Gap Crossing in Flying Squirrels: Mitigating Movement Barriers through Landscape Management and Structural Implementation
Abstract
:1. Fragmentation and Gliding Mammals
2. Landscape Management Considerations
2.1. Habitat Quality
2.2. Size and Configuration
2.2.1. Types of Structures and Their Specifications
2.2.2. Gliding Performance
2.2.3. Habituation to Structures
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Friedenburg, L.K. Chapter 4: Physical Effects of Habitat Fragmentation; Fiedler, P.L., Kareiva, P.M., Eds.; Conservation Biology: For the Coming Decade; Chapman and Hall: New York, NY, USA, 1998; pp. 66–79. [Google Scholar]
- Pardini, R. Effects of forest fragmentation on small mammals in an Atlantic forest landscape. Biodivers. Conserv. 2004, 13, 2567–2586. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Laestadius, L.; Turubanova, S.; Yaroshenko, A.; Thies, C.; Smith, W.; Zhuravleva, I.; Komarova, A.; Minnemeyer, S.; et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 2017, 3, e1600821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakker, V.J.; van Vuren, D.H. Gap-crossing decisions by the red squirrel, a forest-dependent small mammal. Conserv. Biol. 2004, 18, 689–697. [Google Scholar] [CrossRef]
- Haynes, K.J.; Cronin, J.T. Interpatch movement and edge effects: The role of behavioral responses to the landscape matrix. Oikos 2006, 113, 43–54. [Google Scholar] [CrossRef]
- Zugmeyer, C.A.; Koprowski, J.L. Severely insect-damaged forest: A temporary trap for red squirrels? For. Ecol. Manag. 2009, 257, 464–470. [Google Scholar] [CrossRef]
- Hanski, I. Metapopulation Dynamics. Nature 1998, 396, 41–49. [Google Scholar] [CrossRef]
- Norberg, U.M. Evolution of vertebrate flight: An aerodynamic model for the transition from gliding to active flight. Am. Nat. 1985, 126, 303–327. [Google Scholar] [CrossRef]
- Endo, H.; Yokokawa, K.; Kurohmaru, M.; Hayashi, Y. Functional anatomy of gliding membrane muscles in the sugar glider (Petaurus breviceps). Ann. Anat. 1998, 180, 93–96. [Google Scholar] [CrossRef]
- Runestad, J.A.; Ruff, C.B. Structural adaptations for gliding in mammals with implications for locomotor behavior in Paromomyids. Am. J. Phys. Anthropol. 1995, 98, 101–119. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.M. Glide angle in the genus Petaurus and a review of gliding in mammals. Mammal Rev. 1999, 30, 9–30. [Google Scholar] [CrossRef]
- Flaherty, E.; Ben-David, M.; Smith, W.P. Quadrupedal locomotor performance in two species of arboreal squirrels: Predicting energy savings of gliding. J. Comp. Physiol. B 2010, 180, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Carey, A.B. Ecology of northern flying squirrels: Implications for ecosystem management in the Pacific Northwest, USA. In Biology of Gliding Mammals; Scheibe, J.S., Goldingay, R.L., Eds.; Filander Verlag: Fürth, Germany, 2000; pp. 45–61. [Google Scholar]
- Van der Ree, R.; Cesarani, S.; Sunnucks, P.; Moore, J.L.; Taylor, A. Large gaps in canopy reduce road crossing by gliding mammal. Ecol. Soc. 2010, 15, 35. [Google Scholar] [CrossRef] [Green Version]
- Goldingay, R.L.; Taylor, B.D.; Parkyn, J.L. Use of tall poles by four species of gliding mammal provides further proof of concept for habitat connection. Aust. Mammal. 2019, 41, 255–261. [Google Scholar] [CrossRef]
- Selonen, V.; Hanski, I.K. Movements of the flying squirrel Pteromys volans in corridors and in matrix habitat. Ecography 2003, 26, 641–651. [Google Scholar] [CrossRef]
