Transcriptome Analysis Provides Insights into the Mechanisms of Starch Biosynthesis in the Kernels of Three Chestnut Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Total Soluble Sugar (TSS) and Starch Contents
2.3. Scanning Electron Microscopy (SEM)
2.4. RNA Preparation, Transcriptome Sequencing, and Functional Annotation
2.5. Candidate DEGs Validation by qRT-PCR
2.6. Statistical Analysis
3. Results
3.1. Total Soluble Sugar (TSS) and Starch Contents
3.2. Microstructure of Chestnut Starch Granules among the Three Cultivars
3.3. Library Construction and Sequencing
3.4. Identification of Differentially Expressed Genes (DEGs)
3.5. GO and KEGG Functional Enrichment Analysis of DEGs
3.6. Transcripts Associated with Starch and Sucrose Metabolism Pathway
3.7. Integrative Analysis of Starch and Sucrose Metabolism Pathway Gene Expression and Starch Content
3.8. Transcription Factor Analyses (Correlations of TFs and SS)
3.9. Validation of DEGs by qRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishio, S.; Takada, N.; Terakami, S.; Takeuchi, Y.; Kimura, M.K.; Isoda, K.; Saito, T.; Iketani, H. Genetic structure analysis of cultivated and wild chestnut populations reveals gene flow from cultivars to natural stands. Sci. Rep. 2021, 11, 240. [Google Scholar] [CrossRef] [PubMed]
- De Vasconcelos, M.C.; Bennett, R.N.; Rosa, E.A.; Ferreira-Cardoso, J.V. Composition of European chestnut (Castanea sativa Mill.) and association with health effects: Fresh and processed products. J. Sci. Food Agric. 2010, 90, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Properties and food uses of chestnut flour and starch. Food Bioprocess Technol. 2017, 10, 1173–1191. [Google Scholar] [CrossRef]
- Hung, P.V.; Maeda, T.; Morita, N. Study on physicochemical characteristics of waxy and high-amylose wheat starches in comparison with normal wheat starch. Starch-Stärke 2007, 59, 125–131. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Ballester, A.; Corredoira, E.; Vieitez, A.M.; Agnanostakis, S.; Costa, R.; Bounous, G.; Botta, R.; Beccaro, G.L.; Kubisiak, T.L. Chestnut. In Fruit Breeding; Springer: Berlin/Heidelberg, Germany, 2012; pp. 729–769. [Google Scholar]
- Sabelli, P.A.; Larkins, B.A. The development of endosperm in grasses. Plant Physiol. 2009, 149, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Tan, H.; Zhang, C.; Li, Q.; Liu, Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Commun. 2021, 2, 100237. [Google Scholar] [CrossRef]
- Comparot-Moss, S.; Denyer, K. The evolution of the starch biosynthetic pathway in cereals and other grasses. J. Exp. Bot. 2009, 60, 2481–2492. [Google Scholar] [CrossRef] [Green Version]
- Pontis, H.G.; Babio, J.R.; Salerno, G. Reversible unidirectional inhibition of sucrose synthase activity by disulfides. Proc. Natl. Acad. Sci. USA 1981, 78, 6667–6669. [Google Scholar] [CrossRef] [Green Version]
- Nakai, T.; Konishi, T.; Zhang, X.-Q.; Chollet, R.; Tonouchi, N.; Tsuchida, T.; Yoshinaga, F.; Mori, H.; Sakai, F.; Hayashi, T. An increase in apparent affinity for sucrose of mung bean sucrose synthase is caused by in vitro phosphorylation or directed mutagenesis of Ser11. Plant Cell Physiol. 1998, 39, 1337–1341. [Google Scholar] [CrossRef] [Green Version]
- Zeeman, S.C.; Kossmann, J.; Smith, A.M. Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol. 2010, 61, 209–234. [Google Scholar] [CrossRef]
