A Systematic Review of the Physicochemical and Microbial Diversity of Well-Preserved, Restored, and Disturbed Mangrove Forests: What Is Known and What Is the Way Forward?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Database
2.2. Trends in Scientific Publication
3. Factors Influencing Microbial Community and Diversity
3.1. Physicochemical Parameters in Well-Preserved Mangroves
Sampling Site | pH | Temp. (°C) | Salinity ppt | References |
---|---|---|---|---|
Well-preserved Mangrove | ||||
Wenlock River, Far North Queensland, Australia | 7.1 to 7.5 | 25.5 to 26.1 | 21.9 to 23.8 | [65] |
Tanjung Piai, Johor, Malaysia | 5.2 to 7.0 | - | 7.1 to 8.2 | [66] |
7.2 to 7.4 | - | 5.8 to 6.9 | ||
Kalash Island, Sundarbans, India | 7.6 to 7.8 | 22 to 31 | 22 to 27 | [67] |
Saint Vincent Bay, New Caledonia, Overseas France | 6.64 to 7.04 | - | 44 to 64 | [60] |
6.46 to 6.67 | - | 48 to 62 | ||
Paranaguá Bay, Brazil | 5.3 to 7.6 | - | 5 to 30 | [52] |
Virgin Jungle Forest, Matang, Perak, Malaysia | 7.6 | 28.5 | 20 | [68] |
Ferney, Mauritius | 7.90 to 8.09 | 27.9 to 29.1 | 32.4 to 35.4 | [69] |
Boguaçú River, Guaratuba bay, Paraná, Brazil | 6.5 to 6.6 | - | - | [70] |
Estuary of Cananéia, São Paulo, Brazil | 5.4 to 6.7 | 12.5 to 13.7 | 0.2 to 1.3 | [71] |
Restinga da Marambaia, Rio de Janeiro, Brazil | - | 28 to 33 | - | [72] |
Ilha do Cardoso, Sao Paulo, Brazil | 5.9 to 6.4 | - | - | [73] |
Florida Coastal Everglades, USA | - | - | 8.4 to 42.6 | [74] |
Restored Mangrove | ||||
Quanzhou bay, Fujian, China | 6.60 to 7.88 | - | 9.6 to 33 | [75] |
Leizhou Nature Reserve, China | 6.45 to 7.28 | - | 1.43 to 1.50 | [76] |
Quanzhou bay, Fujian, China | 6.75 to 7.63 | - | 12 to 24 | [58] |
Leizhou Nature Reserve, China | 6.76 to 7.28 | 22 to 23 | 1.28 to 1.71 | [77] |
Hanjiang River Estuary, Guangdong, China | 6.5 to 7.8 | 22.8 to 26.3 | 3.8 to 11.9 | [78] |
Hailing Island National Mangrove Wetland Park, China | 5.99 to 7.78 | 29.03 to 32.28 | 3.41 to 13.27 | [55] |
Xiatanwei mangrove wetland park, Xiamen, China | 6.35 to 7.32 | 13.7 to 14.6 | - | [79] |
Sungai Haji Dorani, Selangor, Malaysia | 6.59 to 7.72 | 26.9 | - | [34] |
Cardoso Island State Park, Brazil | 6.33 | - | - | [80] |
Productive Zone, Matang, Perak, Malaysia | 7.6 | 30 | 21 | [68] |
Disturbed Mangrove | ||||
Haimen Island and Haicang Bay Xiamen, Fujian, China | 6.19 to 8.25 | - | - | [81] |
Yunxiao Zhangjiangkou Nature Reserve, Fujian, China | 4 to 6.9 | 21.2 to 38.1 | - | [82] |
National Shankou Natural Reserve, Guangxi, China | 6.69 to 7.03 | - | 28.6 to 29.6 | [59] |
Seven Coastal Region Mangroves of China | 4.79 to 6.35 | 12.7 to 24.4 | 18 to 31.95 | [83] |
Sahakorn Canal, Bangkok, Thailand | 7.48 to 7.62 | 32 to 35 | 31 to 33 | [84] |
Valle de Los Cangrejos, La Guajira, Colombia | 7.47 to 7.56 | - | - | [85] |
Serinhaém Estuary, Brazil | 7.45 to 7.80 | 25.0 to 29.3 | 13.3 to 15.1 | [86] |
Quanzhou bay, Fujian, China | 6.92 to 7.66 | - | - | [87] |
Futian Mangrove Nature Reserve, Guangdong, China | 6.81 to 6.83 | - | - | [37] |
Mangalavanam, India | 7.2 to 7.4 | 28.77 to 30.5 | 22.6 to 25.8 | [56] |
Kakdwip, Sundarban, India | - | - | 11.9 to 27.5 | [88] |
Haikou and Sanya, Hainan, China | 7.25 to 8.20 | 25.4 to 29.5 | 17.10 to 35.1 | [89] |
Shanyutan Wetland, Minjiang River Estuary, Fujian, China | 5.82 to 5.89 | - | - | [90] |
Yunxiao Zhangjiangkou Nature Reserve, Fujian, China | 7.27 | - | 18 | [91] |
Yunxiao Zhangjiangkou Nature Reserve, Fujian, China | 6.83 to 7.34 | - | 9.27 to 14.53 | [92] |
Six Coastal Region Mangroves of China | 6.32 to 8.63 | - | 24.5 to 55.0 | [93] |
Coastal Zones of China | 8.18 to 5.17 | - | 0.5 to 4.17 | [94] |
Bhitarkanika mangrove, India | 5.56 to 7.14 | - | 0.33 to 2.46 | [36] |
Bertioga, Sao Paulo State, Brazil | 6.93 to 6.20 | - | 4 to 7 | [95] |
Restinga da Marambaia, Rio de Janeiro, Brazil | 6 to 8 | 27 | 5 to 20 | [96] |
La Guajira, Colombia | 7.3 to 7.94 | - | - | [97] |
Mai Po Wetland, Hong Kong, China | 6.61 to 7.48 | - | - | [98] |