- Murrant, M.N.; Bowman, J.; Wilson, P.J. A test of non-kin social foraging in the southern flying squirrel (Glaucomys volans). Biol. J. Linn. Soc. 2014, 113, 1126–1135. [Google Scholar] [CrossRef] [Green Version]
- Taulman, J.F.; Smith, K.G. Home range and habitat selection of southern flying squirrels in fragmented forests. Mamm. Biol. 2004, 69, 11–27. [Google Scholar] [CrossRef]
- Holloway, G.L.; Malcolm, J. Northern and southern flying squirrels use of space within home ranges in central Ontario. For. Ecol. Manag. 2007, 242, 747–755. [Google Scholar] [CrossRef]
- Diggins, C.A.; Silvis, A.; Kelly, C.A.; Ford, W.M. Home range, den selection and habitat use of Carolina northern flying squirrels (Glaucomys sabrinus coloratus). Wildl. Res. 2017, 44, 427–437. [Google Scholar] [CrossRef]
- Jacques, C.N.; Zweep, J.S.; Jenkins, S.E.; Klaver, R.W. Home-range use and survival of southern flying squirrels in fragmented forest landscapes. J. Mammal. 2017, 98, 1479–1488. [Google Scholar] [CrossRef]
- Selonen, V.; Hanski, I.K. Young flying squirrels (Pteromys volans) dispersing in fragmented forests. Behav. Ecol. 2004, 15, 564–571. [Google Scholar] [CrossRef]
- Hanski, I.K.; Selonen, V. Female-biased natal dispersal in the Siberian flying squirrel. Behav. Ecol. 2008, 20, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Martin, K.; Anthony, R. Movements of northern flying squirrels in different-aged forest stands of western Oregon. J. Wildl. Manag. 1999, 63, 291–297. [Google Scholar] [CrossRef]
- Selonen, V.; Hanski, I.K.; Stevens, P.C. Space use of the Siberian flying squirrel Pteromys volans in fragmented forest landscapes. Ecography 2001, 24, 588–600. [Google Scholar] [CrossRef]
- Brommer, J.; Wistbacka, R.; Selonen, V. Immigration ensures population survival in the Siberian flying squirrel. Ecol. Evol. 2017, 7, 1858–1868. [Google Scholar] [CrossRef] [PubMed]
- Arbogast, B.S.; Browne, R.A.; Weigl, P.D.; Kenagy, G.J. Conservation genetics of endangered flying squirrels (Glaucomys) from the Appalachian Mountains of eastern North America. Anim. Conserv. 2005, 8, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Lampila, S.; Kvist, L.; Wickback, R.; Orell, M. Genetic diversity and population differentiation in the endangered Siberian flying squirrel (Pteromys volans) in a fragmented landscape. Eur. J. Wildl. Res. 2009, 55, 397–406. [Google Scholar] [CrossRef]
- Taylor, A.C.; Walker, F.M.; Goldingay, R.L.; Ball, T.M.; van der Ree, R. Degree of landscape fragmentation influences genetic isolation among populations of a gliding mammal. PLoS ONE 2011, 6, e26651. [Google Scholar] [CrossRef]
- Goldingay, R.L.; Harrisson, K.A.; Taylor, A.C.; Ball, T.M.; Sharpe, D.J.; Taylor, B.D. Fine-scale genetic response to landscape change in a gliding mammal. PLoS ONE 2013, 8, e80383. [Google Scholar] [CrossRef] [Green Version]
- Knipler, M.L.; Dowton, M.; Clulow, J.; Meyer, N.; Mikac, K.M. Genome-wide SNPS detect fine-scale genetic structure in threatened populations of squirrel glider Petaurus norfolcensis. Conserv. Genet. 2022, 23, 541–558. [Google Scholar] [CrossRef]
- Meyer, M.D.; Kelt, D.A.; North, M.P. Microhabitat associations of northern flying squirrels in burned and thinned forest stands of the Sierra Nevada. Am. Midl. Nat. 2007, 157, 202–211. [Google Scholar] [CrossRef]
- Ritchie, L.E.; Betts, M.G.; Forbes, G.; Vernes, K. Effects of landscape composition and configuration on northern flying squirrels in a forest mosaic. For. Ecol. Manag. 2009, 257, 1920–1929. [Google Scholar] [CrossRef]
