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Abstract: Subsoil (0.2–1 m) organic carbon (C) accounts for the majority of soil organic carbon
(SOC), and SOC turnover time (τ, year) is an important index of soil C stability and sequestration
capacity. However, the estimation of subsoil τ and the identification of its dominant environmental
factors at a regional scale is lacking in regards to forest ecosystems. Therefore, we compiled a
dataset with 630 observations to investigate subsoil τ and its influencing factors in forest ecosystems
across China using the structural equation model (SEM). The results showed a large variability of
subsoil τ from 2.3 to 896.2 years, with a mean (± standard deviation) subsoil τ of 72.4 ± 68.6 years;
however, the results of one-way analysis of variance (ANOVA) showed that subsoil τ differed
significantly with forest types (p = 0.01), with the slowest subsoil τ obtained in deciduous-broadleaf
forests (82.9 ± 68.7 years), followed by evergreen-needleleaf forests (77.6 ± 60.8 years), deciduous-
needleleaf forests (75.3 ± 78.6 years), and needleleaf and broadleaf mixed forests (71.3 ± 80.9 years),
while the fastest subsoil τ appeared in evergreen-broadleaf forests (59.9 ± 40.7 years). Subsoil τ
negatively correlated with the mean annul temperature, occurring about three years faster with a one
degree increase in temperature, indicating a faster subsoil SOC turnover under a warming climate.
Subsoil τ significantly and positively correlated with microbial activities (indicated by microbial
C and nitrogen), highlighting the importance of microbial communities in regulating subsoil C
dynamics. Climate, forest types, forest origins, vegetation, and soil variables explained 37% of the
variations in subsoil τ, as indicated by the SEM, and the soil property was the most important factor
affecting subsoil τ. This finding challenged previous perception that climate was the most important
factor driving subsoil C dynamics, and that dominant drivers varied according to climate zones.
Therefore, recognizing different dominant factors in predicting subsoil C dynamics across climate
zones would improve our understanding and reduce the uncertainties regarding subsoil C dynamics
in biogeochemical models under ongoing climate change.

Keywords: C turnover time; SOC stock; soil property; climate

1. Introduction

As one of the most widely distributed vegetation types on the global land surface [1],
forests not only contribute most of the world’s gross primary product (GPP), but also store
more carbon (C) in the biomass and soil of the forest than in the atmosphere [2]. Thus,
forest ecosystems play an important role in the global C cycle, providing feedback into the
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climate system [3]. Forests are one of the most important net C sinks in the atmosphere [4];
however, whether this C sink will continue in terms of climate change remains largely
uncertain. Therefore, studying forest C dynamics is of great significance for understanding
the role of forests in global C cycling.

Currently, most of the studies are focused on the dynamics and decomposition of
soil organic carbon (SOC) in topsoil within the range of 0–0.2 m [5,6]. However, subsoil
(below 0.2 m) has a better C sequestration capacity than topsoil [7]. The dynamics of SOC
in the subsoil may be as sensitive as topsoil to environmental changes [8], but this has not
currently been proved [9]. SOC turnover time (τ, years) is not only an indicator of soil
C stability, but it also determines the C sequestration capacity of soil [10]. SOC turnover
time is the average time from the initial photosynthetic fixation to the respiratory or non-
respiratory loss of C atoms in terrestrial ecosystems, which can be calculated from C stocks
relative to C inflow or outflow [11]. However, τ has an important steady-state assumption;
that is, under the steady-state assumption, C output is equal to input [12]. In fact, few
soils maintain a stable state because of the effects of natural and anthropogenic factors and
climate change [8]. Compared with topsoil, the soil organic C in the subsoil is more stable
and less susceptible to disturbance [13], indicating that subsoil can be considered to be in a
stable state [8].

Previous studies have already explored the C turnover time of soil or vegetation at
regional or global scales [14,15]. A recent study showed that, using the modeling data at
global scales [8], soil property was the main factor driving subsoil τ (0.3 to 1 m). However,
the result was estimated based on the Harmonized World Soil Database (HWSD) and
remote sensing data, and this study did not determine which environmental variable
was more important for subsoil τ in different forest types and climate zones. Therefore,
fundamental problems related to subsoil τ remain: firstly, questions regarding whether
conclusions from field observations support those from global model data arise because
the mismatch between the observed data and global grid data is a well-known problem in
ecological studies due to differences in spatial resolution [15]. Secondly, there is a question
concerning whether the subsoil τ of different forest types or climate zones is governed
by the same environmental variable. Thirdly, because vegetation is one of the sources of
soil C, the determination of how vegetation variables (such as NDVI, GPP, EVI) influence
subsoil τ is a major concern. Therefore, it is important to evaluate subsoil τ and identify
the main driving factors by using field observations for a reliable evaluation of subsoil C
cycle-climate feedback.