- Hanashiro, I.; Itoh, K.; Kuratomi, Y.; Yamazaki, M.; Igarashi, T.; Matsugasako, J.; Takeda, Y. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol. 2008, 49, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, G.; Li, S.; Zhang, M.; Peng, H.; Wang, C.; Zhu, Y.; Guo, T. Molecular cloning and expression analysis of the starch-branching enzyme III gene from common wheat (Triticum aestivum). Biochem. Genet. 2013, 51, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Ohdan, T.; Francisco Jr, P.B.; Sawada, T.; Hirose, T.; Terao, T.; Satoh, H.; Nakamura, Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J. Exp. Bot. 2005, 56, 3229–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Pan, X.; Jiang, H.; Wu, G. Comparison of the starch synthesis genes between maize and rice: Copies, chromosome location and expression divergence. Theor. Appl. Genet. 2009, 119, 815–825. [Google Scholar] [CrossRef]
- Nazarian-Firouzabadi, F.; Visser, R.G. Potato starch synthases: Functions and relationships. Biochem. Biophys. Rep. 2017, 10, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Fünfgeld, M.M.; Wang, W.; Ishihara, H.; Arrivault, S.; Feil, R.; Smith, A.M.; Stitt, M.; Lunn, J.E.; Niittylä, T. Sucrose synthases are not involved in starch synthesis in Arabidopsis leaves. Nat. Plants 2022, 8, 574–582. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, W.; Tong, Y.; Li, M.J.; Grierson, D.; Ferguson, I.; Chen, K.; Yin, X. Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit. Plant Physiol. 2018, 178, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Wang, J.; Liu, Y.; Ma, C.; Guo, S.; Lin, S.; Wang, J. Transcriptome analysis of genes involved in starch biosynthesis in developing Chinese chestnut (Castanea mollissima Blume) seed kernels. Sci. Rep. 2021, 11, 3570. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Q.; Feng, Y.; Fan, X.; Zou, F.; Yuan, D.-Y.; Zeng, X.; Cao, H. Transcriptomic identification and expression of starch and sucrose metabolism genes in the seeds of Chinese chestnut (Castanea mollissima). J. Agric. Food Chem. 2015, 63, 929–942. [Google Scholar] [CrossRef]
- Chen, L.; Lu, D.; Wang, T.; Li, Z.; Zhao, Y.; Jiang, Y.; Zhang, Q.; Cao, Q.; Fang, K.; Xing, Y. Identification and expression analysis of starch branching enzymes involved in starch synthesis during the development of chestnut (Castanea mollissima Blume) cotyledons. PLoS ONE 2017, 12, e0177792. [Google Scholar] [CrossRef]
- Li, S.; Shi, Z.; Zhu, Q.; Tao, L.; Liang, W.; Zhao, Z. Transcriptome sequencing and differential expression analysis of seed starch accumulation in Chinese chestnut Metaxenia. BMC Genom. 2021, 22, 617. [Google Scholar] [CrossRef]
- Li, S.; Liang, H.; Tao, L.; Xiong, L.; Liang, W.; Shi, Z.; Zhao, Z. Transcriptome sequencing and differential expression analysis reveal molecular mechanisms for starch accumulation in chestnut. Forests 2020, 11, 388. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Li, Q.; Bao, W.; Wu, Y.; Ouyang, J. Relationship between physicochemical characteristics and in vitro digestibility of chestnut (Castanea mollissima) starch. Food Hydrocoll. 2018, 84, 193–199. [Google Scholar] [CrossRef]
- Yu, S.; Liu, J.; Yang, Y.; Ren, J.; Zheng, X.; Kopparapu, N.K. Effects of amylose content on the physicochemical properties of Chinese chestnut starch. Starch-Stärke 2016, 68, 112–118. [Google Scholar] [CrossRef]
- Wang, J.-C.; Xu, H.; Zhu, Y.; Liu, Q.-Q.; Cai, X.-L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J. Exp. Bot. 2013, 64, 3453–3466. [Google Scholar] [CrossRef]
- Dong, Q.; Xu, Q.; Kong, J.; Peng, X.; Zhou, W.; Chen, L.; Wu, J.; Xiang, Y.; Jiang, H.; Cheng, B. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. Plant Sci. 2019, 283, 407–415. [Google Scholar] [CrossRef]