- Holloway, G.L.; Smith, W.P.; Halpern, C.B.; Gitzen, R.A.; Maguire, C.C.; West, S.D. Influence of forest structure and experimental green-tree retention on northern flying squirrel (Glaucomys sabrinus) abundance. For. Ecol. Manag. 2012, 285, 187–194. [Google Scholar] [CrossRef]
- Herbers, J.; Klenner, W. Effects of logging pattern and intensity on squirrel demography. J. Wildl. Manag. 2007, 71, 2655–2663. [Google Scholar] [CrossRef]
- Manning, T.; Hagar, J.C.; McComb, B.C. Thinning of young Douglas-fir forests decreases density of northern flying squirrels in the Oregon Cascades. For. Ecol. Manag. 2012, 264, 115–124. [Google Scholar] [CrossRef]
- Meyer, M.D.; Kelt, D.A.; North, M.P. Nest trees of northern flying squirrels in the Sierra Nevada. J. Mammal. 2005, 86, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Flaherty, E.A.; Ben-David, M.; Smith, W.P. Diet and food availability: Implications for foraging and dispersal of Prince of Wales northern flying squirrels across managed landscapes. J. Mammal. 2010, 91, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Gomez, D.M.; Anthony, R.G.; Hayes, J.P. Influence of thinning of Douglas-fir forest on population parameters and diet of northern flying squirrels. J. Wildl. Manag. 2005, 69, 1670–1682. [Google Scholar] [CrossRef]
- Taulman, J.F. Selection of nest trees by southern flying squirrels (Sciuridae: Glaucomys volans) in Arkansas. J. Zool. 1999, 248, 369–377. [Google Scholar] [CrossRef]
- Campuzano-Chávez-Peón, D.; Zuria, I.; Castellanos, I.; Gates, J.E. Characteristics of nest-sites of the southern flying squirrel (Glaucomys volans) in a pine-oak forest of Central Mexico. Southwest. Nat. 2014, 59, 75–80. [Google Scholar] [CrossRef]
- Keefe, E.M.; Giuliano, W.M. Effects of forest structure on the distribution of southern flying squirrels (Glaucomys volans) in urban parks. Urban Ecosyst. 2004, 7, 55–64. [Google Scholar] [CrossRef]
- Holloway, G.L.; Malcolm, J.R. Nest-tree use by northern and southern flying squirrels in central Ontario. J. Mammal. 2007, 88, 226–233. [Google Scholar] [CrossRef]
- Loeb, S.C.; Tainter, F.H.; Cázares, E. Habitat associations of hypogeous fungi in the southern Appalachians: Implications for the endangered northern flying squirrel (Glaucomys sabrinus coloratus). Am. Midl. Nat. 2000, 144, 286–296. [Google Scholar] [CrossRef]
- Fridell, R.; Litvaitis, J. Influence of resource distribution and abundance on home-range characteristics of southern flying squirrels. Can. J. Zool. 1991, 69, 2589–2593. [Google Scholar] [CrossRef]
- Helmick, K.R.; Barrett, T.L.; Barrett, G.W. Dietary resource preference of the southern flying squirrel (Glaucomys volans). Am. Midl. Nat. 2014, 171, 371–374. [Google Scholar] [CrossRef]
- Zweep, J.S.; Jacques, C.N.; Jenkins, S.E.; Klaver, R.W.; Dubay, S.A. Nest tree use by southern flying squirrels fragmented midwestern landscapes. Wildl. Soc. Bull. 2018, 42, 430–437. [Google Scholar] [CrossRef]
- Bendel, P.R.; Gates, J.E. Home range and microhabitat partitioning of the southern flying squirrel (Glaucomys volans). J. Mammal. 1987, 68, 243–255. [Google Scholar] [CrossRef]
- Hurme, E.; Reunanen, P.; Mönkkonen, M.; Nikula, A.; Nivala, V.; Oksanen, J. Local habitat patch pattern of the Siberian flying squirrel in a managed boreal forest landscape. Ecography 2007, 30, 277–287. [Google Scholar] [CrossRef]
