Assessment of Variability among Humus Forms and Soil Properties in Relation to Tree Species and Forest Operations in the Kheyrud Forest, Nowshahr
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Data Collection and Laboratory Analysis
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sohrabi, H.; Jourgholami, M.; Labelle, E.R. The effect of forest floor on soil microbial and enzyme indices after forest harvesting operations in Hyrcanian deciduous forests. Eur. J. For. Res. 2022, 141, 1013–1027. [Google Scholar] [CrossRef]
- Zanella, A.; Jabiol, B.; Ponge, J.F.; Sartori, G.; De Waal, R.; Van Delft, B.; Graefe, U.; Cools, N.; Katzensteiner, K.; Hager, H.; et al. Towards a European humus forms reference base. Studi Trentini Sci. Nat. 2009, 85, 145. [Google Scholar]
- Jabiol, B.; Zanella, A.; Ponge, J.F.; Sartori, G.; Englisch, M.; Van Delft, B.; Le Bayon, R.C. A proposal for including humus forms in the World Reference Base for Soil Resources (WRB-FAO). Geoderma 2013, 192, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Bayranvand, M.; Kooch, Y.; Hosseini, S.M.; Alberti, G. Humus forms in relation to altitude and forest type in the Northern mountainous regions of Iran. For. Ecol. Manag. 2017, 385, 78–86. [Google Scholar] [CrossRef]
- Marland, G.; Pielke, R.A., Sr.; Apps, M.; Avissar, R.; Betts, R.A.; Davis, K.J.; Xue, Y. The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Clim. Policy 2003, 3, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Jabiol, B.; Ponge, J.F.; Sartori, G.; De Waal, R.; Van Delft, B.; Englisch, M. A European morpho-functional classification of humus forms. Geoderma 2011, 164, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Graefe, U.; Beylich, A. Humus forms as tool for upscaling soil biodiversity data to landscape level. Mitteilgn. Dtsch. Bodenkundl. Gesellsch. 2006, 108, 6–7. [Google Scholar]
- De Nicola, C.; Zanella, A.; Testi, A.; Fanelli, G.; Pignatti, S. Humus forms in a Mediterranean area (Castelporziano Reserve, Rome, Italy): Classification, functioning and organic carbon storage. Geoderma 2014, 235, 90–99. [Google Scholar] [CrossRef]
- Rizvi, S.H.; Gauquelin, T.; Gers, C.; Guérold, F.; Pagnout, C.; Baldy, V. Calcium–magnesium liming of acidified forested catchments: Effects on humus morphology and functioning. Appl. Soil Ecol. 2012, 62, 81–87. [Google Scholar] [CrossRef]
- Bayranvand, M.; Akbarinia, M.; Salehi Jouzani, G.; Gharechahi, J.; Alberti, G. Dynamics of humus forms and soil characteristics along a forest altitudinal gradient in Hyrcanian forest. iForest 2021, 14, 26. [Google Scholar] [CrossRef]
- Vahedi, A.A.; Mataji, A. Assessing the possible estimation of bole carbon sequestration of beech (Fagus orientalis) in the Hyrcanian forests using non-destructive methods. Iran. J. For. 2016, 7, 447–458. [Google Scholar]
- Ponge, J.F.; Sartori, G.; Garlato, A.; Ungaro, F.; Zanella, A.; Jabiol, B.; Obber, S. The impact of parent material, climate, soil type and vegetation on Venetian forest humus forms: A direct gradient approach. Geoderma 2014, 226, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Ponge, J.F.; Jabiol, B.; Sartori, G.; Kolb, E.; Le Bayon, R.C.; Viola, F. Humusica 1, article 5: Terrestrial humus systems and forms—Keys of classification of humus systems and forms. Appl. Soil Ecol. 2018, 122, 75–86. [Google Scholar] [CrossRef]