Daya Bay, Guangdong, China | 7.5 to 8.1 | 20.6 to 22.6 | 26.7 to 31.9 | [99] |
Ribandar, Mandovi Estuary, Goa, India | 6.5 to 6.7 | 35 | - | [100] |
Sahakorn Canal, Bangkok, Thailand | 7.3 | 33 | 33 | [101] |
Dongzhai Bay, Hainan, China | 3.19 to 7.1 | - | - | [102] |
Mai Po Wetland, Hong Kong, China | 5.82 to 8.17 | - | - | [103] |
Rantau Abang, Terengganu, Malaysia | 5.1 | - | - | [31] |
Ar-Rayis and Yanbu, Saudi Arabia | 8.4 to 8.5 | 31.7 to 33.4 | 15.9 to 19.2 | [104] |
Darwin Harbour, Australia | - | 25.5 to 31.7 | 18.4 to 39.2 | [105] |
Yellow River Delta, Shandong, China | 7.5 to 8.7 | 11.7 to 12.6 | 0.4~3.4 | [106] |
Coastal Zones of Singapore | 6.37 to 8.61 | 27.1 to 28.3 | - | [107] |
Mai Po Wetland, Hong Kong, China | 6.8 to 5.8 | - | 27.7to 35 | [108] |
Bertioga, Sao Paulo State, Brazil | 6.4 to 7.1 | - | 55.6 to 88.4 | [109] |
Netidhopani Island, Sundarban, India | 8.1 | - | 7.22 | [110] |
Todos os Santos Bay, Bahia, Brazil | 3.6 to 7.5 | - | - | [111] |
3.2. Physicochemical Parameters in Restored Mangroves
3.3. Physicochemical Parameters in Disturbed Mangroves
4. Microbial Communities in Different Types of Mangrove Forests
4.1. The Trends in Microbial Communities across Mangrove Forest Types
4.2. Specific Roles of Mangrove Associated Microbes
5. Suggestions for Future Mangrove Microbial Diversity Research
- Southeast Asian nations (ASEAN) have high mangrove coverage and tree diversity, and are the epicenter of most mangrove deforestation [160,161] and small patch mangrove restoration efforts [138]. We suggest for an increase mangrove sediment bacterial diversity studies in these rapidly changing and developing areas. The increment of studies will provide a clearer insight to understand the ecological and social values of mangroves and their subordinates in different succession stages. Furthermore, there is a need to explore the polluted sediments of different species of mangroves and their interaction and impact on microbial diversity, thus finding suitable and highly adaptive mangrove species for quick remediation of contaminated mangrove areas and coastal protection.
- We recommend increased research and development of the biogeochemical behaviors of coastal mangrove sediment microbes and the main drivers to cultivate a “fertilizer” to enhance a higher rate of success in mangrove restoration and conservation. Mangrove forests are subject to high salinity and constant inundation, hence the “fertilizer” developed must premeditate the hydrodynamics, bioavailability, and feedback adjustment of sediment microbes and their reciprocal mangrove trees. The accomplishment of mangrove restoration can reduce the rate of climate change and help nations to realize sustainable development goals (SDG) [162]. We suggest public, private, and governmental organizations join hands and promote mangrove restoration in coastal regions around land–sea margins for sustainable development and to benefit ethically from the ecosystem.
- Further, we should deepen the current understanding of the relationship between geolocation and mangrove species and their microbial diversity. Microbes in mangrove sediments have a symbiotic relationship with their corresponding mangrove environment. While studies have shown that mangrove tree species contribute to the ecosystem by controlling the supply and demand of vital resources, the nutrient transformation from different mangrove tree species also alters microbial diversities and structures in a phenomenon where the microbial community selection force is driven by mangrove plant species [163]. Here we suggest adding mangrove tree species and their growth status such as diameter at breast height (DBH) and estimated tree height as part of the criteria and factors affecting and controlling the diversity of the microbial community. The differential of mangrove tree age [58,75] and species [78,90] have proven to induce vital changes in controlling the microbiota structure compositions.
