Small-Scale Environmental Heterogeneity Enhances Tree Recruitment through Carbon Recharge and Water Use Diversification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigation Protocols
2.2. Sampling and Measurement Protocols
2.3. Data Processing and Analyses
3. Results
3.1. Site Factors and Gas-Exchange Heterogeneity
3.2. Gas Exchange under Field and Reference Conditions
3.3. Carbon Uptake and Water Loss in Canopy Gaps
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J.; Lu, D.; Zhang, W. Effects of gaps on regeneration of woody plants: A meta-analysis. J. For. Res. 2014, 25, 501–510. [Google Scholar] [CrossRef]
- Dobrovolný, L.; Martiník, A.; Drvodelić, D.; Oršanić, M. Structure, Yield and Acorn Production of Oak (Quercus robur L.) Dominated Floodplain Forests in the Czech Republic and Croatia. South-East Eur. For. 2017, 8, 127–136. [Google Scholar] [CrossRef]
- Löf, M.; Ammer, C.; Coll, L.; Drössler, L.; Huth, F.; Madsen, P.; Wagner, S. Regeneration Patterns in Mixed-Species Stands. In Dynamics, Silviculture and Management of Mixed Forests; Managing Forest Ecosystems 31; Bravo-Oviedo, A., Pretzsch, H., del Rio, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 103–130. Available online: https://link.springer.com/chapter/10.1007/978-3-319-91953-9_4 (accessed on 15 November 2022).
- Pach, M.; Sansone, D.; Ponette, Q.; Barreiro, S.; Mason, B.; Bravo-Oviedo, A.; Löf, M.; Bravo, F.; Pretzsch, H.; Lesiński, J.; et al. Silviculture of Mixed Forests: A European Overview of Current Practices and Challenges. In Dynamics, Silviculture and Management of Mixed Forests; Managing Forest Ecosystems 31; Bravo-Oviedo, A., Pretzsch, H., del Rio, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 185–253. [Google Scholar]
- Bobiec, A.; Jaszcz, E.; Wojtunik, K. Oak (Quercus robur L.) regeneration as a response to natural dynamics of stands in European hemiboreal zone. Eur. J. For. Res. 2011, 130, 785–797. [Google Scholar] [CrossRef] [Green Version]
- Annighöfer, P.; Beckschäfer, P.; Vor, T.; Ammer, C. Regeneration Patterns of European Oak Species (Quercus petraea (Matt.) Liebl., Quercus robur L.) in Dependence of Environment and Neighborhood. PLoS ONE 2015, 10, e0134935. [Google Scholar] [CrossRef] [PubMed]
- Mölder, A.; Sennhenn-Reulen, H.; Fischer, C.; Rumpf, H.; Schönfelder, E.; Stockmann, J.; Nagel, R.-V. Success factors for high-quality oak forest (Quercus robur, Q. petraea) regeneration. For. Ecosyst. 2019, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- Klein, T.; Vitasse, Y.; Hoch, G. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Tree Physiol. 2016, 36, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Ortmann-Ajkai, A.; Csicsek, G.; Lukács, M.; Horváth, F. Regeneration patterns in a pedunculate oak (Quercus robur L.) strict forest reserve in Southern Hungary. Šumar. List 2017, 141, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Demeter, L.; Bede-Fazekas, Á.; Molnár, Z.; Csicsek, G.; Ortmann-Ajkai, A.; Varga, A.; Molnár, Á.; Horváth, F. The legacy of management approaches and abandonment on old-growth attributes in hardwood floodplain forests in the Pannonian Ecoregion. Eur. J. For. Res. 2020, 139, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Tinya, F.; Kovács, B.; Aszalós, R.; Tóth, B.; Csépányi, P.; Németh, C.; Ódor, P. Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest. For. Ecol. Manag. 2020, 459, 117810. [Google Scholar] [CrossRef]
