Chemical Composition and Deposition Characteristics of Precipitation into a Typical Temperate Forest in Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. Chemical Analyses
2.3. Data Sources and Quality Control
2.4. Quantitative Assessment of Ion Sources
2.5. Air Mass Back Trajectories
2.6. Calculations and Statistical Analyses
3. Results
3.1. Ion Concentration and Deposition in Precipitation
3.2. Seasonal Variations and Controlling Factors of Ion Concentration and Deposition
3.3. Sources of Ions in Precipitation
4. Discussion
4.1. Comparisons with Urban and Background Regions
4.2. Seasonal Variations, Sources, and Controlling Factors of Ion Concentration & Deposition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, J.N.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Neff, J.C.; Ballantyne, A.P.; Farmer, G.L.; Mahowald, N.M.; Conroy, J.L.; Landry, C.C.; Overpeck, J.T.; Painter, T.H.; Lawrence, C.R.; Reynolds, R.L. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 2008, 1, 189–195. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Stefan, R.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.; Alexander, B.; Cole-Dai, J.; Steig, E.J.; Savarino, J.; Sofen, E.D.; Schauer, A.J. Nitrogen isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change. Proc. Natl. Acad. Sci. USA 2014, 111, 5808–5812. [Google Scholar] [CrossRef] [Green Version]
- Vet, R.; Artz, R.S.; Carou, S.; Shaw, M.; Ro, C.U.; Aas, W.; Baker, A.; Bowersox, V.C.; Dentener, F.; Galy-Lacaux, C.; et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 2014, 93, 3–100. [Google Scholar] [CrossRef]
- Rao, P.S.P.; Tiwari, S.; Matwale, J.L.; Pervez, S.; Tunved, P.; Safai, P.D.; Steig, E.J.; Savarino, J.; Sofen, E.D.; Schauer, A.J. Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmos. Environ. 2016, 146, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Deboudt, K.; Flament, P.; Bertho, M.L. Cd, Cu, Pb and Zn Concentrations in Atmospheric Wet Deposition at a Coastal Station in Western Europe. Water Air Soil Pollut. 2004, 151, 335–359. [Google Scholar] [CrossRef]
- Wang, B.; Harder, T.; Kelly, S.; Piens, D.S.; China, S.; Kovarik, L.; Keiluweit, M.; Arey, B.W.; Gilles, M.K.; Alexander, L. Airborne soil organic particles generated by precipitation. Nat. Geosci. 2016, 9, 433–437. [Google Scholar] [CrossRef]
- Niu, S.; Classen, A.; Dukes, J.; Kardol, P.; Liu, L.; Luo, Y.; Rustad, L.; Sun, J.; Tang, J.; Templer, P.; et al. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecol. Lett. 2016, 19, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Huang, X.; Song, Y.; Tang, J.; Cao, J.; Zhang, X.; Zhang, Q.; Wang, S.; Xu, T.; Kang, L.; et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition but worsen acid rain. Proc. Natl. Acad. Sci. USA 2019, 116, 7760–7765. [Google Scholar] [CrossRef]