- We recommend unified physio-chemical indices units for better regional and ultimately global-scale comparison. We acknowledge the constraints of methodological differences in research equipment and objectives, here suggestions are made to encourage the universalization and protocol of units such as TC, TN, TS, and TP. These indices are important for environmental nutrient factors dictating the directive changes of microbial communities. Such developments and unification of standard units will benefit all sediment microbes research and have significant value in constructing a conducive comparison meanwhile further bridging research gaps and encouraging research development.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alongi, D. The Energetics of Mangrove Forests; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–216. [Google Scholar] [CrossRef]
- Alongi, D. Nitrogen Cycling and Mass Balance in the World’s Mangrove Forests. Nitrogen 2020, 1, 167–189. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, S.; Casey, D. Creation of a high spatiotemporal resolution global database of continuous mangrove forest cover for the 21st Century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Chandra, G.; Ochieng, E.; Tieszen, L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forest of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2010, 20, 154–159. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [Green Version]
- Donato, D.; Kauffman, J.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Azman, M.S.; Sharma, S.; Shaharudin, M.A.M.; Hamzah, M.L.; Adibah, S.N.; Zakaria, R.M.; MacKenzie, R.A. Stand structure, biomass and dynamics of naturally regenerated and restored mangroves in Malaysia. For. Ecol. Manag. 2021, 482, 118852. [Google Scholar] [CrossRef]
- Mackenzie, R.; Sharma, S.; Rovai, A. Environmental drivers of blue carbon burial and soil carbon stocks in mangrove forests. In Dynamic Sedimentary Environments of Mangrove Coasts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 275–294. [Google Scholar] [CrossRef]
- Sahadev, S. Preface: Blue carbon studies in Asia-Pacific regions: Current status, gaps, and future perspectives. Ecol. Res. 2022, 37, 5–8. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.; Warren, M.; Sasmito, S.; Donato, D.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Change 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Alongi, D. Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests 2018, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- Hilmi, N.; Chami, R.; Sutherland, M.D.; Hall-Spencer, J.M.; Lebleu, L.; Benitez, M.B.; Levin, L.A. The Role of Blue Carbon in Climate Change Mitigation and Carbon Stock Conservation. Front. Clim. 2021, 3, 710546. [Google Scholar] [CrossRef]
- Baloloy, A.B.; Blanco, A.C.; Sharma, S.; Nadaoka, K. Development of a Rapid Mangrove Zonation Mapping Workflow Using Sentinel 2-Derived Indices and Biophysical Dataset. Front. Remote Sens. 2021, 2, 730238. [Google Scholar] [CrossRef]
- Ma, W.; Wang, W.; Tang, C.; Chen, G.; Wang, M. Zonation of mangrove flora and fauna in a subtropical estuarine wetland based on surface elevation. Ecol. Evol. 2020, 10, 7404–7418. [Google Scholar] [CrossRef] [PubMed]
- Leong, R.C.; Friess, D.A.; Crase, B.; Lee, W.K.; Webb, E.L. High-resolution pattern of mangrove species distribution is controlled by surface elevation. Estuar. Coast. Shelf Sci. 2018, 202, 185–192. [Google Scholar] [CrossRef]
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- Lefebvre, G.; Poulin, B. Seasonal Abundance of Migrant Birds and Food Resources in Panamanian Mangrove Forests. Wilson Bull. 1996, 108, 748–759. [Google Scholar]
- Nagelkerken, I.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.O.; Pawlik, J.; Penrose, H.M.; Sasekumar, A.; et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 2008, 89, 155–185. [Google Scholar] [CrossRef] [Green Version]
- Siti, F.R.; Zhang, C. National Mangrove Restoration Project in Malaysia. J. Environ. Earth Sci. 2017, 7, 119–125. [Google Scholar]
- Chong, V. Mangroves-fisheries Linkages—The Malaysian perspective. Bull. Mar. Sci. 2007, 80, 755–772. [Google Scholar]
- Aburto-Oropeza, O.; Ezcurra, E.; Danemann, G.; Valdez, V.; Murray, J.; Sala, E. Mangroves in the Gulf of California increase fishery yields. Proc. Natl. Acad. Sci. USA 2008, 105, 10456–10459. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.S.; Yee, J.; Danielle, C.; Yusup, Y.; Gallagher, J.B. Anthropogenic Marine Debris Accumulation In Mangroves On Penang Island, Malaysia. J. Sustain. Sci. Manag. 2020, 15, 36–60. [Google Scholar] [CrossRef]
- Monika; Yadav, A. A Holistic Study on Impact of Anthropogenic Activities over the Mangrove Ecosystem and Their Conservation Strategies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 265–284. [Google Scholar]