- Song, Y.; Luo, G.; Shen, L.; Yu, K.; Yang, W.; Li, X.; Sun, J.; Zhan, K.; Cui, D.; Liu, D. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homologue from Triticum aestivum, enhance starch synthesis in wheat. New Phytol. 2020, 226, 1384–1398. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z.; Zhang, Q.; Meng, S.; Wei, C. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiol. 2020, 184, 1775–1791. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Yi, Q.; Hu, Y.; Liu, H.; Liu, Y.; Huang, Y. Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm. Plant Mol. Biol. 2014, 84, 359–369. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Feng, M.; Zhu, Y. Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Plant Biotechnol. J. 2018, 16, 18–26. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, F.; Kong, J.; Xu, Q.; Li, T.; Chen, L.; Chen, H.; Jiang, H.; Li, C.; Cheng, B. Functional analysis of ZmMADS1a reveals its role in regulating starch biosynthesis in maize endosperm. Sci. Rep. 2019, 9, 3253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Q.; Wang, Y.; Du, J.; Li, H.; Wei, B.; Wang, Y.; Li, Y.; Yu, G.; Liu, H.; Zhang, J. Zm MYB 14 is an important transcription factor involved in the regulation of the activity of the Zm BT 1 promoter in starch biosynthesis in maize. FEBS J. 2017, 284, 3079–3099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertz, E.T.; Bates, L.S.; Nelson, O.E. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 1964, 145, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.J.; Ketudat, M.; Aukerman, M.J.; Hoschek, G. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 1992, 4, 689–700. [Google Scholar]
- Gu, Y.; Han, S.; Chen, L.; Mu, J.; Duan, L.; Li, Y.; Yan, Y.; Li, X. Expression and regulation of genes involved in the reserve starch biosynthesis pathway in hexaploid wheat (Triticum aestivum L.). Crop J. 2021, 9, 440–455. [Google Scholar] [CrossRef]
- Dong, T.; Zhu, M.; Yu, J.; Han, R.; Tang, C.; Xu, T.; Liu, J.; Li, Z. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.). BMC Plant Biol. 2019, 19, 136. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Zeng, X.; Wang, Y.; Bai, L.; Xu, Q.; Wei, Z.; Yuan, H.; Nyima, T. Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis. Funct. Integr. Genom. 2017, 17, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Zhou, Y.H.; Shu, W.S.; Cheng, H.Y.; Wang, L.; Han, Y.P.; Zhang, Y.Y.; Yu, M.L.; Joldersma, D.; Zhang, S.L. RNA-Seq analysis unveils gene regulation of fruit size cooperatively determined by velocity and duration of fruit swelling in peach. Physiol. Plant. 2018, 164, 320–336. [Google Scholar] [CrossRef]
- Pomares-Viciana, T.; Río-Celestino, D.; Román, B.; Die, J.; Pico, B.; Gómez, P. First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC Plant Biol. 2019, 19, 61. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Singh, A.K.; Singh, S.K.; Mahato, A.K.; Srivastav, M.; Singh, N.K. Comparative RNA sequencing based transcriptome profiling of regular bearing and alternate bearing mango (Mangifera indica L.) varieties reveals novel insights into the regulatory mechanisms underlying alternate bearing. Biotechnol. Lett. 2020, 42, 1035–1050. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, Y.; Zhang, Q.; Nie, X.; Sun, Y.; Zhang, Z.; Li, H.; Fang, K.; Wang, G.; Huang, H. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). GigaScience 2019, 8, giz112. [Google Scholar] [CrossRef] [PubMed]
- Fairbairn, N. A modified anthrone reagent. Chem. Ind. 1953, 4, 86. [Google Scholar]
- Zhu, C.; Wang, W.; Chen, Y.; Zhao, Y.; Zhang, S.; Shi, F.; Khalil-Ur-Rehman, M.; Nieuwenhuizen, N.J. Transcriptomics and Antioxidant Analysis of Two Chinese Chestnut (Castanea mollissima BL.) Varieties Provides New Insights Into the Mechanisms of Resistance to Gall Wasp Dryocosmus kuriphilus Infestation. Front. Plant Sci. 2022, 13, 874434. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yang, F.; Liu, Q.; Pan, S.; Xu, C.; Xiong, Y.L. Chemical composition and quality traits of Chinese chestnuts (Castanea mollissima) produced in different ecological regions. Food Biosci. 2015, 11, 33–42. [Google Scholar] [CrossRef]