Although temperature and precipitation are the most important climatic factors af-
fecting soil τ [16], soil and vegetation variables may also influence τ. For example, the
leaf area index (LAI) is the main vegetation factor affecting C turnover [17,18], and soil
bulk density (BD), soil silt, and clay indirectly affect subsoil τ by affecting fine roots and C
storage, respectively [19,20]. In addition to climatic and soil factors, biological traits also
affect subsoil τ (such as vegetation longevity and types, as well as biomass) [12]. Different
vegetation types may be accompanied by different climatic conditions, which greatly affect
vegetation productivity, impacting τ [20]. Therefore, climate, vegetation and soil variables,
which are the most important factors affecting τ, are still poorly understood.

In this study, we used 630 observations across China that included most of the forest
types in the forest ecosystem. The main research objectives of this paper were to: (1) estimate
and compare the subsoil τ of different climate zones, forest origins, forest types, and forest
ages across China; (2) analyze the influence of climate, soil, and vegetation factors on
subsoil τ; (3) explore the dominant environmental factors influencing subsoil τ.

2. Materials and Methods
2.1. Data Sources

The dataset used in this study came from Xu et al. (2018) [21], which was based on field
measurements obtained between 2004 to 2014 from published studies of the China National
Knowledge Infrastructure (CNKI, http://www.cnki.net, accessed on 10 March 2020) and
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the Institute for Scientific Information (ISI, http://apps.webofknowledge.com, accessed on
10 March 2020). Our search keywords when using the database were: forest, SOC (0–0.2 m),
and SOC (0–1 m). Three criteria were used for data selection: (1) SOC content/concentration
data should be obtained through field investigations, excluding observations predicted
by other models; (2) field investigations should have been performed after 2000; and
(3) methods for soil organic C determination should be comparable. More details can be
found in the literature of Xu et al. (2018) [21]. Since we focused on SOC turnover time
in forests, we maintained field observations of SOC in the 0–0.2 m and 0–1 m ranges,
and subsoil SOC stock (0.2–1 m) was calculated as the difference between the two soil
layers. Finally, the compiled dataset contained 630 observations across China, and a general
data description is found in Table A1. We divided the observed data into five forest
types (Figure 1): deciduous-broadleaf forests (DBF), deciduous-needleleaf forests (DNF),
evergreen-broadleaf forests (EBF), evergreen-needleleaf forests (ENF), and needleleaf and
broadleaf mixed forests (NBF).

Forests 2022, 13, x FOR PEER REVIEW 3 of 20 
 

 

2. Materials and Methods 
2.1. Data Sources 

The dataset used in this study came from Xu et al. (2018) [21], which was based on 
field measurements obtained between 2004 to 2014 from published studies of the China 
National Knowledge Infrastructure (CNKI, http://www.cnki.net, accessed on 10 March  
2020) and the Institute for Scientific Information (ISI, http://apps.webofknowledge.com, 
accessed on 10 March 2020). Our search keywords when using the database were: forest, 
SOC (0–0.2 m), and SOC (0–1 m). Three criteria were used for data selection: (1) SOC con-
tent/concentration data should be obtained through field investigations, excluding obser-
vations predicted by other models; (2) field investigations should have been performed 
after 2000; and (3) methods for soil organic C determination should be comparable. More 
details can be found in the literature of Xu et al. (2018) [21]. Since we focused on SOC 
turnover time in forests, we maintained field observations of SOC in the 0–0.2 m and 0–1 
m ranges, and subsoil SOC stock (0.2–1 m) was calculated as the difference between the 
two soil layers. Finally, the compiled dataset contained 630 observations across China, 
and a general data description is found in Table A1. We divided the observed data into 
five forest types (Figure 1): deciduous-broadleaf forests (DBF), deciduous-needleleaf for-
ests (DNF), evergreen-broadleaf forests (EBF), evergreen-needleleaf forests (ENF), and 
needleleaf and broadleaf mixed forests (NBF). 

 
Figure 1. The distributions of forest sites, including the forest distribution according to MODIS land 
cover. 
Figure 1. The distributions of forest sites, including the forest distribution according to MODIS
land cover.

2.2. Global Environmental Variables

In this study, we investigate the correlation of subsoil (0.2–1 m) C turnover with climate,
vegetation, and soil variables. Climate variables included mean annual temperature (MAT)
and mean annual precipitation (MAP) from the Climatic Research Unit [22], and relative
humidity (RH) from the published literature [23]. The vegetation variables included the
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normalized difference vegetation index (NDVI), the GPP and enhanced vegetation index
(EVI) from 2004–2014 from the Moderate Resolution Imaging Spectroradiometer (MODIS).
The soil variables, including soil microbial biomass C (SMC) and soil microbial biomass
nitrogen (SMN) data, were obtained from the published literature [24], as was the soil
nitrogen content [25]. Due to the lack of SMC and SMN in the 0–0.2 m range, the difference
between 0–0.3 m and 0–1 m was used to calculate the soil microbial biomass C and N.