- Hölscher, D. Leaf traits and photosynthetic parameters of saplings and adult trees of co-existing species in a temperate broad-leaved forest. Basic Appl. Ecol. 2004, 5, 163–172. [Google Scholar] [CrossRef]
- Götmark, F.; Kiffer, C. Regeneration of oaks (Quercus robur/Q. petraea) and three other tree species during long-term succession after catastrophic disturbance (windthrow). Plant Ecol. 2014, 215, 1067–1080. [Google Scholar] [CrossRef]
- Petrokas, R.; Baliuckas, V.; Manton, M. Successional Categorization of European Hemi-boreal Forest Tree Species. Plants 2020, 9, 1381. [Google Scholar] [CrossRef] [PubMed]
- Konôpka, B.; Pajtík, J.; Šebe, V.; Surový, P.; Merganičová, K. Woody and foliage biomass, foliage traits and growth efficiency in young trees of four broadleaved tree species in a temperate forest. Plants 2020, 10, 2155. [Google Scholar] [CrossRef] [PubMed]
- Drescher, A.; Prots, B. Fraxinus pennsylvanica—An invasive tree species in middle Europe: Case studies from the Danube Basin. Contrib. Bot. 2016, 51, 55–69. Available online: http://contributii_botanice.reviste.ubbcluj.ro/materiale/2016/Contrib_Bot_vol_51_pp_055-069.pdf (accessed on 15 November 2022).
- Bobiec, A.; Reif, A.; Öllerer, K. Seeing the oakscape beyond the forest: A landscape approach to the oak regeneration in Europe. Landscape Ecol. 2018, 33, 513–528. [Google Scholar] [CrossRef] [Green Version]
- Kiani, B.; Yegandoost, K. The study of parent-regeneration relationships for wild cherry (Prunus avium L.) in Hyrcanian forests. J. For. Sci. 2021, 67, 328–337. [Google Scholar] [CrossRef]
- Terwei, A.; Zerbe, S.; Zeileis, A.; Annighöfer, P.; Kawaletz, H.; Mölder, I.; Ammer, C. Which are the factors controlling tree seedling establishment in North Italian floodplain forests invaded by non-native tree species? For. Ecol. Manag. 2013, 304, 192–203. [Google Scholar] [CrossRef]
- Qiu, T.; Sharma, S.; Woodall, C.W.; Clark, J.S. Niche Shifts from Trees to Fecundity to Recruitment That Determine Species Response to Climate Change. Front. Ecol. Evol. 2021, 9, 719141. [Google Scholar] [CrossRef]
- Kollár, T. Light conditions, soil moisture, and vegetation cover in artificial forest gaps in western Hungary. Acta Silv. Lignaria Hung. 2017, 13, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Deligöz, A.; Bayar, E. Drought stress responses of seedlings of two oak species (Quercus cerris and Quercus robur). Turk. J. Agric. For. 2018, 42, 114–123. [Google Scholar] [CrossRef]
- Kevey, B. A baranyai Dráva-sík gyertyános-tölgyesei (Circaeo-Carpinetum Borhidi 2003 em. Kevey 2006). Nat. Som. 2007, 10, 41–71, (In Hungarian with English Summary). [Google Scholar] [CrossRef]
- Dövényi, Z. Magyarország kistájainak katasztere, 2nd ed.; Hungarian Academy of Sciences Geographical Institute: Budapest, Hungary, 2010; p. 876. (In Hungarian) [Google Scholar]
- Field, C.B.; Ball, J.T.; Berry, J.A. Photosynthesis: Principles and field techniques. In Plant Physiological Ecology—Field Methods and Instrumentation; Ehleringer, J., Mooney, H.A., Rundel, P.W., Pearcy, R.W., Eds.; Chapman and Hall: London, UK, 1991; pp. 209–253. [Google Scholar]
- Salamon-Albert, É.; Csiszár, Á.; Bartha, D. Functional fingerprinting estimates renewal opportunities for tree species in a mixed Turkey oak forest. Turk. J. Agric. For. 2021, 45, 144–153. [Google Scholar] [CrossRef]