- Aber, J.; McDowell, W.; Nadelhoffer, K.; Magill, A.; Glenn, B.; Mark, K.; Steven, M.; William, C.; Lindsey, R.; Ivan, F. Nitrogen saturation in temperate forest ecosystems hypotheses revisited. Bioscience 1998, 48, 921–934. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.Y.; Qiao, B.Q.; Wang, H.B.; Mi, T.; Cui, J.; Fu, C.; Huang, Y.; Yan, F. Chemical Characteristics of Precipitation in a Typical Urban Site of the Hinterland in Three Gorges Reservoir, China. J. Chem. 2018, 2914313. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Bai, E.; Li, W.; Jing, P.; Dai, G.; Zheng, X. Predicting plant–soil N cycling and soil N2O emissions in a Chinese old-growth temperate forest under global changes: Uncertainty and implications. Soil Ecol. Lett. 2020, 2, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, L.; Chen, Y.; Liu, X.; Xu, W.; Pan, Y.; Duan, L. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance. Atmos. Environ. 2017, 153, 32–40. [Google Scholar] [CrossRef]
- Yatkin, S.; Adali, M.; Bayram, A. A study on the precipitation in Izmir, Turkey: Chemical composition and source apportionment by receptor models. J. Atmos. Chem. 2016, 73, 241–259. [Google Scholar] [CrossRef]
- Duan, L.; Yu, Q.; Zhang, Q.; Wang, Z.; Pan, Y.; Larssen, T.; Jie, T.; Jan, M. Acid deposition in Asia: Emissions, deposition, and ecosystem effects. Atmos. Environ. 2016, 146, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Kuribayashi, M.; Ohara, T.; Morino, Y.; Uno, I.; Kurokawa, J.; Hara, H. Long-term trends of sulfur deposition in East Asia during 1981–2005. Atmos. Environ. 2012, 59, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Yu, G.; He, N.; Zhan, X.; Fang, H.; Sheng, W.; Zuo, Y.; Zhang, D.; Wang, Q. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci. Rep. 2014, 4, 3763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Jan, W.E.; Keith, G.; Peter, C.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Zhao, Y.; Xi, M.; Zhang, Q.; Dong, Z.; Ma, M.; Zhou, K.; Xu, W.; Xing, J.; Zheng, B.; Zhang, W.; et al. Decline in bulk deposition of air pollutants in China lags behind reductions in emissions. Nat. Geosci. 2022, 15, 190–195. [Google Scholar] [CrossRef]
- Pan, Y.P.; Wang, Y.S.; Tang, G.Q.; Wu, D. Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmos. Chem. Phys. 2012, 12, 6515–6535. [Google Scholar] [CrossRef] [Green Version]
- Endo, T.; Yagoh, H.; Sato, K.; Kazuhide, M.; Kentaro, H.; Izumi, N.; Kiyoshi, S. Regional characteristics of dry deposition of sulfur and nitrogen compounds at EANET sites in Japan from 2003 to 2008. Atmos. Environ. 2011, 45, 1259–1267. [Google Scholar] [CrossRef]
- Zappi, L.; Popovicheva, O.; Tositti, L.; Chichaeva, M.; Eremina, I.; Kasper-Giebl, A.; Tsai, Y.I.; Vlasov, D.; Kasimov, N. Factors influencing aerosol and precipitation ion chemistry in urban background of Moscow megacity. Atmos. Environ. 2023, 294, 1352–2310. [Google Scholar] [CrossRef]
- Keresztesi, Á.; Birsan, M.V.; Nita, I.A.; Bodor, Z.; Szép, R. Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000–2017. Environ. Sci. Eur. 2019, 31, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Engardt, M.; Simpson, D.; Schwikowski, M.; Granat, L. Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations. Tellus B Chem. Phys. Meteorol. 2017, 69, 1. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, A.; Sanders, T.G.M.; Bolte, A.; Bussotti, F.; Dirnböck, T.; Johnson, J.; Peñuelas, J.; Pollastrini, M.; Prescher, A.-K.; Sardans, J.; et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 2019, 244, 980–994. [Google Scholar] [CrossRef]