- Sajedi, T.; Marvie-Mohadjer, M.R. Variation of humus forms and nutrient properties in pure and mixed beech stands in north of Iran. Improv. Silvic. Beech 2004, 7, 105–113. [Google Scholar]
- Green, R.N.; Trowbridge, R.L.; Klinka, K. Towards a taxonomic classification of humus forms. For. Sci. 1993, 39 (Suppl. S1), a0001–z0002. [Google Scholar] [CrossRef]
- Andreetta, A.; Cecchini, G.; Carnicelli, S. Forest humus forms in Italy: A research approach. Appl. Soil Ecol. 2018, 123, 384–390. [Google Scholar] [CrossRef]
- Waez-Mousavi, S.M.; Habashi, H. Evaluating humus forms variation in an unmanaged mixed beech forest using two different classification methods. iForest 2012, 5, 272. [Google Scholar] [CrossRef] [Green Version]
- Waez-Mousavi, S.M. Humus systems in the Caspian Hyrcanian temperate forests. Appl. Soil Ecol. 2018, 123, 664–667. [Google Scholar] [CrossRef]
- Sohrabi, H.; Jourgholami, M.; Tavankar, F.; Venanzi, R.; Picchio, R. Post-harvest evaluation of soil physical properties and natural regeneration growth in steep-slope terrains. Forests 2019, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Ponge, J.-F.; Jabiol, B.; Sartori, G.; Kolb, E.; Gobat, J.-M.; Bayon, R.-C.; Aubert, M.; Waal, R.D.; Delft, B.V.; et al. Humusica 1, article 4: Terrestrial humus systems and forms—Specific terms and diagnostic horizons. Appl. Soil Ecol. 2018, 122, 56–74. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils 1. J. Agron. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Allison, L. Organic carbon. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1965, 9, 1367–1378. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S.; Page, A.L.; Miller, R.H.; Keeney, R.R. Nitrogen—Total. In Methods of Soil Analysis, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982; Part 2; pp. 595–624. [Google Scholar]
- McCune, B.; Mefford, M.J. Multivariate Analysis of Ecological Data, Version 5.0; MjM Software: Gleneden Beach, OR, USA, 1999.
- Ponge, J.F.; Jabiol, B.; Gégout, J.C. Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma 2011, 162, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Badía-Villas, D.; Girona-García, A. Soil humus changes with elevation in Scots pine stands of the Moncayo Massif (NE Spain). Appl. Soil Ecol. 2018, 123, 617–621. [Google Scholar] [CrossRef]
- Girona-García, A.; Badía-Villas, D.; Jiménez-Morillo, N.T.; González-Pérez, J.A. Changes in soil organic matter composition after Scots pine afforestation in a native European beech forest revealed by analytical pyrolysis (Py-GC/MS). Sci. Total Environ. 2019, 691, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wei, B.; Wang, X.; Zhang, Y.; Zhang, A. Response of soil organic carbon fractions and CO2 emissions to exogenous composted manure and calcium carbonate. J. Soils Sediments 2018, 18, 1832–1843. [Google Scholar] [CrossRef]