2.3. Subsoil τ Calculation

At a steady state, the C input was equal to the output, and the subsoil (0.2–1 m) τ was
calculated as follows [8]:

τ =
SOC

Cinput or Coutput
(1)

At a steady state hypothesis, Cinput and Coutput can be considered as the net primary
productivity (NPP) allocated to the soil. Therefore, the calculation formula of subsoil
(0.2–1 m) τ was transformed into [26]:

τ =
SOC0.2–1

BNPP0.2–1
=

SOC0.2–1

NPP·fBNPP·fr0.2–1
(2)

SOC0.2–1 was SOC 0.2–1 m, and BNPP0.2–1 was underground NPP 0.2–1 m; fBNPP
indicates the proportion of underground NPP to total NPP. fr0.2–1 is the root ratio within
0.2–1 m to the total roots. In our study, the mean MODIS NPP from 2001 to 2014 represented
the total NPP and the extracted site specific NPP from the site coordinates.

Based on Equation (2), the NPP distribution of the subsoil was needed to calculate
subsoil τ. Therefore, according to the distribution of root biomass in the soil, the total NPP
was divided into 0.2–1 m subsoil [27]. The root distribution was calculated as:

rD =
Rmax

1 + ( D
D50

)
c (3)

rD is the total number of roots across soil depth D (m); Rmax is the estimated value of
total root C in the soil profile, and D50 is the depth (m) where rD = 0.5·Rmax. c calculated
as [8]:

c =
−1.27875

log10 D95 − log10 D50
(4)

D95 is the depth (m) at rD = 0.95·Rmax. Based on Equation (3), the ratio of roots in the
subsoil (fr0.2–1) was reckoned as:

fr0.2–1 =
r1

Rmax
− r0.2

Rmax
=

1

1 + ( 1
D50

)
c −

1

1 + ( 0.2
D50

)
c (5)

fr0.2–1 was 0.526 for DBF, 0.596 for DNF, 0.556 for EBF, 0.618 for ENF, and 0.649 for
NBF [8].

2.4. Data Analysis

Before statistical analysis, the Shapiro–Wilk test was used to assess the normality of
the data [28]. Since the subsoil τ we calculated was not a normal distribution, subsoil τ was
naturally log-transformed to approximate normality.

Firstly, one-way analysis of variance (ANOVA) was used to analyze the subsoil τ
of forest types, forest origins, climate zones and forest ages at p = 0.05. The Tukey-HSD
(honestly significant difference) test was used for multiple comparisons. A two-way
analysis of variance was performed for evaluate the interaction between forest types and
climate zones and their effect on subsoil τ.

Secondly, a generalized linear mixed model (GLMM) was used to analyze the correla-
tion between climate, vegetation, and soil variables and the variation of τ, because GLMM
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is a more flexible method for analyzing non-normal data with random effects [29]. Since
the subsoil τ of stand types may produce random effects, stand types were used as random
factors. Moreover, study sites and the interactions between stand types and sites may also
produce potential random effects, therefore, we included sites and stand types as random
effects as well (Tables A2 and A3, Figures A1 and A2). Pseudo-R-squared (R2) was used to
evaluate the variance of the fixed effects explanations (R2 marginal), and the variance of
fixed and random effects explanations (R2 conditional). R2

m and R2
c were calculated using

the following formula [30]:

R2
m =

σ2
f

σ2
f + ∑u

l=1 σ
2
l + σ2

e + σ2
d

(6)

R2
c =

σ2
f + ∑u

l=1 σ
2
l

σ2
f + ∑u

l=1 σ
2
l + σ2

e + σ2
d

(7)

σ2
f is the calculation variance of the fixed effect components of GLMM; u means the

number of random factors; σ2
u is the variance component of the lth random factor; σ2

e is the
additive discrete variance in GLMM; and σ2

d is the distribution-specific variance in GLMM.
Finally, the effects of climate, vegetation, forest types, forest origins, and soil variables

on subsoil τ were investigated using the structural equation model (SEM). As a causal
reasoning tool, SEM is often used in ecological research [31]. Different from regression or
ANOVA, SEM can separate multiple influencing pathways, which is an effective method
for studying complex relationships in ecology [32]. At the same time, SEM can test the
rationality of a hypothetical model according to priori information about the relationships
between specific variables. Based on prior knowledge and theoretical knowledge, the
conceptual model and hypothesis mechanism were built (Figures A3 and A4).