- Triest, L. Molecular ecology and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: A review. Aquat. Bot. 2008, 89, 138–154. [Google Scholar] [CrossRef]
- Duke, N. Mangrove Floristics and Biogeography Revisited: Further Deductions from Biodiversity Hot Spots, Ancestral Discontinuities, and Common Evolutionary Processes; Springer: Berlin/Heidelberg, Germany, 2017; pp. 17–53. [Google Scholar]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Vo, T.; Dech, S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef] [Green Version]
- Mai, Z.; Ye, M.; Wang, Y.; Foong, S.Y.; Wang, L.; Sun, F.; Cheng, H. Characteristics of Microbial Community and Function with the Succession of Mangroves. Front. Microbiol. 2021, 12, 764974. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Li, J.; He, Z.; Van Nostrand, J.D.; Tian, Y.; Lin, G.; Zhou, J.; Zheng, T. GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves. Appl. Microbiol. Biotechnol. 2013, 97, 7035–7048. [Google Scholar] [CrossRef]
- Ismail, Z.; Sam, C.-K.; Yin, W.-F.; Chan, K.-G. Tropical mangrove swamp metagenome reveals unusual abundance of ecologically important microbes. Curr. Sci. 2017, 112, 1698–1703. [Google Scholar] [CrossRef]
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Eck, J.L.; Stump, S.M.; Delavaux, C.S.; Mangan, S.A.; Comita, L.S. Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc. Natl. Acad. Sci. USA 2019, 116, 7371–7376. [Google Scholar] [CrossRef] [Green Version]
- Jeyanny, V.; Norlia, B.; Getha, K.; Nur-Nabilah, A.; Lee, S.L.; Rozita, A.; Nashatul-Zaimah, A.Z.; Syaliny, G.; Ne’ryez, S.R.; Tariq-Mubarak, H. Bacterial Communities in a Newly Regenerated Mangrove Forest of Sungai Haji Dorani Mangroves in the West Coast of Selangor, Malaysia. J. Trop. For. Sci. 2020, 32, 268–282. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, Y.; Shi, T.; Zhang, X.; Huang, G.; Gong, J. Intertidal zonation affects diversity and functional potentials of bacteria in surface sediments: A case study of the Golden Bay mangrove, China. Appl. Soil Ecol. 2018, 130, 159–168. [Google Scholar] [CrossRef]
- Behera, P.; Mohapatra, M.; Kim, J.Y.; Adhya, T.K.; Pattnaik, A.K.; Rastogi, G. Spatial and temporal heterogeneity in the structure and function of sediment bacterial communities of a tropical mangrove forest. Environ. Sci. Pollut. Res. 2019, 26, 3893–3908. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhou, T.; Xu, C.; Shen, D.; Xu, S.; Lin, C. Spatial and Temporal Variation in Microbial Diversity and Community Structure in a Contaminated Mangrove Wetland. Appl. Sci. 2020, 10, 5850. [Google Scholar] [CrossRef]
- Jiang, X.T.; Peng, X.; Deng, G.H.; Sheng, H.F.; Wang, Y.; Zhou, H.W.; Tam, N.F. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 2013, 66, 96–104. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
- Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res. 2012, 40, D136–D143. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019, 36, 1925–1927. [Google Scholar] [CrossRef]
- Lajeunesse, M. Facilitating systematic reviews, data extraction, and meta-analysis with the metagear package for R. Methods Ecol. Evol. 2016, 7, 323–330. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Kennish, M.J. Environmental threats and environmental future of estuaries. Environ. Conserv. 2002, 29, 78–107. [Google Scholar] [CrossRef]
- Sakho, I.; Mesnage, V.; Deloffre, J.; Lafite, R.; Niang, I.; Faye, G. The influence of natural and anthropogenic factors on mangrove dynamics over 60 years: The Somone Estuary, Senegal. Estuar. Coast. Shelf Sci. 2011, 94, 93–101. [Google Scholar] [CrossRef]
- Harrison, K.A.; Bol, R.; Bardgett, R.D. Preferences for Different Nitrogen Forms by Coexisting Plant Species and Soil Microbes. Ecology 2007, 88, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Helfer, V.; Hassenrück, C. Microbial communities in mangrove sediments. In Dynamic Sedimentary Environments of Mangrove Coasts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 141–175. [Google Scholar] [CrossRef]
- Morrissey, E.M.; Gillespie, J.L.; Morina, J.C.; Franklin, R.B. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob. Change Biol. 2014, 20, 1351–1362. [Google Scholar] [CrossRef]
- Ceccon, D.M.; Faoro, H.; Lana, P.d.C.; Souza, E.M.d.; Pedrosa, F.d.O. Metataxonomic and metagenomic analysis of mangrove microbiomes reveals community patterns driven by salinity and pH gradients in Paranaguá Bay, Brazil. Sci. Total Environ. 2019, 694, 133609. [Google Scholar] [CrossRef]
- Chambers, L.G.; Guevara, R.; Boyer, J.N.; Troxler, T.G.; Davis, S.E. Effects of Salinity and Inundation on Microbial Community Structure and Function in a Mangrove Peat Soil. Wetlands 2016, 36, 361–371. [Google Scholar] [CrossRef]