- Mönkkōnen, M.; Reunanen, P.; Nikula, A.; Inkeröinen, J.; Forsman, J. Landscape characteristics associated with the occurrence of the flying squirrel Pteromys volans in old-growth forests of northern Finland. Ecography 1997, 20, 634–642. [Google Scholar] [CrossRef]
- Woodworth, C.J.; Bollinger, E.K.; Nelson, T.A. The effects of forest fragment size, isolation, and microhabitat variables on nest box use by southern flying squirrels (Glaucomys volans) in southern Illinois. In Biology of Gliding Mammals; Scheibe, J.S., Goldingay, R.L., Eds.; Filander Verlag: Fürth, Germany, 2000; pp. 135–147. [Google Scholar]
- Santangeli, A.; Hanski, I.K.; Mäkelä, H. Integrating multi-source forest inventory and animal survey data to assess nationwide distribution and habitat correlates of the Siberian flying squirrel. Biol. Conserv. 2013, 157, 31–38. [Google Scholar] [CrossRef]
- Deslauriers, S. Effects of Forest Characteristics and Landscape Configuration on Flying Squirrel Occurrence and Abundance in Rouge National Urban Park; Graduate Department of Forestry University of Toronto: Toronto, ON, Canada, 2021. [Google Scholar]
- Walpole, A.A.; Bowman, J. Patch occupancy by squirrels in fragmented deciduous forest: Effects of behavior. Acta Theol. 2011, 56, 63–72. [Google Scholar] [CrossRef]
- Rizkalla, C.; Swihart, R. Explaining movement decisions of forest rodents in fragmented landscapes. Biol. Conserv. 2007, 140, 339–348. [Google Scholar] [CrossRef]
- Mäkeläinen, S.; de Knegt, H.J.; Ovaskainen, O.; Hanski, I.K. Home-range use patterns and movements of the Siberian squirrel in urban forests: Effects of habitat composition and connectivity. Mov. Ecol. 2016, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, J.M.; Essner, R.L. Gap crossing event in the southern flying squirrel (Glaucomys volans) in fragmented urbanized forest habitat. Trans. Ill. State Acad. Sci. 2020, 113, 23–26. [Google Scholar]
- Howard, J.M.; Loos, J.E.; Essner, R.L. Movement and microhabitat selection in the southern flying squirrel (Glaucomys volans) in southwestern Illinois. Northeast. Nat. 2020, 27, 35–47. [Google Scholar] [CrossRef]
- Smith, M.; Forbes, G.; Betts, M. Landscape configuration influences gap-crossing decisions of northern flying squirrel (Glaucomys sabrinus). Biol. Conserv. 2013, 168, 176–183. [Google Scholar] [CrossRef]
- Desrochers, A.; Hanski, I.K.; Selonen, V. Siberian flying squirrel responses to high-and low-contrast forest edges. Landsc. Ecol. 2003, 18, 543–552. [Google Scholar] [CrossRef]
- Gilmore, R.; Gates, E. Habitat use by the southern flying squirrel at a hemlock-northern hardwood ecotone. J. Wildl. Manag. 1985, 49, 703–710. [Google Scholar] [CrossRef]
- Van der Ree, R.; Bennett, A.F.; Gilmore, D.C. Gap-crossing by gliding marsupials: Thresholds for use of isolated woodland patches in an agricultural landscape. Biol. Conserv. 2003, 115, 241–249. [Google Scholar] [CrossRef]
- Van der Ree, R. Road upgrade in Victoria a filter to the movement of the endangered squirrel glider (Petaurus norfolcensis): Results of a pilot study. Ecol. Manag. Restor. 2006, 7, 226–228. [Google Scholar] [CrossRef]
- Findley, J.S. The interesting fate of a flying squirrel. J. Mammal. 1946, 26, 437. [Google Scholar] [CrossRef]
- Selonen, V.; Hanski, I.K. Habitat exploration and use in dispersing juvenile flying squirrels. J. Anim. Ecol. 2006, 75, 1440–1449. [Google Scholar] [CrossRef]