Before SEM analysis, MAT, MAP, and RH were used to characterize the influence of
climate on τ; EVI, GPP, and NDVI were used to characterize the influence of vegetation on
τ, while soil variables included SMC, the ratio of SOC to soil nitrogen, and SMN. Principal
component analysis (PCA) was performed to construct a multivariate indicator representing
each group [33]. The first principal component (PC1) explained 63–92% of the variations
in the three potential groups and was used in the structural equation model (Table A4).
In addition, a regular numerical covariable (e.g., 1, 2, 3, 4, 5) was used to represent forest
types and forest origins in the SEM analysis, based on the research of others [34]. SEM used
the maximum likelihood method to fit the model, and the Chi-square (χ2) test and the root
mean square errors of approximation (RMSEA) were used to evaluate the performance of
the model. When the non-significant χ2 test (p > 0.05), and the RMSEA < 0.08, the result of
the SEM model was acceptable [35]. All analysis was performed in R 3.6.0 [36].

3. Results
3.1. Subsoil τ Varied with Forest Types and Climate Zones

The subsoil τ varied greatly, ranging from 2.3 to 896.2 years with an average (± stan-
dard deviation) of 72.4 ± 68.6 years (Table A1). However, there were significant differences
in subsoil τ among different forest types (p = 0.01, Figure 2A), the slowest subsoil τ was
found in DBF (82.9± 68.7 year), followed by ENF (77.6± 60.8 year), DNF (75.3 ± 78.6 year),
and NBF (71.3 ± 80.9 year), while the fastest subsoil τ appears in EBF (59.9 ± 40.7 year,
Figure 2A and Table A1). Similarly, the subsoil τ of different climatic zones was significantly
different (p < 0.001, B), with the slowest obtained in temperate areas (92.2 ± 96.8 year) and
the fastest in tropical areas (49.7 ± 45.6 year), while boreal and subtropical zones exhibited
intermediate τ (Table A1). Two-way ANOVA showed that the interactions between forest
types and climatic zones had a significant impact on subsoil τ (p < 0.001, Table 1). In regards
to forest origins and stand ages, the subsoil τ in natural forests was slower than that in
plantations (p = 0.002, Figure 2C), and the subsoil τ in mature forests was slower than that
in young forests (p = 0.01, Figure 2D).
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average. SubT—subtropical; Temp—temperate; Trop—tropical.

Table 1. Two-way ANOVA of forest types, climatic zones, and their interaction effect on subsoil τ.

df SS MS F Value p

Forest types 4 15.9 3.96 3.67 <0.01
Climatic zones 3 55.4 18.45 17.09 <0.001
Forest types: Climatic zones 10 33.1 3.31 3.07 <0.001

Note: SS—sum of squares; MS—mean square; df—degree of freedom.

3.2. Influencing Factors on Subsoil τ

GLMM analysis showed that there was a significant negative correlation between
climate variables (MAT, MAP, and RH) and subsoil τ (p < 0.001, Figure 3A–C and Table 2).
Vegetation variables (GPP, NDVI, and EVI) were also significantly correlated with subsoil
τ, leading to a negative impact on subsoil τ (p < 0.001, Figure 3D–F). Subsoil τ increased
with the increase in C:N, SMC, and SMN (p < 0.001, Figure 3G–I).

Table 2. Statistics of GLMM relating climatic, vegetation, and soil variables with τ.

Variable Slope 95% CI R2 (m/c)

MAT −0.016 *** (−0.020, −0.012) 0.10/0.12
Log (MAP) −0.366 *** (−0.468, −0.265) 0.07/0.07
Log (RH) −0.560 *** (−0.740, −0.460) 0.12/0.13
Log (GPP) −0.370 *** (−0.475, −0.265) 0.07/0.07
Log (EVI) −0.770 *** (−1.076, −0.463) 0.04/0.04

Log (NDVI) −0.817 *** (−1.130, −0.503) 0.04/0.04
Log (Soil C:N) 0.672 *** (0.615, 0.730) 0.44/0.56

Log (SMC) 0.509 *** (0.386, 0.632) 0.09/0.12
Log (SMN) 0.516 *** (0.361, 0.672) 0.07/0.10

Note: R2 (m/c): variance of fixed effects explanations (R2 marginal)/variance of fixed and random effects
explanations (R2 conditional); 95% CI; 95% confidence interval. *** p < 0.001.
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Figure 3. The variation of C turnover time (τ, naturally log-transformed) according to climatic, soil,
and vegetation variables, etc., in the sample mean (A–I) are constant. The fitted lines were determined
by GLMM, with stand types as the random factor. The parameters are shown in Table 2.

