; Derivot, L.; Koussevitzky, S.; Carretero, Y.; Bitton, F.; Moreau, L.; Causse, M. Genetic basis of phenotypic plasticity and genotype x environment interactions in a multi-parental tomato population. J. Exp. Bot. 2020, 71, 5365–5376. [Google Scholar] [CrossRef] [PubMed]
- Henn, J.J.; Buzzard, V.; Enquist, B.J.; Halbritter, A.H.; Klanderuds, K.; Maitner, B.S.; Michaletz, S.T.; Potschs, C.; Seltzer, L.; Telford, R.J.; et al. Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant Species Response to Climate Change. Front. Plant Sci. 2018, 9, 1548. [Google Scholar] [CrossRef]
- Richardson, D.M.; Rundel, P.W.; Jackson, S.T.; Teskey, R.O.; Aronson, J.; Bytnerowicz, A.; Wingfield, M.J.; Proches, S. Human impacts in pine forests: Past, present, and future. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 275–297. [Google Scholar] [CrossRef] [Green Version]
- Gernandt, D.S.; Lopez, G.G.; Garcia, S.O.; Liston, A. Phylogeny and classification of Pinus. Taxon 2005, 54, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Ferriz, M.; Martin-Benito, D.; Canellas, I.; Gea-Izquierdo, G. Sensitivity to water stress drives differential decline and mortality dynamics of three co-occurring conifers with different drought tolerance. For. Ecol. Manag. 2021, 486, 118964. [Google Scholar] [CrossRef]
- Drenkhan, R.; Ganley, B.; Martin-Garcia, J.; Vahalik, P.; Adamson, K.; Adamcikova, K.; Ahumada, R.; Blank, L.; Braganca, H.; Capretti, P.; et al. Global Geographic Distribution and Host Range of Fusarium circinatum, the Causal Agent of Pine Pitch Canker. Forests 2020, 11, 724. [Google Scholar] [CrossRef]
- Zheng, W.J. Sylva Sinica; Chien, S.S., Chen, H.Y., Eds.; China Forestry Publishing House: Beijing, China, 1983; pp. 297–299. [Google Scholar]
- Yu, S.X.; Li, Y.; Wang, Y.F.; Zhou, C.F. The vegetation classification and its digitized map of Heishiding Nature Reserve, Guangdong. I.The distribution of the vegetation type and formation. Act Sci. Nat. Univ. Sunyasen 2000, 39, 61–66. [Google Scholar]
- Wang, L.P.; Zhou, Z.D. On the Positional Problem of the Pinus Taiwanensis Forest in the Vegetation Altitude Belts of Mt. Lushan. Chin. J. Plant Ecol. 1989, 13, 28–35. [Google Scholar]
- Tong, Z.K.; Fan, Y.R. Dividing the distribution area of Pinus taiwanensis based on climatic and ecologic factors. J. Cent. South For. Univ. 1993, 13, 81–87. [Google Scholar]
- Urbaniak, L.; Chudzinska, E.; Faferek, S. Differentiation of Pinus sylvestris populations of the Tatra Mts and the Tuchola forest expressed in the needle anatomical traits. Dendrobiology 2008, 60, 35–43. [Google Scholar]
- Bozkurt, A.E.; Coskuncelebi, K.; Terzioglu, S. Population variability of scots pine (Pinus sylvestris L.) in Turkey according to the needle morphology. Sumar. List 2021, 145, 347–354. [Google Scholar] [CrossRef]
- Popovic, V.; Nikolic, B.; Lucic, A.; Rakonjac, L.; Jovanovic, D.S.; Miljkovic, D. Morpho-anatomical trait variability of the Norway spruce (Picea abies (L.) Karst.) needles in natural populations along elevational diversity gradient. Trees-Struct. Funct. 2022, 36, 1131–1147. [Google Scholar] [CrossRef]
- Flores, A.; Climent, J.; Pando, V.; Lopez-Upton, J.; Alia, R. Intraspecific Variation in Pines from the Trans-Mexican Volcanic Belt Grown under Two Watering Regimes: Implications for Management of Genetic Resources. Forests 2018, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, A.; Wyka, T.P.; Zytkowiak, R.; Nihlgard, B.; Reich, P.B.; Oleksyn, J. Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L. along a 1900 km temperate-boreal transect. Funct. Ecol. 2017, 31, 2212–2223. [Google Scholar] [CrossRef] [Green Version]