- Asari, Y.; Johnson, C.N.; Parsons, M.; Larson, J. Gap-crossing in fragmented habitats by mahogany gliders (Petaurus gracilis). Do they cross roads and powerline corridors? Aust. Mammal. 2010, 32, 10–15. [Google Scholar] [CrossRef]
- Soanes, K.; Lobo, M.C.; Vesk, P.A.; McCarthy, M.A.; Moore, J.L.; van der Ree, R. Movement re-established but not restored: Inferring the effectiveness of road-crossing mitigation for a gliding mammal by monitoring use. Biol. Conserv. 2013, 159, 434–441. [Google Scholar] [CrossRef]
- Taylor, B.D.; Rohweder, D.A. Radio-tracking three Sugar Gliders using forested highway median strips at Bongil Bongil National Park, north-east New South Wales. Ecol. Restor. Manag. 2013, 14, 228–230. [Google Scholar] [CrossRef]
- Goldingay, R.L.; Rohweder, D.; Taylor, B.D. Will arboreal mammals use rope-bridges across a highway in eastern Australia? Aust. Mammal. 2013, 35, 30–38. [Google Scholar] [CrossRef]
- Goldingay, R.L.; Taylor, B.D. Can field trials improve the design of road-crossing structures for gliding mammals? Ecol. Res. 2017, 32, 743–749. [Google Scholar] [CrossRef]
- Soanes, K.; Mitchell, B.; van der Ree, R. Quantifying predation attempts on arboreal marsupials using wildlife crossing structures above a major road. Aust. Mammal. 2017, 39, 254–257. [Google Scholar] [CrossRef]
- Soanes, K.; Taylor, A.C.; Sunnucks, P.; Vesk, P.A.; Cesarini, S.; van der Ree, R. Evaluating the success of wildlife crossing structures using genetic approaches and an experimental design: Lessons from a gliding mammal. J. Appl. Ecol. 2018, 55, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Yanagawa, H.; Asari, Y.; Kishida, K.; Kimura, S.; Kitase, T. Eco-bridge for flying squirrels. Symp. Wildl. Traffic Proc. 2004, 3, 13–18. [Google Scholar]
- Asari, Y.; Yanagawa, H. The monitoring of ‘conservation bridge’ for the Siberian flying squirrel in Obihiro, Hokkaido. Animate 2008, 7, 44–49. [Google Scholar]
- Ball, T.M.; Goldingay, R.L. Can wooden poles be used to reconnect habitat for a gliding mammal? Landsc. Urban Plan. 2008, 87, 140–146. [Google Scholar] [CrossRef]
- Goldingay, R.L.; Taylor, B.D.; Ball, T.M. Wooden poles can provide habitat connectivity for a gliding mammal. Aust. Mammal. 2011, 33, 36–43. [Google Scholar] [CrossRef]
- Taylor, B.D.; Goldingay, R.L. Restoring connectivity in landscape fragmented by major roads: A case study using wooden poles as “stepping stones” for gliding mammals. Restor. Ecol. 2012, 20, 671–678. [Google Scholar] [CrossRef]
- Taylor, B.D.; Goldingay, R.L. Squirrel gliders use roadside glide poles to cross a road gap. Aust. Mammal. 2013, 35, 119–122. [Google Scholar] [CrossRef]
- Kelly, C.; Diggins, C.; Lawrence, A. Crossing structures reconnect federally endangered flying squirrel populations divided for 20 years by road barrier. Wildl. Soc. Bull. 2013, 37, 375–379. [Google Scholar] [CrossRef]
- Taylor, B.D.; Rohweder, D.A. Yellow-bellied gliders use glide poles to cross the Pacific highway at Halfway creek, north-east New South Wales. Aust. Mammal. 2020, 42, 385–387. [Google Scholar] [CrossRef]
- Taylor, B.D.; Goldingay, R.L. Gliding performance and its relevance to gap crossing by the squirrel glider (Petaurus norfolcensis). Aust. J. Zool. 2009, 57, 99–104. [Google Scholar]
- Paskins, K.E.; Bowyer, A.; Megill, W.M.; Scheibe, J.S. Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels Glaucomys sabrinus. J. Exp. Biol. 2007, 210, 1413–1423. [Google Scholar] [CrossRef] [Green Version]