In China’s terrestrial ecosystem, climate, forest types, forest origins, vegetation, and
soil variables explained 37% of the variations in subsoil τ, as indicated by the SEM (Figure 4).
Regardless of forest types, the SEM showed that soil property was the most important
variable, exerting a directly positive impact on subsoil τ, followed by vegetation, climate,
and forest origins, which all have negative effects on subsoil τ. However, the relationship
between forest types and subsoil C turnover time was not significant. Climate has a
significantly positive effect on vegetation and forest types, and vegetation variables caused
exerted a positive influence on soil variables and forest types, but exhibited a negative
effect on forest origins.

SEM models were also established for different forest types and climatic zones
(Figures A5–A13). Although the SEM results of different forest types showed that the
main controlling factors were soil properties (Figures A5–A9), the subsoil τ of different cli-
matic zones was driven by different environmental factors (Figures A10–A13). Climate was
the main driving factor for temperate forests, and soil property was the primary influencing
factor for boreal, tropical, and subtropical forests.
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4. Discussion
4.1. Subsoil τ in China’s Forests

The mean subsoil τ in China’s forests was 72.4 ± 68.6 years, which was slower than
the subsoil τ (0–1 m) of tree plantations (30 years) and China’s forests (17.7 years) [16,37],
but faster than the subsoil τ (0.3–1 m) of global forests (168 years) [8]. The main reasons for
this difference include the following three points. Firstly, Wang et al. (2017) [16] estimated
soil τ within 0–1 m, while Luo et al. (2019) [8] defined subsoil ranging from 0.3 to 1 m from
global forests. We defined the subsoil as 0.2–1 m, and observational data from Chinese
forests were used. The differences in these results indirectly indicated that SOC in deeper
soils had a slower turnover time compared to that in topsoil. Secondly, the distribution
of NPP in different soil depths was not clearly estimated [16]. Thirdly, the sources of the
dataset and the estimated methods of subsoil τ also yielded different results. For example,
soil τ was defined as the ratio of SOC and the CO2 flux from SOC decomposition [37], while
we defined subsoil τ as the ratio of SOC and NPP. For these reasons, our results are not
directly comparable to those of others. Therefore, this study may be the first using field
observation data to estimate forest subsoil τ across China, which can further increase our
understanding of subsoil C dynamics.

4.2. Influence of Environmental Factors on Subsoil τ

4.2.1. Climatic Effects

Our results demonstrated that subsoil τ decreased with the increase in MAT (Figure 3A,
p < 0.001), which was inconsistent with previous results [38], which hypothesized that the
subsoil τ had no significant correlation with temperature in global forests. In addition, our
study further quantified the effects of temperature on subsoil τ and found that the mean of
subsoil τ decreased by three years with a one degree increase in temperature (Figure A14),
which indicated that subsoil τ will potentially become faster under a warming climate [39].
This negative correlation can be partly attributed to the fact that firstly, increasing MAT will
accelerate the rate of SOC mineralization by stimulating soil microbial or enzyme activity,
thus making the subsoil τ faster [40]. Secondly, NPP allocated to the subsoil will increase
with the increase in temperature (Figure A15), leading to a faster subsoil τ. We also found
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that MAP had a significantly negative impact on subsoil C turnover in forest ecosystems
across China (Figure 3B, p < 0.001), which may be due to the accelerated decomposition
of soil C by increasing precipitation or soil water content (SWC) [41], in turn, making the
subsoil τ faster.

4.2.2. Vegetation Effects

In our study, subsoil τ decreased with the increase in vegetation variables (GPP, NDVI,
EVI) (Figure 3D–F, p < 0.001), which was similar to previous research results that vegetation
could affect subsoil C turnover time [42,43]. The influence of vegetation on subsoil τ mainly
included three aspects. (1). Vegetation can indirectly affect the subsoil τ by changing
photosynthate [42]; Street et al. (2020) [42] also found that photosynthate drives SOC
mineralization in mature forests (>50 years old), which may have an effect on subsoil τ.
(2). Vegetation type affects the subsoil C turnover time by changing the litter quality; the
better the litter quality, the faster the subsoil τ [44]. (3). Vegetation could also affect subsoil
τ by changing microclimate, soil water content, and forest structure [45]. However, in
the results of our study, subsoil τ of DBF with better litter quality was slower than EBF,
which was related to the distribution of the sample points. In the terrestrial ecosystem of
China, EBF was mainly distributed in subtropical areas, while DBF was widely distributed
(Figure 1). However, in a fixed study area (such as subtropical areas), the subsoil τ of DBF
was 55.9 years, which was faster than that of EBF (59.9 years).

We also found that forest age was an important biotic factor determining subsoil τ
(Figure 2D), with the fastest subsoil τ observed in young forests and the slowest in mature
forests (Table A1). This result may be associated with C allocation patterns at different
forest ages [46]; the C storage in vegetation increases with the development of forest age,
which affects the C turnover in the subsoil [47]. In addition, the decrease in stand NPP with
the increase in tree age may be another reason [48], which is caused by the decrease in soil
nutrients and photosynthesis during vegetation development [49].