- Nobis, M.P.; Traiser, C.; Roth-Nebelsick, A. Latitudinal variation in morphological traits of the genus Pinus and its relation to environmental and phylogenetic signals. Plant Ecol. Divers. 2012, 5, 1–11. [Google Scholar] [CrossRef]
- Viveros-Viveros, H.; Camarillo-Luna, A.R.; Saenz-Romero, C.; Aparicio-Renteria, A. Altitudinal variation in morphological traits of Pinus patula populations from Oaxaca state, Mexico, and its use in the zoning. Bosque 2013, 34, 173–179. [Google Scholar]
- Taneda, H.; Funayama-Noguchi, S.; Mayr, S.; Goto, S. Elevational adaptation of morphological and anatomical traits by Sakhalin fir (Abies sachalinensis). Trees-Struct. Funct. 2020, 34, 507–520. [Google Scholar] [CrossRef]
- Donnelly, K.; Cavers, S.; Cottrell, J.E.; Ennos, R.A. Genetic variation for needle traits in Scots pine (Pinus sylvestris L.). Tree Genet. Genomes 2016, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Taibi, K.; del Campo, A.D.; Aguado, A.; Mulet, J.M. The effect of genotype by environment interaction, phenotypic plasticity and adaptation on Pinus halepensis reforestation establishment under expected climate drifts. Ecol. Eng. 2015, 84, 218–228. [Google Scholar] [CrossRef]
- Bussotti, F.; Pollastrini, M.; Holland, V.; Brüggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Exp. Bot. 2015, 111, 91–113. [Google Scholar] [CrossRef]
- Fraser, L.H. TRY-A plant trait database of databases. Glob. Chang. Biol. 2020, 26, 189–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, K.S.W.; Vila-Cabrera, A.; Chen, J.C.; Greenwood, S.; Chang, C.H.; Jump, A.S. High intraspecific trait variation results in a resource allocation spectrum of a subtropical pine across an elevational gradient. J. Biogeogr. 2022, 49, 668–681. [Google Scholar] [CrossRef]
- Matesanz, S.; Horgan-Kobelski, T.; Sultan, S.E. Phenotypic Plasticity and Population Differentiation in an Ongoing Species Invasion. PLoS ONE 2012, 7, e44955. [Google Scholar] [CrossRef] [Green Version]
- Bucci, G.; Gonzalez-Martinez, S.C.; Le Provost, G.; Plomion, C.; Ribeiro, M.M.; Sebastiani, F.; Alia, R.; Vendramin, G.G. Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Mol. Ecol. 2007, 16, 2137–2153. [Google Scholar] [CrossRef]
- Wilson, P.; Thompson, K.; Hodgson, J. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol. 1999, 143, 155–162. [Google Scholar] [CrossRef]
- Gong, J.; Lu, L.; Jin, X.L.; Nan, W.; Liu, F. Impacts of tourist disturbance on plant communities and soil properties in Huangshan Mountain scenic area. Acta Ecol. Sin. 2009, 29, 2239–2251. [Google Scholar]
- Li, X.H.; Song, M.Z.; Liang, T.J. Characteristics of wild vine resources in Lushan Mountain and their landscape application. J. South. Agric. 2013, 44, 994–998. [Google Scholar]
- Ren, R.F.; Xie, H.S.; Jian, Z.H.; Xu, Y.K.; Zhang, J. Soil Geoligy and Geochemistry Characteristics in the Tianmu Mountain Area Zhejiang Province. J. Earth Sci. Environ. 2008, 30, 49–53. [Google Scholar]
- Zhang, K.; Hou, J.H.; He, N.P. Leaf functional trait distribution and controlling factors of Pinus tabuliformis. Acta Ecol. Sin. 2017, 37, 736–749. [Google Scholar]
- Bates, D.; Machler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Qu, L.; Guennel, T.; Marshall, S.L. Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies. Biometrics 2013, 69, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Messier, J.; McGill, B.J.; Lechowicz, M.J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 2010, 13, 838–848. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available online: http://www.r-project.org/index.html (accessed on 13 October 2022).