- Guo, A.; Ding, L.; Tang, Z.; Zhao, Z.; Duan, G. Microbial response to CaCO3 application in an acid soil in southern China. J. Environ. Sci. 2019, 79, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Labaz, B.; Galka, B.; Bogacz, A.; Waroszewski, J.; Kabala, C. Factors influencing humus forms and forest litter properties in the mid-mountains under temperate climate of southwestern Poland. Geoderma 2014, 230, 265–273. [Google Scholar] [CrossRef]
- Bonifacio, E.; D’Amico, M.; Catoni, M.; Stanchi, S. Humus forms as a synthetic parameter for ecological investigations. Some examples in the Ligurian Alps (North-Western Italy). Appl. Soil Ecol. 2018, 123, 568–571. [Google Scholar] [CrossRef]
- De Nicola, C.M.P.; Testi, A.; Zanella, A.; Pignatti, S. Factors influence on humus forming in Castelporziano Reserve, Mediterranean forest ecosystem. Appl. Soil Ecol. 2018, 123, 601–616. [Google Scholar] [CrossRef]
- Bayranvand, M.; Kooch, Y.; Alberti, G. Classification of humus forms in Caspian Hyrcanian mixed forests ecoregion (Iran): Comparison between two classification methods. Catena 2018, 165, 390–397. [Google Scholar] [CrossRef]
- Salmon, S. Changes in humus forms, soil invertebrate communities and soil functioning with forest dynamics. Appl. Soil Ecol. 2018, 123, 345–354. [Google Scholar] [CrossRef]
- Bauhus, J.; Vor, T.; Bartsch, N.; Cowling, A. The effects of gaps and liming on forest floor decomposition and soil C and N dynamics in a Fagus sylvatica forest. Can. J. For. Res. 2004, 34, 509–518. [Google Scholar] [CrossRef]
- Hobbie, E.A.; Ouimette, A.P.; Schuur, E.A.; Kierstead, D.; Trappe, J.M.; Bendiksen, K.; Ohenoja, E. Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi. Biogeochemistry 2013, 114, 381–389. [Google Scholar] [CrossRef]
- Jourgholami, M.; Nasirian, A.; Labelle, E.R. Ecological restoration of compacted soil following the application of different leaf litter mulches on the skid trail over a five-year period. Sustainability 2018, 10, 2148. [Google Scholar] [CrossRef]
- Hellwig, N.; Tatti, D.; Sartori, G.; Anschlag, K.; Graefe, U.; Egli, M.; Broll, G. Modeling spatial patterns of humus forms in montane and subalpine forests: Implications of local variability for upscaling. Sustainability 2018, 11, 48. [Google Scholar] [CrossRef]
Age of Skid Trail (Years) | Forest Stand (Main Species) | District (No. of Compartments) | Skid Trail Length (m) | Elevation (m a.s.l) | Tree Density (N ha−1) | Soil Texture |
---|---|---|---|---|---|---|
6 | B | Gorazbon (C. 315) | 255 | 1209 | 510 | Clay |
B-H | Gorazbon (C. 316) | 374 | 1174 | 496 | Clay | |
B-H-O | Gorazbon (C. 318) | 310 | 1177 | 565 | Silt clay loam | |
10 | B | Gorazbon (C. 319) | 240 | 1246 | 505 | Clay |
B-H | Gorazbon (C. 320) | 247 | 1345 | 520 | Clay | |
B-H-O | Gorazbon (C. 318) | 360 | 1133 | 544 | Silt clay loam | |
20 | B | Namkhaneh (C. 215) | 200 | 1040 | 495 | Clay |
B-H | Namkhaneh (C. 220) | 210 | 1115 | 482 | Silt loam | |
B-H-O | Namkhaneh (C. 214) | 180 | 1010 | 510 | Clay loam |
Litter Type (Forest Stands) | Age of Skid Trail | |||||||
---|---|---|---|---|---|---|---|---|
Humus and Soil Properties | Variables | Abbreviation | F Test | p Value | Rcor | F Test | p Value | Rcor |