- Scheibe, J.S.; Robins, J.H. Morphological and performance attributes of gliding mammals. In Ecology and Evolutionary Biology of Tree Squirrels; Steele, M.A., Meritt, J.F., Zegers, D.A., Eds.; Virginia Museum of Natural History: Martinsville, VA, USA, 1998; pp. 131–144. [Google Scholar]
- Vernes, K. Gliding performance of the northern flying squirrel (Glaucomys sabrinus) in mature mixed forest eastern Canada. J. Mammal. 2001, 82, 1026–1033. [Google Scholar] [CrossRef]
- Asari, Y.; Yanagawa, H.; Osida, T. Gliding ability of the Siberian flying squirrel Pteromys volans orii. Mammal. Study 2007, 32, 151–154. [Google Scholar] [CrossRef]
- Krishna, M.C.; Awadhesh, K.; Tripathi, O.P. Gliding performance of the red giant gliding squirrel Petaurista petaurista in the tropical rainforest of Indian eastern Himalaya. Wildl. Biol. 2016, 22, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Stafford, B.J.; Thorington, R.W.; Kawamichi, T. Gliding behavior of Japanese giant flying squirrels (Petaurista leucogenys). J. Mammal. 2002, 83, 553–562. [Google Scholar] [CrossRef]
- Koli, V.K.; Bhatnagar, C.; Mali, D. Gliding behavior of Indian giant flying squirrel Petaurista philippensis. Curr. Sci. 2011, 100, 1563–1568. [Google Scholar]
- Goldingay, R.L. Gliding performance in the yellow-bellied glider in low-canopy forest. Aust. Mammal. 2014, 36, 254–258. [Google Scholar] [CrossRef]
- Soanes, K.; Vesk, P.A.; van der Ree, R. Monitoring the use of road-crossing structures by arboreal marsupials: Insights gained from motion-triggered cameras and passive integrated transponder (PIT) tags. Wildl. Res. 2015, 42, 241–256. [Google Scholar] [CrossRef]
Method | Species Documented | Studies |
---|---|---|
Median trees | Siberian Flying Squirrel (Pteromys volans) | [16,22,65] |
Mahogany Glider (Petaurus gracilis) | [66] | |
Squirrel Glider (Petaurus nolfolcensis) | [67,68] | |
Southern Flying Squirrel (Glaucomys volans) | [57,58] | |
Canopy rope bridges | Squirrel Glider (Petaurus norfolcensis) | [15,67,69,70,71,72] |
Sugar Glider (Petaurus breviceps) | [15,70,71] | |
Feathertail Glider (Acrobates pygmaeus) | [15,69] | |
Log bridges | Siberian Flying Squirrel (Pteromys volans) | [73,74] |
Gliding poles | Siberian Flying Squirrel (Pteromys volans) | [73,74] |
Mahogany Gliders (Petaurus gracilis) | [66] | |
Squirrel Glider (Petaurus norfolcensis) | [15,67,72,75,76,77,78,80] | |
Sugar Glider (Petaurus breviceps) | [15,80] | |
Feathertail Glider (Acrobates pygmaeus) | [15,80] | |
Yellow-bellied Glider (Petaurus australis) | [15,80] | |
Northern Flying Squirrel (Glaucomys sabrinus) | [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howard, J.M. Gap Crossing in Flying Squirrels: Mitigating Movement Barriers through Landscape Management and Structural Implementation. Forests 2022, 13, 2027. https://doi.org/10.3390/f13122027
Howard JM. Gap Crossing in Flying Squirrels: Mitigating Movement Barriers through Landscape Management and Structural Implementation. Forests. 2022; 13(12):2027. https://doi.org/10.3390/f13122027
Chicago/Turabian StyleHoward, Jeremy M. 2022. "Gap Crossing in Flying Squirrels: Mitigating Movement Barriers through Landscape Management and Structural Implementation" Forests 13, no. 12: 2027. https://doi.org/10.3390/f13122027
APA StyleHoward, J. M. (2022). Gap Crossing in Flying Squirrels: Mitigating Movement Barriers through Landscape Management and Structural Implementation. Forests, 13(12), 2027. https://doi.org/10.3390/f13122027