- Hoffmann, G. Wachstumsrhythmik der Wurzeln und SproBachsen von Forstgeholzen. Growth Rhythms of Roots and Shoot Axis in Forest Trees. Flora 1972, 161, 303–319. [Google Scholar] [CrossRef]
- Dušek, J.; Květ, J. Seasonal dynamics of dry weight, growth rate and root/shoot ratio in different aged seedlings of Salix caprea. Biologia 2006, 61, 441–447. [Google Scholar] [CrossRef]
- Kremer, D.; Cavlovic, J.; Bozic, M. Growth characteristics of introduced green ash (Fraxinus pennsylvanica Marshall) and narrow-leaved ash (F. angustifolia L.) in lowland forest region in Croatia. New For. 2006, 31, 211–224. [Google Scholar] [CrossRef]
- Bonomelli, C.; Bonilla, C.; Acuña, E.; Artacho, P. Seasonal pattern of root growth in relation to shoot phenology and soil temperature in sweet cherry trees (Prunus avium): A preliminary study in central Chile. Cienc. Investig. Agrar. 2012, 39, 127–136. [Google Scholar] [CrossRef] [Green Version]
- El Omari, B. Accumulation versus storage of total non-structural carbohydrates in woody plants. Trees 2022, 36, 869–881. [Google Scholar] [CrossRef]
- Davidson, A.M.; Le, S.T.; Cooper, K.B.; Lange, E.; Zwieniecki, M.A. No time to rest: Seasonal dynamics of non-structural carbohydrates in twigs of three Mediterranean tree species suggest year-round activity. Sci. Rep. 2021, 11, 5181. [Google Scholar] [CrossRef]
- Hochberg, U.; Rockwell, F.E.; Holbrook, N.M.; Cochard, H. Iso/Anisohydry: A Plant–Environment Interaction Rather Than a Simple Hydraulic Trait. Trends Plant. Sci. 2018, 23, 112–120. [Google Scholar] [CrossRef]
- El Zein, R.; Maillard, P.; Breda, N.; Marchand, J.; Montpied, P.; Gérant, D. Seasonal changes of C and N non-structural compounds in the stem sapwood of adult sessile oak and beech trees. Tree Physiol. 2011, 31, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Carbone, M.S.; Keenan, T.F.; Czimczik, C.I.; Hollinger, D.Y.; Murakami, P.; Schaberg, P.G.; Xu, X. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 2013, 197, 850–861. [Google Scholar] [CrossRef]
- Bessonova, V.P.; Chonhova, A.S. Influence of soil moisture level on metabolism of non-structural carbohydrates in Quercus robur leaves. Regul. Mech. Biosyst. 2021, 12, 628–634. [Google Scholar] [CrossRef]
- Yan, W.; Zhong, Y.; Shangguan, Z. A meta-analysis of leaf gas exchange and water status responses to drought. Sci. Rep. 2016, 6, 20917. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.; Gessler, A.; Hoch, G. High carbon storage in carbon-limited trees. New Phytol. 2019, 222, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhu, Z.; Shi, M.; Cheng, L. Growth and Physicochemical Changes of Carpinus betulus L. Influenced by Salinity Treatments. Forests 2018, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Flore, J.A.; Layne, D.R. Photoassimilate production and distribution in cherry. HortScience 1999, 34, 1015–1019. [Google Scholar] [CrossRef] [Green Version]
- Drută, A. Effect of long term exposure to high CO2 concentrations on photosynthetic characteristics of Prunus avium L. plants. Photosynthetica 2001, 39, 289–297. [Google Scholar] [CrossRef]
- Anev, S.; Marinova, A. Physiological adaptation of European beech (Fagus sylvatica L.) and wild cherry (Prunus avium L.) saplings after windthrow. For. Ideas 2021, 2, 436–445. Available online: https://oaji.net/articles/2022/6191-1642671454.pdf (accessed on 15 November 2022).