- Mindas, J.; Hanzelova, M.; Skvareninova, J.; Skvarenina, J.; Dursky, J.; Tothova, S. Long-Term Temporal Changes of Precipitation Quality in Slovak Mountain Forests. Water 2020, 12, 2920. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, H.; Xiao, H.; Song, W.; Sun, X.; Zheng, X.; Liu, Q.; Koba, K. Stable isotope analyses of precipitation nitrogen sources in Guiyang, southwestern China. Environ. Pollut. 2017, 230, 486–494. [Google Scholar] [CrossRef]
- Fang, Y.T.; Koba, K.; Wang, X.M.; Wen, D.Z.; Li, J.; Takebayashi, Y.; Liu, X.Y.; Yoh, M. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China. Atmos. Chem. Phys. 2011, 11, 1313–1325. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.T.; Wang, X.M.; Zhu, F.F.; Wu, Z.Y.; Li, J.; Zhong, L.; Chen, D.; Yoh, M. Three-decade changes in chemical composition of precipitation in Guangzhou city, southern China: Has precipitation recovered from acidification following sulphur dioxide emission control? Tellus B Chem. Phys. Meteorol. 2013, 65, 1. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, W.; Shang, B.; Dore, A.J.; Tang, A.; Xia, X.; Zheng, A.; Han, M.; Zhang, L.; Zhao, Y.; et al. Precipitation chemistry and atmospheric nitrogen depsition at a rural site in Beijing, China. Atmos. Environ. 2020, 223, 1352–2310. [Google Scholar] [CrossRef]
- Sun, S.; Liu, S.; Li, L.J.; Zhao, W.J. Components, acidification characteristics, and sources of atmospheric precipitation in Beijing from 1997 to 2020. Atmos. Environ. 2021, 266, 1352–2310. [Google Scholar] [CrossRef]
- Takahashi, M.; Feng, Z.; Mikhailova, T.A.; Kalugina, O.V.; Shergina, O.V.; Afanasieva, L.V.; Heng, R.K.J.; Majid, N.M.A.; Sase, H. Air pollution monitoring and tree and forest decline in East Asia: A review. Sci. Total Environ. 2020, 742, 140288. [Google Scholar] [CrossRef] [PubMed]
- Aunan, K.; Hansen, M.H.; Liu, Z.; Wang, S. The Hidden Hazard of Household Air Pollution in Rural China. Environ. Sci. Policy 2019, 93, 1462–9011. [Google Scholar] [CrossRef]
- Xu, W.; Luo, X.S.; Pan, Y.P.; Zhang, L.; Tang, A.H.; Shen, J.L.; Zhang, Y.; Li, K.H.; Wu, Q.H.; Yang, D.W.; et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos. Chem. Phys. 2015, 15, 12345–12360. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.J.; Mao, Z.H.; Hu, L.; Zhang, J. Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China. J. For. Res. 2007, 12, 403–416. [Google Scholar] [CrossRef]
- Huang, S.N.; Wang, F.; Elliott, E.M.; Zhu, F.F.; Zhu, W.; Koba, K.; Yu, Z.; Hobbie, E.A.; Michalski, G.; Kang, R.; et al. Multiyear Measurements on Δ17O of Stream Nitrate Indicate High Nitrate Production in a Temperate Forest. Environ. Sci. Technol. 2020, 54, 4231–4239. [Google Scholar] [CrossRef]
- Huang, S.N.; Emily, M.; Elliott, J.; Felix, D.; Pan, Y.; Liu, D.; Li, S.; Li, Z.; Zhu, F.; Zhang, N.; et al. Seasonal pattern of ammonium 15N natural abundance in precipitation at a rural forested site and implications for NH3 source partitioning. Environ. Pollut. 2019, 247, 541–549. [Google Scholar] [CrossRef]
- Li, Z.J.; Li, Z.X.; Song, L.L.; Gui, J.; Xue, J.; Zhang, B.L.; Gao, W.D. Precipitation chemistry in the source region of the yangtze river. Atmos. Res 2020, 245, 105073. [Google Scholar] [CrossRef]