- Barik, J.; Mukhopadhyay, A.; Ghosh, T.; Mukhopadhyay, S.; Chowdhury, M.S.M.; Hazra, S. Mangrove species distribution and water salinity: An indicator species approach to Sundarban. J. Coast. Conserv. 2018, 22, 361–368. [Google Scholar] [CrossRef]
- Liu, X.; Yang, C.; Yu, X.; Yu, H.; Zhuang, W.; Gu, H.; Xu, K.; Zheng, X.; Wang, C.; Xiao, F.; et al. Revealing structure and assembly for rhizophyte-endophyte diazotrophic community in mangrove ecosystem after introduced Sonneratia apetala and Laguncularia racemosa. Sci. Total Environ. 2020, 721, 137807. [Google Scholar] [CrossRef]
- Nathan, V.; Vijayan, J.; Parvathi, A. Comparison of bacterial diversity from two mangrove ecosystems from India through metagenomic sequencing. Reg. Stud. Mar. Sci. 2020, 35, 101184. [Google Scholar] [CrossRef]
- Zhu, D.-H.; Song, Q.-L.; Nie, F.-H.; Wei, W.; Chen, M.-M.; Zhang, M.; Lin, H.-Y.; Kang, D.-J.; Chen, Z.-B.; Hay, A.G.; et al. Effects of Environmental and Spatial Variables on Bacteria in Zhanjiang Mangrove Sediments. Curr. Microbiol. 2022, 79, 97. [Google Scholar] [CrossRef]
- Lin, G.; He, Y.; Lu, J.; Chen, H.; Feng, J. Seasonal variations in soil physicochemical properties and microbial community structure influenced by Spartina alterniflora invasion and Kandelia obovata restoration. Sci. Total Environ. 2021, 797, 149213. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Zhang, Z.; Mo, S.; Li, J.; He, S.; Kashif, M.; Liang, Z.; Shen, P.; Yan, B.; Jiang, C. Desulfobacterales stimulates nitrate reduction in the mangrove ecosystem of a subtropical gulf. Sci. Total Environ. 2021, 769, 144562. [Google Scholar] [CrossRef] [PubMed]
- Luis, P.; Saint-Genis, G.; Vallon, L.; Bourgeois, C.; Bruto, M.; Marchand, C.; Record, E.; Hugoni, M. Contrasted ecological niches shape fungal and prokaryotic community structure in mangroves sediments. Environ. Microbiol. 2019, 21, 1407–1424. [Google Scholar] [CrossRef]
- Bernhard, A.; Donn, T.; Giblin, A.; Stahl, D. Loss of Diversity of Ammonia-Oxidizing Bacteria Correlates with Increasing Salinity in an Estuary System. Environ. Microbiol. 2005, 7, 1289–1297. [Google Scholar] [CrossRef]
- Wang, H.; Gilbert, J.A.; Zhu, Y.; Yang, X. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Sci. Total Environ. 2018, 631–632, 1342–1349. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Dai, T.; Tian, J.; Wen, D. The influence of salinity on the abundance, transcriptional activity, and diversity of AOA and AOB in an estuarine sediment: A microcosm study. Appl. Microbiol. Biotechnol. 2015, 99, 9825–9833. [Google Scholar] [CrossRef]
- Feng, J.; Cui, X.; Zhou, J.; Wang, L.; Zhu, X.; Lin, G. Effects of exotic and native mangrove forests plantation on soil organic carbon, nitrogen, and phosphorus contents and pools in Leizhou, China. CATENA 2019, 180, 1–7. [Google Scholar] [CrossRef]
- Shah, R.M.; Stephenson, S.; Crosswell, J.; Gorman, D.; Hillyer, K.E.; Palombo, E.A.; Jones, O.A.H.; Cook, S.; Bodrossy, L.; van de Kamp, J.; et al. Omics-based ecosurveillance uncovers the influence of estuarine macrophytes on sediment microbial function and metabolic redundancy in a tropical ecosystem. Sci. Total Environ. 2022, 809, 151175. [Google Scholar] [CrossRef] [PubMed]
- Vijayanathan, J.; Alias, N.; Basherudin, N.; Krishnasamy, G.; Lee, S.; Singh, N.R.; Amiruddin, Z. Metagenomic insights on soil microbiome biodiversity from an eroding coastline of tanjung piai, johor state park, malaysia. J. Trop. For. Sci. 2021, 33, 414–424. [Google Scholar] [CrossRef]
- Sengupta, S.; Pramanik, A.; Nag, S.; Roy, D.; Bhattacharyya, A.; Basak, P.; Bhattacharyya, M. Microbial diversity and related secondary metabolite gene assortment at an estuarine mangrove ecosystem. Reg. Stud. Mar. Sci. 2020, 34, 101051. [Google Scholar] [CrossRef]
- Priya, G.; Lau, N.-S.; Furusawa, G.; Dinesh, B.; Foong, S.Y.; Amirul, A.-A.A. Metagenomic insights into the phylogenetic and functional profiles of soil microbiome from a managed mangrove in Malaysia. Agric. Gene 2018, 9, 5–15. [Google Scholar] [CrossRef]
- Rampadarath, S.; Bandhoa, K.; Puchooa, D.; Jeewon, R.; Bal, S. Metatranscriptomics analysis of mangroves habitats around Mauritius. World J. Microbiol. Biotechnol. 2018, 34, 59. [Google Scholar] [CrossRef] [PubMed]
- Huergo, L.F.; Rissi, D.V.; Elias, A.S.; Gonçalves, M.V.; Gernet, M.V.; Barreto, F.; Dahmer, G.W.; Reis, R.A.; Pedrosa, F.O.; Souza, E.M.; et al. Influence of ancient anthropogenic activities on the mangrove soil microbiome. Sci. Total Environ. 2018, 645, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.; Tsai, S. Variations of Bacterial Community Structure and Composition in Mangrove Sediment at Different Depths in Southeastern Brazil. Diversity 2014, 6, 827–843. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, H.F.; Cury, J.C.; do Carmo, F.L.; dos Santos, A.L.; Tiedje, J.; van Elsas, J.D.; Rosado, A.S.; Peixoto, R.S. Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution. PLoS ONE 2011, 6, e16943. [Google Scholar] [CrossRef] [Green Version]