4.2.3. Soil Effects

Our study also found that soil variables have significant effects on subsoil τ (Figure 3G–I,
p < 0.001), which is consistent with the results of previous studies. Soil properties (including
physical and chemical properties) directly or indirectly affect the subsoil τ by influencing soil
structure or C input and output. For example, soil C:N was significantly positively correlated
with subsoil C turnover [50]. Soil clay content was an important variable affecting subsoil τ
by influencing SOC storage [51]. It is generally believed that the changes in soil nutrients
and water have significant effects on vegetation growth [52], but soil nutrients and water are
also affected by soil chemical and physical properties, especially in arid areas [53]. Therefore,
soil properties have an indirect effect on vegetation growth, and thus affect C input and
output [8]. We also found a significant increasing trend between subsoil τ and SMC and
SMN (Figure 3H,I), because soil microbial properties were also important factors affecting
C turnover in the subsoil [16]. In addition, microbial activity can predict the change in soil
properties and thus influence the C cycle [54,55].

According to SEM, soil variables (SMN, SMC, Soil C:N) were the dominant influencing
factor on subsoil τ (Figure 4), which correlated with recent results showing that soil property
was the most important environmental variable of subsoil τ [8]. The GLMM results also
showed that soil properties (SMN, SMC, and soil C:N) had the greatest influence on the
subsoil τ. Many studies found significant differences in C turnover time among different
forest types [5,43]. However, forest types were not the main factor determining SOC
turnover time, as indicated by the SEM model (Figure 4), because forest types and their
distributions were coupled with climate, soil, and their interactions. On the other hand,
our SEM results showed that although soil properties were the main controlling factors
for different stand types, the main driving factors were different in different climatic
zones (Figures A5–A13), indicating that different dominant environmental drivers for
subsoil τ among different climate zones should be considered to estimate soil C dynamics,
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particularly for subsoil. In our study, soil property was the main driving factor of subsoil τ
in subtropical and tropical regions. However, climate was the dominant driving factor for
temperate areas, which was consistent with previous findings, where soil C turnover times
were driven by climate in forest ecosystems [16].

4.3. Implications for Biogeochemical Modeling

Our study provided evidence for the causes of subsoil τ in forest ecosystems across
China, which has significant implications for biogeochemical models to study subsoil τ at
regional or global scales. Firstly, subsoil τ played an important role in evaluating soil C
dynamics. The size of subsoil C storage can be determined by soil C input and output. How-
ever, subsoil τ was not well characterized in the existing biogeochemical models, leading
to great uncertainties regarding the estimation of the SOC in biogeochemical models [14].
Therefore, the results of this study may provide a reference for model parameterization.

Secondly, soil C dynamics were expressed in terms of plant functional types, rather
than forest types, in biogeochemical models, which might hinder our study of the relation-
ships between soil C and ecosystem processes in different forest types, especially subsoil.
Although the forest type is different, they may exhibit the same plant functional type. Thus,
the C dynamics of each forest type are unclear. Our results showed that the subsoil τ of
forest types was different (Figure 2A). Therefore, an accurate representation of vegetation
types in biogeochemical models was a necessary condition for predicting soil C dynamics
under continuous climate change, and climate change will specifically affect the structure
of vegetation [45,56], thus ultimately affecting C turnover.

Thirdly, soil variables that influencing subsoil τ have not been adequately repre-
sented in the existing biogeochemical models. Considering that soil τ was usually affected
by climate [57,58], many models focused on studying and analyzing the effects of soil
temperature on soil C dynamics [59]. Our results showed that soil variables were the
dominant driving factor of subsoil τ (Figure 4). Therefore, we suggest that more considera-
tion should be given to the influence of soil variables on the dynamic changes of C, such
as soil microbial biomass C and soil microbial biomass nitrogen, when establishing the
biogeochemical model.

4.4. Uncertainties and Limitations

Although we obtained some results by analyzing the effects of climate, vegetation, and
soil variables on the subsoil τ of forest ecosystems across China using field observations, we
also acknowledge that there were still some uncertainties and limitations. On the one hand,
since subsoil NPP is rarely observed, we had to estimate the distribution of NPP in the range
of 0.2–1 m indirectly, based on the distribution of root biomass in the soil profile by using
MODIS NPP. However, the distribution of root biomass may be different considering the soil
profile [8]. Thus, the accuracy of the root biomass and productivity measurements and its
distribution in the subsoil would be an important step in understanding the SOC turnover
time and subsoil C dynamics. However, the scale mismatch in the spatial resolution
between the measured SOC and the MODIS NPP was another uncertainty. This kind of
scale mismatch presents an ongoing challenge in the study of large-scale ecology.