- Mudrák, O.; Hermová, M.; Tesnerová, C.; Rydlová, J.; Frouz, J. Above-ground and below-ground competition between the willow Salix caprea and its understorey. J. Veg. Sci. 2016, 27, 156–164. [Google Scholar] [CrossRef]
- Ramirez, J.A.; Vitali, V.; Martínez-Vilalta, J.; Handa, T.; Messier, C. Reserve Accumulation Is Prioritized over Growth Following Single or Combined Injuries in Three Common North American Urban Tree Species. Front. Plant Sci. 2021, 12, 715399. [Google Scholar] [CrossRef]
- Abrams, M.D.; Kubiske, M.E.; Steiner, K.C. Drought adaptations and responses in five genotypes of Fraxinus pennsylvanica Marsh.: Photosynthesis, water relations and leaf morphology. Tree Physiol. 1990, 6, 305–315. [Google Scholar] [CrossRef] [PubMed]
Climate Parameter/Sapling | Spring | Summer | Fall |
---|---|---|---|
1 Temperature (mean, °C) | 11.0 | 21.1 | 11.9 |
1 Precipitation (sum, mm) | 231 | 184 | 210 |
1 Relative air humidity (mean, %) | 76 | 71 | 84 |
2 Photon flux density (μmol m−2 s−1) | 16–2969 | 18–2449 | 28–2766 |
2 Leaf temperature (min–max, °C) | 15.6–35.7 | 18.5–37.0 | 14.5–28.8 |
2 Carbon dioxide (min–max, ppm) | 332–571 | 338–447 | 337–424 |
2 Relative air humidity (min–max, %) | 32.2–71.7 | 16.4–37.1 | 31.3–54.5 |
Quercus robur (N = 15) | n = 242 | n = 334 | n = 312 |
Carpinus betulus (N = 5) | n = 212 | n = 297 | n = 224 |
Prunus avium (N = 5) | n = 276 | n = 205 | n = 312 |
Fraxinus pennsylvanica (N = 8) | n = 227 | n = 288 | n = 235 |
Salix caprea (N = 8) | n = 243 | n = 309 | n = 236 |
Gas Exchange Function | Factor | GAP | REF |
---|---|---|---|
A | Site | 381.1 | |
Species | 805.2 | 1065.2 | |
Season | 583.8 | 277.3 | |
E | Site | 1514.5 | |
Species | 1148.7 | 675.2 | |
Season | 288.7 | 543.5 | |
gs | Site | 77.9 | |
Species | 1569.9 | 978.2 | |
Season | 951.4 | 569.0 | |
pWUE | Site | 2777.8 | |
Species | 338.4 | 92.3 | |
Season | 561.3 | 935.9 | |
iWUE | Site | 700.5 | |
Species | 472.2 | 423.2 | |
Season | 177.3 | 225.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamon-Albert, É.; Bartha, D.; Csiszár, Á. Small-Scale Environmental Heterogeneity Enhances Tree Recruitment through Carbon Recharge and Water Use Diversification. Forests 2022, 13, 2158. https://doi.org/10.3390/f13122158
Salamon-Albert É, Bartha D, Csiszár Á. Small-Scale Environmental Heterogeneity Enhances Tree Recruitment through Carbon Recharge and Water Use Diversification. Forests. 2022; 13(12):2158. https://doi.org/10.3390/f13122158
Chicago/Turabian StyleSalamon-Albert, Éva, Dénes Bartha, and Ágnes Csiszár. 2022. "Small-Scale Environmental Heterogeneity Enhances Tree Recruitment through Carbon Recharge and Water Use Diversification" Forests 13, no. 12: 2158. https://doi.org/10.3390/f13122158
APA StyleSalamon-Albert, É., Bartha, D., & Csiszár, Á. (2022). Small-Scale Environmental Heterogeneity Enhances Tree Recruitment through Carbon Recharge and Water Use Diversification. Forests, 13(12), 2158. https://doi.org/10.3390/f13122158