- De Vasconcelos, M.D.C.B.M.; Bennett, R.N.; Rosa, E.A.; Cardoso, J.V.F. Primary and secondary metabolite composition of kernels from three cultivars of Portuguese chestnut (Castanea sativa Mill.) at different stages of industrial transformation. J. Sci. Food Agric. 2007, 55, 3508–3516. [Google Scholar] [CrossRef]
- Svihus, B.; Uhlen, A.K.; Harstad, O.M. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed. Sci. Technol. 2005, 122, 303–320. [Google Scholar] [CrossRef]
- Bertolini, A.; Souza, E.; Nelson, J.; Huber, K. Composition and reactivity of A- and B-type starch granules of normal, partial waxy, and waxy wheat. Cereal Chem. 2003, 80, 544–549. [Google Scholar] [CrossRef]
- Raeker, M.; Gaines, C.; Finney, P.; Donelson, T. Granule size distribution and chemical composition of starches from 12 soft wheat cultivars. Cereal Chem. 1998, 75, 721–728. [Google Scholar] [CrossRef]
- Zeeman, S.C.; Tiessen, A.; Pilling, E.; Kato, K.L.; Donald, A.M.; Smith, A.M. Starch synthesis in Arabidopsis. Granule synthesis, composition, and structure. Plant Physiol. 2002, 129, 516–529. [Google Scholar] [CrossRef] [Green Version]
- James, M.G.; Denyer, K.; Myers, A.M. Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 2003, 6, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, W.; Qi, J.; Shi, P.; Yin, Y. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. J. Food Sci. Technol. 2014, 51, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Cai, X.-L.; Wang, Z.-Y.; Hong, M.-M. An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. J. Biol. Chem. 2003, 278, 47803–47811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohmer, S.; Maddaloni, M.; Motto, M.; Di Fonzo, N.; Hartings, H.; Salamini, F.; Thompson, R.D. The maize regulatory locus Opaque-2 encodes a DNA-binding protein which activates the transcription of the b-32 gene. EMBO J. 1991, 10, 617–624. [Google Scholar] [CrossRef]
- Izawa, T.; Foster, R.; Nakajima, M.; Shimamoto, K.; Chua, N.-H. The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development. Plant Cell 1994, 6, 1277–1287. [Google Scholar]
- Zhang, Z.; Zheng, X.; Yang, J.; Messing, J.; Wu, Y. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc. Natl. Acad. Sci. USA 2016, 113, 10842–10847. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Wang, Y.; Li, H.; Zhang, C.; Wei, B.; Wang, Y.; Huang, H.; Li, Y.; Yu, G.; Liu, H. Transcription factor ZmNAC126 plays an important role in transcriptional regulation of maize starch synthesis-related genes. Crop J. 2021, 9, 192–203. [Google Scholar] [CrossRef]
Sample | Total Raw Reads | Total Clean Reads | Total Mapped Reads | Unique Mapped Reads | Clean Bases | Q30 |
---|---|---|---|---|---|---|
dhp-a | 49,810,378 | 48,285,056 (96.94%) | 45,436,639 (94.10%) | 42,527,456 (88.08%) | 7.24 G | 93.55 |
dhp-b | 44,045,722 | 42,986,868 (97.59%) | 40,316,065 (93.79%) | 38,105,145 (88.64%) | 6.45 G | 93.61 |
dhp-c | 41,300,242 | 40,599,998 (98.3%) | 38,161,438 (93.99%) | 35,622,194 (87.74%) | 6.09 G | 93.61 |
jdy-a | 49,052,114 | 47,609,928 (97.06%) | 44,295,009 (93.04%) | 42,193,876 (88.62%) | 7.14 G | 93.56 |
jdy-b | 44,906,852 | 43,907,442 (97.77%) | 41,066,203 (93.53%) | 39,155,322 (89.18%) | 6.59 G | 93.37 |
jdy-c | 54,623,184 | 52,916,018 (96.87%) | 49,471,428 (93.49%) | 47,104,759 (89.02%) | 7.94 G | 93.7 |
eur-a | 48,485,084 | 46,853,106 (96.63%) | 40,008,716 (85.39%) | 37,483,885 (80.00%) | 7.03 G | 93.8 |