On the other hand, we calculated subsoil τ as the ratio of soil total C storage to NPP
and did not consider SOC turnover time for different factions of SOC. However, it has
been well documented that subsoil SOC is still a mixture of decadal cycling SOC and
stable, slower cycling SOC, with the turnover times more than several thousand years [60].
Moreover, DOC is an important source of subsoil SOC [9,61], which may affect the stability
and dynamics of subsoil SOC [62,63]. Therefore, estimating C turnover times for different
soil C fractions, e.g., low-density, high-density, and non-oxidizable C [60], is of great
significance for improving our understanding of subsoil dynamics.
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5. Conclusions

SOC turnover time and its influencing factors were estimated based on field obser-
vations in forest ecosystems across China. The robust conclusions include: firstly, the
subsoil τ (0.2–1 m) varied from 2.3 to 896.2 years, with an average of 72.4 ± 68.6 years,
and it differed significantly among different forest types (p = 0.01), 82.9 ± 68.7 years
for DBF, 75.3 ± 78.6 years for DNF, 59.9 ± 40.7 years for EBF, 77.6 ± 60.8 years for ENF,
71.3 ± 80.9 years for NBF, as well as climate zones (p < 0.001), 89.5 ± 68.6 years for boreal,
60.1 ± 41.0 years for subtropical, 92.2 ± 96.8 years for temperate, and 49.7 ± 45.6 years for
tropical. The subsoil τ in natural and mature forests was slower than that in plantations
and young forests. Secondly, the GLMM showed that there was a significant negative
correlation between subsoil τ and MAT and MAP, indicating the sensitivity to climate
change. Thirdly, the results of the SEM model indicated that soil variables (SMN, SMC,
and C:N) were the most important controlling environmental factors of forest subsoil τ
change on a national scale, which was different from the previous perception that climate
was the main dominant factor for soil τ. Finally, the dominant driver differed with climate
zones (boreal, temperate, subtropical, tropical), which could improve our understanding of
subsoil τ. This study further emphasizes the importance of soil variables, particularly for
soil microbial properties, on subsoil τ.
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Appendix A

Table A1. General descriptions of subsoil τ (year) used in this study.

Forest Types df Mean Standard
Deviation Minimum Maximum Coefficient of

Variance (%)

DBF 154 82.9 68.7 10.1 411.0 82.9%
DNF 55 75.3 78.6 2.85 312.0 104%
EBF 148 59.9 40.7 4.59 221.0 68%
ENF 53 77.6 60.8 13.0 311.0 78.4%
NBF 220 71.3 80.9 2.32 896.2 113%

Climate zones

Boreal 79 89.5 68.6 16.4 318.0 76.7%
Subtropical 285 60.1 41.0 2.32 253.0 68.2%
Temperate 192 92.2 96.8 9.25 896.2 105%

Tropical 74 49.7 45.6 4.59 221.0 91.8%
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Table A1. Cont.

Forest Types df Mean Standard
Deviation Minimum Maximum Coefficient of

Variance (%)

Forest origin

Natural 337 78.2 73.2 2.32 896.2 93.6%
Plantation 293 65.6 62.6 2.85 481.0 95.3%

Forest age (486
observations)

Young 233 67.5 60.3 2.32 411.0 89.4%
Middle-aged 152 71.1 57.7 12.2 315.0 81.1%

Mature 101 92.3 111 14.8 896.2 121%

All 630 72.4 68.6 2.32 896.2 94.8%

Table A2. Statistics of GLMM relating environmental variables with subsoil τ, treating the sites as a
random effect.

Variable Slope 95% CI R2 (m/c)

MAT −0.014 *** (−0.018, −0.010) 0.09/0.10
Log (MAP) −0.367 *** (−0.469, −0.266) 0.07/0.09
Log (RH) −0.558 *** (−0.684, −0.432) 0.11/0.13
Log (GPP) −0.370 *** (−0.474, −0.265) 0.07/0.43
Log (EVI) −0.769 *** (−1.048, −0.443) 0.04/0.43

Log (NDVI) −0.816 *** (−1.130, −0.502) 0.04/0.44
Log (Soil C:N) 0.672 *** (0.465, 0.665) 0.44/0.56

Log (SMC) 0.485 *** (0.362, 0.609) 0.09/0.34
Log (SMN) 0.454 *** (0.301, 0.607) 0.05/0.32

Note: R2 (m/c): variance of fixed effects explanations (R2 marginal)/variance of fixed and random effects
explanations (R2 conditional); 95% CI; 95% confidence interval. *** p < 0.001.