- Jin, W.T.; Gernandt, D.S.; Wehenkel, C.; Xia, X.M.; Wei, X.X.; Wang, X.Q. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proc. Natl. Acad. Sci. USA 2021, 118, e2022302118. [Google Scholar] [CrossRef]
- Stapley, J.; Reger, J.; Feulner, P.G.D.; Smadja, C.; Galindo, J.; Ekblom, R.; Bennison, C.; Ball, A.D.; Beckerman, A.P.; Slate, J. Adaptation genomics: The next generation. Trends Ecol. Evol. 2010, 25, 705–712. [Google Scholar] [CrossRef]
- Savolainen, O.; Pyhäjärvi, T.; Knürr, T. Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 595–619. [Google Scholar] [CrossRef]
- Ledón-Rettig, C.C.; Ragsdale, E.J. Physiological Mechanisms and the Evolution of Plasticity. In Phenotypic Plasticity & Evolution; Pfennig, D.W., Ed.; CRC Press: London, UK; New York, NY, USA, 2021; pp. 113–137. [Google Scholar]
- Bohnke, M.; Bruelheide, H. How do evergreen and deciduous species respond to shade?—Tolerance and plasticity of subtropical tree and shrub species of South-East China. Environ. Exp. Bot. 2013, 87, 179–190. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.J.; Li, Q.Y.; Tao, J.P. Relationships between competition intensity and leaf phenotypic plasticity of woody plants in subalpine forests on different slope. Acta Ecol. Sin. 2022, 42, 1788–1797. [Google Scholar]
- Zhang, M.; Meng, J.; Zhang, Z.; Zhu, S.; Li, Y. Genetic Analysis of Needle Morphological and Anatomical Traits among Nature Populations of Pinus Tabuliformis. J. Plant Stud. 2017, 6, 62. [Google Scholar] [CrossRef]
- Robledo-Arnuncio, J.J. Wind pollination over mesoscale distances: An investigation with Scots pine. New Phytol. 2011, 190, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.J.; Hsu, T.W.; Hung, K.H.; Lin, C.J.; Huang, C.C.; Huang, C.C.; Chiang, Y.C.; Chiang, T.Y. Inferring Multiple Refugia and Phylogeographical Patterns in Pinus massoniana Based on Nucleotide Sequence Variation and DNA Fingerprinting. PLoS ONE 2012, 7, e43717. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.X.; Chen, X.Y.; Huang, Y.J.; Wang, L.M.; Xing, F.Q.; Li, Y. Environmental contribution to needle variation among natural populations of Pinus tabuliformis. J. For. Res. 2019, 30, 1311–1322. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, Z.H.; Wang, S.H.; Li, Z.Q. Genetic diversity and phylogenetic relationships among five endemic Pinus taxa (Pinaceae) of China as revealed by SRAP markers. Biochem. Syst. Ecol. 2015, 62, 115–120. [Google Scholar] [CrossRef]
- Lexer, C.; Fay, M.F. Adaptation to environmental stress: A rare or frequent driver of speciation? J. Evol. Biol. 2005, 18, 893–900. [Google Scholar] [CrossRef]