- Dias, A.C.F.; Andreote, F.D.; Rigonato, J.; Fiore, M.F.; Melo, I.S.; Araújo, W.L. The bacterial diversity in a Brazilian non-disturbed mangrove sediment. Antonie Van Leeuwenhoek 2010, 98, 541–551. [Google Scholar] [CrossRef]
- Ikenaga, M.; Guevara, R.; Dean, A.L.; Pisani, C.; Boyer, J.N. Changes in community structure of sediment bacteria along the Florida coastal everglades marsh-mangrove-seagrass salinity gradient. Microb. Ecol. 2010, 59, 284–295. [Google Scholar] [CrossRef]
- Huang, X.; Feng, J.; Dong, J.; Zhang, J.; Yang, Q.; Yu, C.; Wu, M.; Zhang, W.; Ling, J. Spartina alterniflora invasion and mangrove restoration alter diversity and composition of sediment diazotrophic community. Appl. Soil Ecol. 2022, 177, 104519. [Google Scholar] [CrossRef]
- Mai, Z.; Zeng, X.; Wei, X.; Sun, C.; Niu, J.; Yan, W.; Du, J.; Sun, Y.; Cheng, H. Mangrove restoration promotes the anti-scouribility of the sediments by modifying inherent microbial community and extracellular polymeric substance. Sci. Total Environ. 2022, 811, 152369. [Google Scholar] [CrossRef]
- Ma, X.-X.; Jiang, Z.-Y.; Wu, P.; Wang, Y.-F.; Cheng, H.; Wang, Y.-S.; Gu, J.-D. Effect of mangrove restoration on sediment properties and bacterial community. Ecotoxicology 2021, 30, 1672–1679. [Google Scholar] [CrossRef]
- Yu, X.; Yang, X.; Wu, Y.; Peng, Y.; Yang, T.; Xiao, F.; Zhong, Q.; Xu, K.; Shu, L.; He, Q.; et al. Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biol. Biochem. 2020, 144, 107775. [Google Scholar] [CrossRef]
- Yin, Y.; Yan, Z. Variations of soil bacterial diversity and metabolic function with tidal flat elevation gradient in an artificial mangrove wetland. Sci. Total Environ. 2020, 718, 137385. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.W.; Tsai, S.M. Distinct taxonomic and functional composition of soil microbiomes along the gradient forest-restinga-mangrove in southeastern Brazil. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2018, 111, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gui, H.; Zhang, S.; Li, C. Diversity and Potential Function of Prokaryotic and Eukaryotic Communities from Different Mangrove Sediments. Sustainability 2022, 14, 3333. [Google Scholar] [CrossRef]
- Mo, X.; Dong, P.; Xie, L.; Xiu, Y.; Wang, Y.; Wu, B.; Liu, J.; Song, X.; Zhang, M.; Zhang, Z. Effects of Imazapyr on Spartina alterniflora and Soil Bacterial Communities in a Mangrove Wetland. Water 2021, 13, 3277. [Google Scholar] [CrossRef]
- Meng, S.; Peng, T.; Pratush, A.; Huang, T.; Hu, Z. Interactions between heavy metals and bacteria in mangroves. Mar. Pollut. Bull. 2021, 172, 112846. [Google Scholar] [CrossRef]
- Tiralerdpanich, P.; Nasaree, S.; Pinyakong, O.; Sonthiphand, P. Variation of the mangrove sediment microbiomes and their phenanthrene biodegradation rates during the dry and wet seasons. Environ. Pollut. 2021, 289, 117849. [Google Scholar] [CrossRef]
- Isaza, J.P.; Sandoval-Figueredo, V.; Rodelo, M.C.; Muñoz-García, A.; Figueroa-Galvis, I.; Vanegas, J. Metatranscriptomic characterization of the bacterial community of a contaminated mangrove from the Caribbean. Reg. Stud. Mar. Sci. 2021, 44, 101724. [Google Scholar] [CrossRef]
- De Santana, C.O.; Spealman, P.; Melo, V.; Gresham, D.; de Jesus, T.; Oliveira, E.; Chinalia, F.A. Large-scale differences in diversity and functional adaptations of prokaryotic communities from conserved and anthropogenically impacted mangrove sediments in a tropical estuary. PeerJ 2021, 9, e12229. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, J.; Chi, Y.; Yuan, J. Characterization of bacterial communities associated with the exotic and heavy metal tolerant wetland plant Spartina alterniflora. Sci. Rep. 2020, 10, 17985. [Google Scholar] [CrossRef]
- Balu, S.; Bhunia, S.; Gachhui, R.; Mukherjee, J. Assessment of polycyclic aromatic hydrocarbon contamination in the Sundarbans, the world’s largest tidal mangrove forest and indigenous microbial mixed biofilm-based removal of the contaminants. Environ. Pollut. 2020, 266, 115270. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, L.; Zhang, Y.; Liu, H.; Jing, H. Comparative metagenomics study reveals pollution induced changes of microbial genes in mangrove sediments. Sci. Rep. 2019, 9, 5739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Li, J.; Lan, Y.; Liu, S.; Zhou, L.; Luo, Y.; Liu, J.; Wu, Z. Effects of Spartina alterniflora invasion on Kandelia candel rhizospheric bacterial community as determined by high-throughput sequencing analysis. J. Soils Sediments 2019, 19, 332–344. [Google Scholar] [CrossRef]
- Lin, X.; Hetharua, B.; Lin, L.; Xu, H.; Zheng, T.; He, Z.; Tian, Y. Mangrove Sediment Microbiome: Adaptive Microbial Assemblages and Their Routed Biogeochemical Processes in Yunxiao Mangrove National Nature Reserve, China. Microb. Ecol. 2019, 78, 57–69. [Google Scholar] [CrossRef]