Humus layers thickness | Organic litter (cm) | OL | 70.22 | <0.001 | 0.62 ** | 25.30 | <0.001 | 0.66 ** |
Organic fragmentation (cm) | OF | 52.44 | <0.001 | 0.75 ** | 33.62 | 0.021 | 0.36 * | |
Organic humus (cm) | OH | 15.16 | <0.001 | 0.38 * | 10.23 | 0.015 | 0.34 * | |
Organic-mineral layer (cm) | AH | 8.97 | 0.001 | 0.65 ** | 4.22 | 0.056 | 0.15 | |
Forest floor properties | Forest floor carbon (%) | FFC | 140.41 | 0.001 | −0.82 ** | 156.6 | <0.001 | 0.44 ** |
Forest floor nitrogen (%) | FFN | 128.5 | <0.001 | 0.85 ** | 154.7 | <0.001 | −0.55 ** | |
Forest floor C/N | FFC/N | 12.64 | 0.011 | 0.70 ** | 113.6 | <0.001 | 0.33 | |
Soil physical properties | Soil moisture (%) | SM | 34.66 | <0.001 | 0.66 ** | 90.05 | <0.001 | −0.62 ** |
Bulk density (g cm−3) | BD | 711.25 | <0.001 | −0.60 ** | 149.9 | <0.001 | 0.58 ** | |
Total porosity (%) | TP | 714.8 | <0.001 | 0.55 * | 140.4 | <0.001 | −0.47 ** | |
Soil chemical properties | Soil pH | pH | 1.16 | <0.001 | 0.48 ** | 603.2 | <0.001 | −0.39 * |
Soil organic carbon (%) | SOC | 1.19 | <0.001 | −0.77 ** | 2.91 | <0.001 | 0.66 ** | |
Soil nitrogen (%) | SN | 1.86 | <0.001 | 0.79 ** | 720.8 | <0.001 | −0.71 ** | |
Soil C/N | SC/N | 1.69 | <0.001 | 0.59 ** | 1.252 | <0.001 | 0.42 * |
Age of Skid Trail (Year) | Litter Type (Forest Stands) | Humus Layers Thickness | |||
---|---|---|---|---|---|
OL (cm) | OF (cm) | OH (cm) | AH (cm) | ||
6 | Beech Beech-Hornbeam Mixed Beech | 4.4 ± 0.15 ab 4.1 ± 0.15 ab 3.4 ± 0.11 b | 1.8 ± 0.05 a 1.4 ± 0.05 a 0.8 ± 0.03 b | 0.5 ± 0.00 b - - | 1.4 ± 0.08 b 1.8 ± 0.08 b 2.2 ± 0.09 b |
10 | Beech Beech-Hornbeam Mixed Beech | 5.0 ± 0.15 ab 4.1 ± 0.15 b 3.1 ± 0.15 c | 2.2 ± 0.05 a 1.2 ± 0.05 b 1.0 ± 0.03 b | 1.0 ± 0.01 a 0.8 ± 0.01 a - | 1.8 ± 0.08 b 2.0 ± 0.08 b 2.5 ± 0.09 ab |
20 | Beech Beech-Hornbeam Mixed Beech | 7.5 ± 0.27 a 6.1 ± 0.27 a 4.0 ± 0.18 b | 2.0 ± 0.06 a 1.5 ± 0.05 a 0.8 ± 0.05 b | 0.6 ± 0.00 b - - | 2.2 ± 0.10 b 3.2 ± 0.17 a 3.8 ± 0.17 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohrabi, H.; Jourgholami, M.; Venanzi, R.; Picchio, R. Assessment of Variability among Humus Forms and Soil Properties in Relation to Tree Species and Forest Operations in the Kheyrud Forest, Nowshahr. Forests 2022, 13, 2156. https://doi.org/10.3390/f13122156
Sohrabi H, Jourgholami M, Venanzi R, Picchio R. Assessment of Variability among Humus Forms and Soil Properties in Relation to Tree Species and Forest Operations in the Kheyrud Forest, Nowshahr. Forests. 2022; 13(12):2156. https://doi.org/10.3390/f13122156
Chicago/Turabian StyleSohrabi, Hadi, Meghdad Jourgholami, Rachele Venanzi, and Rodolfo Picchio. 2022. "Assessment of Variability among Humus Forms and Soil Properties in Relation to Tree Species and Forest Operations in the Kheyrud Forest, Nowshahr" Forests 13, no. 12: 2156. https://doi.org/10.3390/f13122156
APA StyleSohrabi, H., Jourgholami, M., Venanzi, R., & Picchio, R. (2022). Assessment of Variability among Humus Forms and Soil Properties in Relation to Tree Species and Forest Operations in the Kheyrud Forest, Nowshahr. Forests, 13(12), 2156. https://doi.org/10.3390/f13122156