eur-b | 51,789,328 | 50,476,870 (97.47%) | 42,023,225 (83.25%) | 39,276,069 (77.81%) | 7.57 G | 93.55 |
eur-c | 48,330,336 | 47,433,446 (98.14%) | 40,657,928 (85.72%) | 38,644,666 (81.47%) | 7.12 G | 93.52 |
Pathway ID | Pathway | DEGs with Pathway Annotation (n, |log2Fold Change| ≥ 1) | p-Value (<0.05) | ||
---|---|---|---|---|---|
Total | Up-Regulated | Down-Regulated | |||
eur vs. dhp | |||||
ko01110 | Biosynthesis of secondary metabolites | 850 | 323 | 527 | 2.51 × 10−10 |
ko00280 | Valine, leucine and isoleucine degradation | 48 | 21 | 27 | 5.99 × 10−5 |
ko01200 | Carbon metabolism | 166 | 82 | 84 | 9.42 × 10−5 |
ko01230 | Biosynthesis of amino acids | 156 | 60 | 96 | 0.00032 |
ko03050 | Proteasome | 59 | 31 | 28 | 0.000473 |
ko00010 | Glycolysis/Gluconeogenesis | 87 | 38 | 49 | 0.000849 |
ko04141 | Protein processing in endoplasmic reticulum | 165 | 55 | 110 | 0.000853 |
ko00592 | alpha-Linolenic acid metabolism | 45 | 14 | 31 | 0.00259 |
ko00630 | Glyoxylate and dicarboxylate metabolism | 58 | 30 | 28 | 0.003432 |
ko00908 | Zeatin biosynthesis | 48 | 4 | 44 | 0.004895 |
eur vs. jdy | |||||
ko01110 | Biosynthesis of secondary metabolites | 754 | 264 | 490 | 1.32 × 10−7 |
ko04016 | MAPK signaling pathway-plant | 182 | 37 | 145 | 0.000143 |
ko04141 | Protein processing in endoplasmic reticulum | 154 | 47 | 107 | 0.000281 |
ko00052 | Galactose metabolism | 60 | 25 | 35 | 0.001135 |
ko00943 | Isoflavonoid biosynthesis | 23 | 4 | 19 | 0.001671 |
ko00592 | alpha-Linolenic acid metabolism | 42 | 10 | 32 | 0.001988 |
ko00280 | Valine, leucine and isoleucine degradation | 37 | 14 | 23 | 0.011636 |
ko01200 | Carbon metabolism | 138 | 61 | 77 | 0.011794 |
ko00630 | Glyoxylate and dicarboxylate metabolism | 50 | 23 | 27 | 0.017587 |
ko00790 | Folate biosynthesis | 18 | 7 | 11 | 0.018071 |
jdy vs. dhp | |||||
ko00052 | Galactose metabolism | 41 | 17 | 24 | 2.32 × 10−6 |
ko04712 | Circadian rhythm-plant | 26 | 8 | 18 | 0.000351 |
ko04141 | Protein processing in endoplasmic reticulum | 80 | 36 | 44 | 0.000558 |
ko00860 | Porphyrin and chlorophyll metabolism | 19 | 14 | 5 | 0.012302 |
ko00908 | Zeatin biosynthesis | 23 | 7 | 16 | 0.014733 |
ko00603 | Glycosphingolipid biosynthesis-isoglobo series | 7 | 4 | 3 | 0.028942 |
ko00920 | Sulfur metabolism | 12 | 5 | 7 | 0.032424 |
ko00604 | Glycosphingolipid biosynthesis-ganglio series | 10 | 7 | 3 | 0.038679 |
ko00531 | Glycosaminoglycan degradation | 12 | 7 | 5 | 0.040541 |
ko00780 | Biotin metabolism | 7 | 5 | 2 | 0.045986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhang, S.; Chen, Y.; Zhao, Y.; Shi, F.; Khalil-Ur-Rehman, M.; Bai, X.; Zhu, C. Transcriptome Analysis Provides Insights into the Mechanisms of Starch Biosynthesis in the Kernels of Three Chestnut Cultivars. Forests 2022, 13, 2028. https://doi.org/10.3390/f13122028
Wang W, Zhang S, Chen Y, Zhao Y, Shi F, Khalil-Ur-Rehman M, Bai X, Zhu C. Transcriptome Analysis Provides Insights into the Mechanisms of Starch Biosynthesis in the Kernels of Three Chestnut Cultivars. Forests. 2022; 13(12):2028. https://doi.org/10.3390/f13122028
Chicago/Turabian StyleWang, Wu, Shijie Zhang, Yu Chen, Yuqiang Zhao, Fenghou Shi, Muhammad Khalil-Ur-Rehman, Xiaoqian Bai, and Cancan Zhu. 2022. "Transcriptome Analysis Provides Insights into the Mechanisms of Starch Biosynthesis in the Kernels of Three Chestnut Cultivars" Forests 13, no. 12: 2028. https://doi.org/10.3390/f13122028
APA StyleWang, W., Zhang, S., Chen, Y., Zhao, Y., Shi, F., Khalil-Ur-Rehman, M., Bai, X., & Zhu, C. (2022). Transcriptome Analysis Provides Insights into the Mechanisms of Starch Biosynthesis in the Kernels of Three Chestnut Cultivars. Forests, 13(12), 2028. https://doi.org/10.3390/f13122028