- Gao, G.-F.; Li, P.-F.; Zhong, J.-X.; Shen, Z.-J.; Chen, J.; Li, Y.-T.; Isabwe, A.; Zhu, X.-Y.; Ding, Q.-S.; Zhang, S.; et al. Spartina alterniflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrification in mangrove wetland. Sci. Total Environ. 2019, 653, 231–240. [Google Scholar] [CrossRef]
- Zhang, C.J.; Pan, J.; Duan, C.H.; Wang, Y.M.; Liu, Y.; Sun, J.; Zhou, H.C.; Song, X.; Li, M. Prokaryotic Diversity in Mangrove Sediments across Southeastern China Fundamentally Differs from That in Other Biomes. mSystems 2019, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Li, R.; Wu, S.; Xie, S. The distribution of sediment bacterial community in mangroves across China was governed by geographic location and eutrophication. Mar. Pollut. Bull. 2019, 140, 198–203. [Google Scholar] [CrossRef]
- Cotta, S.R.; Cadete, L.L.; van Elsas, J.D.; Andreote, F.D.; Dias, A.C.F. Exploring bacterial functionality in mangrove sediments and its capability to overcome anthropogenic activity. Mar. Pollut. Bull. 2019, 141, 586–594. [Google Scholar] [CrossRef]
- Machado, L.F.; de Assis Leite, D.C.; Coelho da Costa Rachid, C.T.; Paes, J.E.; Martins, E.F.; Peixoto, R.S.; Rosado, A.S. Tracking Mangrove Oil Bioremediation Approaches and Bacterial Diversity at Different Depths in an in situ Mesocosms System. Front. Microbiol. 2019, 10, 2107. [Google Scholar] [CrossRef] [Green Version]
- Torres, G.G.; Figueroa-Galvis, I.; Muñoz-García, A.; Polanía, J.; Vanegas, J. Potential bacterial bioindicators of urban pollution in mangroves. Environ. Pollut. 2019, 255, 113293. [Google Scholar] [CrossRef]
- Cheung, M.K.; Wong, C.K.; Chu, K.H.; Kwan, H.S. Community Structure, Dynamics and Interactions of Bacteria, Archaea and Fungi in Subtropical Coastal Wetland Sediments. Sci. Rep. 2018, 8, 14397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, B.X.; Ren, H.; Zhang, J. Composition and functional diversity of microbial community across a mangrove-inhabited mudflat as revealed by 16S rDNA gene sequences. Sci. Total Environ. 2018, 633, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Haldar, S.; Nazareth, S.W. Taxonomic diversity of bacteria from mangrove sediments of Goa: Metagenomic and functional analysis. 3 Biotech 2018, 8, 436. [Google Scholar] [CrossRef] [PubMed]
- Tiralerdpanich, P.; Sonthiphand, P.; Luepromchai, E.; Pinyakong, O.; Pokethitiyook, P. Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis. Mar. Pollut. Bull. 2018, 133, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Deng, Y.; Zhang, H. Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island. Appl. Microbiol. Biotechnol. 2017, 101, 6241–6252. [Google Scholar] [CrossRef]
- Zhou, Z.; Meng, H.; Liu, Y.; Gu, J.-D.; Li, M. Stratified Bacterial and Archaeal Community in Mangrove and Intertidal Wetland Mudflats Revealed by High Throughput 16S rRNA Gene Sequencing. Front. Microbiol. 2017, 8, 2148. [Google Scholar] [CrossRef]
- Ullah, R.; Yasir, M.; Khan, I.; Bibi, F.; Sohrab, S.S.; Al-Ansari, A.; Al-Abbasi, F.; Al-Sofyani, A.A.; Daur, I.; Lee, S.W.; et al. Comparative bacterial community analysis in relatively pristine and anthropogenically influenced mangrove ecosystems on the Red Sea. Can. J. Microbiol. 2017, 63, 649–660. [Google Scholar] [CrossRef]
- Kaestli, M.; Skillington, A.; Kennedy, K.; Majid, M.; Williams, D.; McGuinness, K.; Munksgaard, N.; Gibb, K. Spatial and Temporal Microbial Patterns in a Tropical Macrotidal Estuary Subject to Urbanization. Front. Microbiol. 2017, 8, 1313. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Ma, B.; Yu, J.; Chang, S.X.; Xu, J.; Li, Y.; Wang, G.; Han, G.; Bo, G.; Chu, X. Bacterial community structure and function shift along a successional series of tidal flats in the Yellow River Delta. Sci. Rep. 2016, 6, 36550. [Google Scholar] [CrossRef]
- Jing, H.; Xia, X.; Liu, H.; Zhou, Z.; Wu, C.; Nagarajan, S. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing. Front. Microbiol. 2015, 6, 1172. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sheng, H.-F.; He, Y.; Wu, J.-Y.; Jiang, Y.-X.; Tam, N.F.-Y.; Zhou, H.-W. Comparison of the Levels of Bacterial Diversity in Freshwater, Intertidal Wetland, and Marine Sediments by Using Millions of Illumina Tags. Appl. Environ. Microbiol. 2012, 78, 8264–8271. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.C.F.; Silva, M.d.C.P.e.; Cotta, S.R.; Dini-Andreote, F.; Soares, F.L.; Salles, J.F.; Azevedo, J.L.; Elsas, J.D.v.; Andreote, F.D. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments. Appl. Environ. Microbiol. 2012, 78, 7960–7967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.; Dey, N.; Bera, A.; Tiwari, A.; Sathyaniranjan, K.B.; Chakrabarti, K.; Chattopadhyay, D. Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline Syst. 2010, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taketani, R.G.; Franco, N.O.; Rosado, A.S.; van Elsas, J.D. Microbial community response to a simulated hydrocarbon spill in mangrove sediments. J. Microbiol. 2010, 48, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.R.; Vallaire, S.C. Effects of salinity and nutrients on microbial assemblages in Louisiana wetland sediments. Wetlands 2009, 29, 277–287. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Kou, Y.; Wang, J.; Tu, B.; Li, H.; Li, X.; Wang, C.; Yao, M. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biol. Biochem. 2017, 115, 547–555. [Google Scholar] [CrossRef]