- Tobler, M.; Palacios, M.; Chapman, L.J.; Mitrofanov, I.; Bierbach, D.; Plath, M.; Arias-Rodriguez, L.; de Leon, F.J.G.; Mateos, M. Evolution in extreme environments: Replicated phenotypic differentiation in livebearing fish inhabiting sulfidic springs. Evolution 2011, 65, 2213–2228. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.L.; Woeste, K.; Cai, N.H.; Kang, X.Y.; Li, G.Q.; Chen, S.; Duan, A. Variation in needle and cone traits in natural populations of Pinus yunnanensis. J. For. Res. 2016, 27, 41–49. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Craine, J.M.; Ocheltree, T.W.; Nippert, J.B.; Towne, E.G.; Skibbe, A.M.; Kembel, S.W.; Fargione, J.E. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Chang. 2013, 3, 63–67. [Google Scholar] [CrossRef]
- Jordan, L.; He, R.C.; Hall, D.B.; Clark, A.; Daniels, R.F. Variation in loblolly pine ring microfibril angle in the Southeastern United States. Wood Fiber Sci. 2007, 39, 352–363. [Google Scholar]
- Bateman, K.G. The genetic assimilation of four venation phenocopies (Reprinted). J. Genet. 2005, 84, 227–257. [Google Scholar] [CrossRef] [PubMed]
- Levis, N.A.; Pfennig, D.W. Innovation and Diversification Via Plasticity-Led Evolution. In Phenotypic Plasticity & Evolution; Pfennig, D.W., Ed.; CRC Press: London, UK; New York, NY, USA, 2021; pp. 211–240. [Google Scholar]
- Lopez, R.; Climent, J.; Gil, L. Intraspecific variation and plasticity in growth and foliar morphology along a climate gradient in the Canary Island pine. Trees-Struct. Funct. 2010, 24, 343–350. [Google Scholar] [CrossRef]
- Groover, A. Gravitropisms and reaction woods of forest trees—evolution, functions and mechanisms. New Phytol. 2016, 211, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Niinemets, U.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
- Marshall, J.D.; Monserud, R.A. Erratum: Foliage height influences specific leaf area of three conifer species. Can. J. For. Res.-Rev. Can. Rech. For. 2003, 33, 1591. [Google Scholar] [CrossRef]
- Dong, Y.C.; Liu, Y.H. Response of Korean pine’s functional traits to geography and climate. PLoS ONE 2017, 12, e0184051. [Google Scholar] [CrossRef]
- Chiang, T.Y.; Schaal, B.A. Phylogeography of plants in Taiwan and the Ryukyu archipelago. Taxon 2006, 55, 31–41. [Google Scholar] [CrossRef]
Population | Abbreviation | Longitude (°E) | Latitude (°N) | Annual Average Temperature (°C) | Annual Average Precipitation (mm) |
---|---|---|---|---|---|
Mt. Sanqingshan, Jiangxi | SQS | 118°00′~118°06′ | 28°52′~28°57′ | 11 | 1860 |
Mt. Lushan, Jiangxi | LS | 115°50′~116°10′ | 29°28′~29°45′ | 12 | 2024 |
Mt. Jinggangshan, Jiangxi | JGS | 113°39′~114°23′ | 26°27′~26°40′ | 17 | 1890 |
Mt. Huangshan, Anhui | HS | 116°49′~118°59′ | 29°13′~31°05′ | 14 | 2583 |
Mt. Tianmushan, Zhejiang | TMS | 118°36′~120°06′ | 29°52′~30°55′ | 14 | 1870 |