- Ayer, G.P. Some Practical Aspects of Acid Deposition Measurements. In Proceedings of the 3rd Expert Meeting on Acid Deposition Monitoring Network in East Asia, Niigata, Japan, 14–16 November 1995. [Google Scholar]
- EANET. Technical Manual for Wet Deposition Monitoring in East Asia-2010; Asia Center for Air Pollution Research: Niigata, Japan, 2010; 113p. [Google Scholar]
- Li, L.; Li, H.; Peng, L.; Li, Y.S.; Zhou, Y.; Chai, F.H.; Mo, Z.; Chen, Z.; Ma, J.; Wang, W. Characterization of precipitation in the background of atmospheric pollutants reduction in Guilin: Temporal variation and source apportionment. J. Environ. Sci 2020, 98, 1–13. [Google Scholar] [CrossRef]
- Keene, W.C.; Pszenny, A.A.; Galloway, J.N.; Hawley, M.E. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Geophys. Res.-Atmos. 1986, 91, 6647–6658. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Kristina, E.; Kim, H.; Torunn, B.; Norbert, S.; Sverre, S. Springtime depletion of tropospheric ozone, gaseous elemental mercury and non-methane hydrocarbons in the European Arctic, and its relation to atmospheric transport. Atmos. Environ. 2007, 41, 8511–8526. [Google Scholar] [CrossRef]
- Barras, V.J.I.; Simmonds, I. Synoptic controls upon d18O in southern Tasmanian episodic events. Geophys. Res 2008, 102, 2681–2687. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 2010. [Google Scholar]
- Hemraj, B.; Lekhendra, T.; Shichang, K.; Chhatra, M.S.; Pengfei, C.; Junming, G.; Prakriti, S.G. Concentration sources and wet deposition of dissolved nitrogen and organic carbon in the Northern Indo-Gangetic Plain during monsoon. J. Environ. Sci. 2021, 102, 37–52. [Google Scholar] [CrossRef]
- Tripathee, L.; Kang, S.; Huang, J.; Sillanpaa, M.; Sharma, C.M.; Lüthi, Z.L.; Guo, J.; Paudyal, R. Ionic composition of wet precipitation over the southern slope of Central Himalayas. Nepal. Environ. Sci. Pollut. Res 2014, 21, 2677–2687. [Google Scholar] [CrossRef]
- Khan, M.F.; Nizam, K.; Maulud, A.K.N.; Latif, M.T.; Jing, X.; Norhaniza, A.; Azwani, A.; Mohd, S.M.N.; Mazrura, S.; Maznorizan, M.; et al. Physicochemical factors and their potential sources inferred from long-term rainfall measurements at an urban and a remote rural site in tropical areas. Sci. Total Environ. 2018, 613–614, 1401–1416. [Google Scholar] [CrossRef]
- Adhikari, S.; Zhang, F.; Adhikari, N.P.; Zeng, C.; Pant, R.R.; Ram, K.; Liu, Y.; Ahmed, N.; Xu, J.; Tripathee, L.; et al. Atmospheric wet deposition of major ionic constituents and inorganic nitrogen in Bangladesh: Implications for spatiotemporal variation and source apportionment. Atmos. Res. 2021, 250, 0169–8095. [Google Scholar] [CrossRef]
- Meng, Y.; Zhao, Y.; Li, R.; Li, J.; Cui, L.; Kong, L.; Fu, H. Characterization of inorganic ions in rainwater in the megacity of Shanghai: Spatiotemporal variations and source apportionment. Atmos. Res. 2019, 222, 12–24. [Google Scholar] [CrossRef]
- Wen, Z.; Xu, W.; Li, Q.; Han, M.; Tang, A.; Zhang, Y.; Luo, X.; Shen, J.; Wang, W.; Li, K.; et al. Changes of nitrogen deposition in China from 1980 to 2018. Environ. Int. 2020, 144, 106022. [Google Scholar] [CrossRef]