Table A3. Statistics of GLMM relating environmental variables with subsoil τ, treating the stand
types by sites as a random effect.

Variable Slope 95% CI R2 (m/c)

MAT −0.016 *** (−0.020, −0.012) 0.10/0.23
Log (MAP) −0.367 *** (−0.469, −0.266) 0.07/0.07
Log (RH) −0.601 *** (−0.739, −0.461) 0.12/0.12
Log (GPP) −0.370 *** (−0.475, −0.266) 0.07/0.07
Log (EVI) −0.769 *** (−1.076, −0.463) 0.04/0.04

Log (NDVI) −0.816 *** (−1.130, −0.503) 0.04/0.04
Log (Soil C:N) 0.675 *** (0.628, 0.732) 0.44/0.69

Log (SMC) 0.512 *** (0.389, 0.635) 0.10/0.12
Log (SMN) 0.521 *** (0.365, 0.676) 0.06/0.06

Note: R2 (m/c): variance of fixed effects explanations (R2 marginal)/variance of fixed and random effects
explanations (R2 conditional); 95% CI; 95% confidence interval. *** p < 0.001.

Table A4. Results of PCA of environmental variables.

Variable Loading Factor

Climate
MAT (◦C) 0.96

Log (MAP) (mm) 0.93
Log (RH) (%) 0.99

Cumulative variance explained (%) 92%
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Table A4. Cont.

Variable Loading Factor

Vegetation
Log (NDVI) 0.97

Log (GPP) (g C m−2 year−1) 0.90
Log (EVI) 0.98

Cumulative variance explained (%) 91%

Soil variables
Log (SMC) (g C m−2) 0.82

Log (C:N) 0.50
Log (SMN) (g N m−2) 0.79

Cumulative variance explained (%) 63%

Forests 2022, 13, x FOR PEER REVIEW 13 of 20 
 

 

Soil variables  

Log (SMC) (g C m−2) 0.82 
Log (C:N) 0.50 

Log (SMN) (g N m−2) 0.79 
Cumulative variance explained (%) 63% 

 
Figure A1. The variation of C turnover time (τ, naturally log-transformed) according to climatic, 
soil, and vegetation variables, etc., in the sample mean (A–I) are constant. The fitted lines were deter-
mined by GLMM, with sites as the random factor. The parameters are shown in Table A2. 

 
Figure A2. The variation of C turnover time (τ, naturally log-transformed) according to climatic, 
soil, and vegetation variables, etc., in the sample mean (A–I) are constant. The fitted lines were deter-
mined by GLMM, with the stand types by sites as random factors. The parameters are shown in 
Table A3. 

Figure A1. The variation of C turnover time (τ, naturally log-transformed) according to climatic,
soil, and vegetation variables, etc., in the sample mean (A–I) are constant. The fitted lines were
deter-mined by GLMM, with sites as the random factor. The parameters are shown in Table A2.

A

0

1

2

3

4

0 10 20
MAT (° C)

B

0

1

2

3

4

2.4 2.8 3.2
(logMAP) (mm)

C

0

1

2

3

4

0.4 0.6 0.8 1.0 1.2
(logRH) (%)

D

0

1

2

3

4

−0.6 −0.4 −0.2 0.0
log (NDVI)

E

0

1

2

3

4

−0.6 −0.4 −0.2 0.0
log (EVI)

F

0

1

2

3

4

2.0 2.5 3.0 3.5

(logGPP) (g C m−2 a−1)

G

0

1

2

3

4

−0.5 0.0 0.5 1.0 1.5
log(Soil C:N)

H

0

1

2

3

4

0.5 1.0 1.5 2.0

(logSMC) (g C m−2 )

I

0

1

2

3

4

0.50 0.75 1.00

(logSMN) (g N m−2 )

lo
g 

(τ
, y

r)
lo

g 
(τ

, y
r)

lo
g 

(τ
, y

r)

Figure A2. The variation of C turnover time (τ, naturally log-transformed) according to climatic,
soil, and vegetation variables, etc., in the sample mean (A–I) are constant. The fitted lines were
deter-mined by GLMM, with the stand types by sites as random factors. The parameters are shown
in Table A3.
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Figure A5. The main influencing factors of C turnover in the subsoil of the boreal zone were obtained
by the SEM model. The symbols “↑” and “↓” indicate a positive or negative correlation between
environmental factors and subsoil τ. The goodness of fit statistics for the effect size model of the
relationship are as follows: *** p < 0.001.
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Figure A6. The main influencing factors of C turnover on the subsoil of the temperate zone were
obtained by the SEM model. The symbols “↑” and “↓” indicate a positive or negative correlation
between environmental factors and subsoil τ. The goodness of fit statistics for the effect size model of
the relationship are as follows: ** p < 0.01, *** p < 0.001.
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