Traits | SQS | LS | JGS | HS | TMS | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | CV% | Mean | CV% | Mean | CV% | Mean | CV% | Mean | CV% | F | p (>F) | |
LL (cm) | 11.305 | 13.48 | 13.574 | 17.89 | 15.638 | 11.05 | 13.658 | 15.98 | 14.189 | 11.09 | 140.600 | <0.01 |
TL (mm) | 0.404 | 4.11 | 0.423 | 9.04 | 0.416 | 9.62 | 0.466 | 15.07 | 0.403 | 15.39 | 62.402 | <0.01 |
DL (cm) | 0.079 | 7.10 | 0.088 | 14.15 | 0.081 | 11.95 | 0.080 | 8.48 | 0.075 | 18.98 | 56.719 | <0.01 |
LA (cm2) | 2.288 | 16.00 | 3.075 | 20.98 | 3.255 | 20.11 | 2.798 | 19.33 | 2.731 | 22.72 | 87.540 | <0.01 |
SLA (cm2/g) | 149.348 | 20.46 | 140.607 | 19.39 | 164.363 | 17.06 | 137.186 | 15.37 | 167.568 | 25.85 | 50.105 | <0.01 |
LDMC (g/g) | 0.443 | 16.85 | 0.455 | 18.91 | 0.439 | 18.12 | 0.532 | 14.09 | 0.402 | 17.52 | 83.717 | <0.01 |
Traits | SQS | LS | JGS | HS | TMS | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | CV% | Mean | CV% | Mean | CV% | Mean | CV% | Mean | CV% | F | p (>F) | |
LL (cm) | 9.477 | 20.84 | 8.623 | 19.52 | 11.438 | 10.31 | 9.763 | 17.96 | 9.671 | 14.14 | 58.209 | <0.01 |
TL (mm) | 0.427 | 4.94 | 0.477 | 10.36 | 0.498 | 9.13 | 0.466 | 19.51 | 0.540 | 8.89 | 97.383 | <0.01 |
DL (cm) | 0.094 | 8.66 | 0.099 | 10.64 | 0.104 | 11.29 | 0.094 | 13.63 | 0.106 | 9.94 | 50.904 | <0.01 |
LA (cm2) | 2.289 | 22.94 | 2.190 | 20.17 | 3.066 | 16.20 | 2.370 | 26.23 | 2.662 | 20.86 | 61.234 | <0.01 |
SLA (cm2/g) | 142.461 | 17.61 | 121.316 | 20.69 | 129.870 | 15.83 | 120.501 | 19.83 | 117.189 | 16.31 | 27.646 | <0.01 |
LDMC (g/g) | 0.474 | 21.74 | 0.485 | 21.18 | 0.249 | 94.80 | 0.515 | 16.30 | 0.461 | 84.71 | 22.928 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Hu, M.; Fan, M.; Wang, L.; Lv, T.; Zhang, H.; Xu, K.; Duan, Y.; Fang, Y. Inter- and Intraspecific Variation Patterns of Leaf Phenotypic Traits in Two Sympatric Pine Species. Forests 2022, 13, 2014. https://doi.org/10.3390/f13122014
Yang Y, Hu M, Fan M, Wang L, Lv T, Zhang H, Xu K, Duan Y, Fang Y. Inter- and Intraspecific Variation Patterns of Leaf Phenotypic Traits in Two Sympatric Pine Species. Forests. 2022; 13(12):2014. https://doi.org/10.3390/f13122014
Chicago/Turabian StyleYang, Yuan, Meng Hu, Mingyang Fan, Lu Wang, Ting Lv, Huanchao Zhang, Kewang Xu, Yifan Duan, and Yanming Fang. 2022. "Inter- and Intraspecific Variation Patterns of Leaf Phenotypic Traits in Two Sympatric Pine Species" Forests 13, no. 12: 2014. https://doi.org/10.3390/f13122014
APA StyleYang, Y., Hu, M., Fan, M., Wang, L., Lv, T., Zhang, H., Xu, K., Duan, Y., & Fang, Y. (2022). Inter- and Intraspecific Variation Patterns of Leaf Phenotypic Traits in Two Sympatric Pine Species. Forests, 13(12), 2014. https://doi.org/10.3390/f13122014