- Ban, S.; Matsuda, K.; Sato, K.; Ohizumi, T. Long-term assessment of nitrogen deposition at remote EANET sites in Japan. Atmos. Environ. 2016, 146, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Jiang, J.; Cai, S.; Zhou, W.; Wang, S.; Duan, L.; Hao, J. Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies. Environ. Sci. Technol. Lett. 2016, 3, 98–103. [Google Scholar] [CrossRef]
- Farren, N.J.; Davison, J.; Rose, R.A.; Wagner, R.L.; Carslaw, D.C. Underestimated Ammonia Emissions from Road Vehicles. Environ. Sci. Technol. 2020, 54, 15689–15697. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Walters, W.W.; Pan, Y.; Li, Z.; Gu, M.; Duan, Y.; Lü, X.; Fang, Y. 15N natural abundance of vehicular exhaust ammonia, quantified by active sampling techniques. Atmos. Environ. 2021, 255, 118430. [Google Scholar] [CrossRef]
- Chang, Y.; Zou, Z.; Deng, C.; Kan, H.; Collett, J.L.; Lin, J.; Zhuang, G. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai. Atmos. Chem. Phys. 2016, 16, 3577–3594. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Ju, X.; Chang, J.; Ge, Y.; Vitousek, P.M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl. Acad. Sci. USA 2015, 112, 8792–8797. [Google Scholar] [CrossRef] [Green Version]
- Felix, J.D.; Elliott, E.M.; Gish, T.; Ronaldo, M.; Leah, C.; Jane, C. Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios. Atmos. Environ. 2014, 95, 563–570. [Google Scholar] [CrossRef]
- Shi, Y.; Xia, Y.; Lu, B.; Liu, N.; Zhang, L.; Li, S.; Li, W. Emission inventory and trends of NOx for China, 2000–2020. J. Zhejiang Univ. Sci. A 2014, 15, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.T.; Koba, K.; Makabe, A.; Chieko, T.; Zhu, W.; Hayashi, T.; Hokari, A.A.; Urakawa, R.; Bai, E.; Houlton, B.Z.; et al. Microbial denitrification dominates nitrate losses from forest ecosystems. Proc. Natl. Acad. Sci. USA 2015, 112, 1470–1474. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.F.; Wu, Y.L.; Liang, W.J.; Ji, C.S.; Ji, J.; Zhao, T.; Zhang, X. Chemical composition of rainwater and the acid neutralizing effect at Beijing and Chizhou city, China. Atmos. Res. 2015, 164–165, 278–285. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, L.M.; Engling, G.; Zhang, R.; Yang, Y.; Cao, J.; Zhu, C.; Wang, Q.; Luo, L. Chemical JEE composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmos. Res. 2013, 122, 270–283. [Google Scholar] [CrossRef]
- Yu, G.; Jia, Y.; He, N.; Zhu, J.; Chen, Z.; Wang, Q.; Piao, S.; Liu, X.; He, H.; Guo, X.; et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 2019, 12, 424–429. [Google Scholar] [CrossRef]
- Zhang, Z.; Guan, H.; Xiao, H.; Yue, L.; Zheng, N.; Li, L.; Liu, C.; Fang, X.; Xiao, H. Oxidation and sources of atmospheric NOx during winter in Beijing based on δ18O-δ15N space of particulate nitrate. Environ. Pollut. 2021, 276, 116708. [Google Scholar] [CrossRef]
- Chang, C.T.; Yang, C.J.; Huang, K.H.; Huang, J.C.; Lin, T.C. Changes of precipitation acidity related to sulfur and nitrogen deposition in forests across three continents in north hemisphere over last two decades. Sci. Total Environ. 2022, 806, 0048–9697. [Google Scholar] [CrossRef] [PubMed]
- Aas, W.; Mortier, A.; Bowersox, V.; Cherian, R.; Faluvegi, G.; Fagerli, H.; Hand, J.; Klimont, Z.; Galy-Lacaux, C.; Lehmann, C.M.B.; et al. Global and regional trends of atmospheric sulfur. Sci Rep. 2019, 9, 953. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Han, G.L. Chemical composition of rainwater and anthropogenic influences in Chengdu, Southwest China. Atmos. Res. 2011, 99, 190–196. [Google Scholar] [CrossRef]
Areas | Altitude m | Period | pH | NO3−-N | NH4+-N | TIN | SO42−-S | Ca2+ | Mg2+ | References |
---|---|---|---|---|---|---|---|---|---|---|
kg N ha−1 year−1 | kg N ha−1 year−1 | kg N ha−1 year−1 | kg S ha−1 year−1 | kg Ca ha−1 year−1 | kg Mg ha−1 year−1 | |||||
Beijing-U (Urban) | 20–60 | 2018–2020 | 6.4 | 7.3 | 15.4 | 22.7 | 14.7 | 20.9 | 2.6 | Sun et al. (2021) [32] |
Beijing-R (Rural) | 500 | 2017–2018 | 6.7 | 4.5 | 11.9 | 16.4 | 6.0 | 31.7 | 4.5 | Wen et al. (2020) [31] |
Qingyuan (Rural) | 578 | 2018–2020 | 6.2 | 5.9 | 8.4 | 14.3 | 5.6 | 8.9 | 1.7 | Present study |
Ochiishi, Japan (Remote) | 49 | 2018–2020 | 5.1 | 1.0 | 1.0 | 2.0 | 2.8 | 1.2 | 2.0 | EANET (2020) |
Mondy, Russia (Remote) | 1996 | 2018–2020 | 5.3 | 0.2 | 0.2 | 0.4 | 0.3 | 0.4 | 0.1 | EANET (2020) |
Concentration (μmol L−1) | ||||||||
---|---|---|---|---|---|---|---|---|
Season | NO3− | NH4+ | SO42− | Ca2+ | Mg2+ | Na+ | K+ | Cl− |
Spring | 125 ± 40 a | 123 ± 96 ab | 181 ± 95 a | 324 ± 225 | 68 ± 43 a | 75 ± 55 | 50 ± 35 a | 57 ± 38 ab |
Summer | 68 ± 37 b | 120 ± 57 ab | 61 ± 40 b | 82 ± 57 | 15 ± 7 b | 14 ± 5 | 20 ± 9 b | 20 ± 7 b |
Autumn | 61 ± 20 b | 79 ± 70 b | 74 ± 27 b | 99 ± 72 | 15 ± 7 b | 58 ± 46 | 14 ± 4 b | 29 ± 16 b |
Winter | 111 ± 66 a | 206 ± 127 a | 148 ± 102 a | 314 ± 177 | 82 ± 41 a | 55 ± 45 | 22 ± 21 b | 72 ± 60 a |
Deposition (mol ha−1 month−1) | ||||||||
Spring | 14 ± 7 | 105 ± 59 | 41 ± 25 a | 76 ± 60 a | 17 ± 12 a | 31 ± 22 | 34 ± 21 a | 27 ± 22 a |
Summer | 13 ± 7 | 67 ± 23 | 25 ± 12 ab | 32 ± 17 ab | 6 ± 2 b | 13 ± 6 | 17 ± 8 ab | 19 ± 10 ab |
Autumn | 7 ± 1 | 36 ± 30 | 16 ± 6 ab | 23 ± 10 ab | 4 ± 2 b | 24 ± 22 | 8 ± 6 ab | 13 ± 9 ab |
Winter | 3 ± 4 | 21 ± 20 | 5 ± 4 b | 4 ± 3 c | 3 ± 3 b | 5 ± 0.3 | 1 ± 0.1 c | 6 ± 0.4 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhu, F.; Kang, R.; Song, L.; Huang, S.; Huang, D.; Huang, K.; Mgelwa, A.S.; Gurmesa, G.A.; Fang, X.; et al. Chemical Composition and Deposition Characteristics of Precipitation into a Typical Temperate Forest in Northeastern China. Forests 2022, 13, 2024. https://doi.org/10.3390/f13122024
Wang Y, Zhu F, Kang R, Song L, Huang S, Huang D, Huang K, Mgelwa AS, Gurmesa GA, Fang X, et al. Chemical Composition and Deposition Characteristics of Precipitation into a Typical Temperate Forest in Northeastern China. Forests. 2022; 13(12):2024. https://doi.org/10.3390/f13122024
Chicago/Turabian StyleWang, Yingying, Feifei Zhu, Ronghua Kang, Linlin Song, Shaonan Huang, Dan Huang, Kai Huang, Abubakari Said Mgelwa, Geshere Abdisa Gurmesa, Xiaoming Fang, and et al. 2022. "Chemical Composition and Deposition Characteristics of Precipitation into a Typical Temperate Forest in Northeastern China" Forests 13, no. 12: 2024. https://doi.org/10.3390/f13122024
APA StyleWang, Y., Zhu, F., Kang, R., Song, L., Huang, S., Huang, D., Huang, K., Mgelwa, A. S., Gurmesa, G. A., Fang, X., & Fang, Y. (2022). Chemical Composition and Deposition Characteristics of Precipitation into a Typical Temperate Forest in Northeastern China. Forests, 13(12), 2024. https://doi.org/10.3390/f13122024