- Zhang, L.-M.; Hu, H.-W.; Shen, J.-P.; He, J.-Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 2012, 6, 1032–1045. [Google Scholar] [CrossRef] [Green Version]
- Nicol, G.W.; Leininger, S.; Schleper, C.; Prosser, J.I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 2008, 10, 2966–2978. [Google Scholar] [CrossRef]
- Barcellos, D.; Queiroz, H.M.; Nóbrega, G.N.; de Oliveira Filho, R.L.; Santaella, S.T.; Otero, X.L.; Ferreira, T.O. Phosphorus enriched effluents increase eutrophication risks for mangrove systems in northeastern Brazil. Mar. Pollut. Bull. 2019, 142, 58–63. [Google Scholar] [CrossRef]
- Bala Krishna Prasad, M. Nutrient stoichiometry and eutrophication in Indian mangroves. Environ. Earth Sci. 2012, 67, 293–299. [Google Scholar] [CrossRef]
- Alongi, D.; Ramanathan, A.; Kannan, L.; Tirendi, F.; Trott, L.; Bala Krishna Prasad, M. Influence of human-induced disturbance on benthic microbial metabolism in the Pichavaram mangroves, Vellar–Coleroon estuarine complex, India. Mar. Biol. 2005, 147, 1033–1044. [Google Scholar] [CrossRef]
- Sarkar, S.; Bhattacharya, B.; Debnath, S.; Bandopadhaya, G.; Giri, S. Heavy metals in biota from Sundarban Wetland Ecosystem, India: Implications to monitoring and environmental assessment. Aquat. Ecosyst. Health Manag. 2002, 5, 467–472. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beman, J.M.; Chow, C.-E.; King, A.L.; Feng, Y.; Fuhrman, J.A.; Andersson, A.; Bates, N.R.; Popp, B.N.; Hutchins, D.A. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc. Natl. Acad. Sci. USA 2011, 108, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, B.; Patil, P.; Antony, L.; Avunje, S.; Nagaraju, V.T.; Ghate, S.; Nathamuni, S.; Dineshkumar, N.; Alavandi, S.; Vijayan, K. Microbial community profiling of ammonia and nitrite oxidizing bacterial enrichments from brackishwater ecosystems for mitigating nitrogen species. Sci. Rep. 2020, 10, 5201. [Google Scholar] [CrossRef] [Green Version]
- Leininger, S.; Urich, T.; Schloter, M.; Schwark, L.; Qi, J.; Nicol, G.W.; Prosser, J.I.; Schuster, S.C.; Schleper, C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 2006, 442, 806–809. [Google Scholar] [CrossRef]
- Dominguez, D.C. Calcium signalling in bacteria. Mol. Microbiol. 2004, 54, 291–297. [Google Scholar] [CrossRef]
- Ye, G.; Zhang, X.; Yan, C.; Lin, Y.; Huang, Q. Polystyrene microplastics induce microbial dysbiosis and dysfunction in surrounding seawater. Environ. Int. 2021, 156, 106724. [Google Scholar] [CrossRef]
- Chen, M.-M.; Nie, F.-H.; Qamar, A.; Zhu, D.-h.; Hu, Y.; Zhang, M.; Song, Q.-L.; Lin, H.-Y.; Chen, Z.-B.; Liu, S.-Q.; et al. Effects of Microplastics on Microbial Community in Zhanjiang Mangrove Sediments. Bull. Environ. Contam. Toxicol. 2022, 108, 867–877. [Google Scholar] [CrossRef]
- Xie, H.; Chen, J.; Feng, L.; He, L.; Zhou, C.; Hong, P.; Sun, S.; Zhao, H.; Liang, Y.; Ren, L.; et al. Chemotaxis-selective colonization of mangrove rhizosphere microbes on nine different microplastics. Sci. Total Environ. 2021, 752, 142223. [Google Scholar] [CrossRef]
- Basak, P.; Pramanik, A.; Sengupta, S.; Nag, S.; Bhattacharyya, A.; Roy, D.; Pattanayak, R.; Ghosh, A.; Chattopadhyay, D.; Bhattacharyya, M. Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing. Genom Data 2016, 7, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, H.; Bao, S.; Tong, Y. Microbial community structure of soils in Bamenwan mangrove wetland. Sci. Rep. 2019, 9, 8406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Cadena, J.C.; Ruíz-Fernández, P.S.; Fernández-Ronquillo, T.E.; Díez, B.; Trefault, N.; Andrade, S.; De la Iglesia, R. Detection of sentinel bacteria in mangrove sediments contaminated with heavy metals. Mar. Pollut. Bull. 2020, 150, 110701. [Google Scholar] [CrossRef] [PubMed]
- Santana, C.; Spealman, P.; Melo, V.; Gresham, D.; Bomfim de Jesus, T.; Chinalia, F. Effects of tidal influence on the structure and function of prokaryotic communities in the sediments of a pristine Brazilian mangrove. Biogeosciences 2021, 18, 2259–2273. [Google Scholar] [CrossRef]
- Liao, S.; Wang, Y.; Liu, H.; Fan, G.; Sahu, S.K.; Jin, T.; Chen, J.; Zhang, P.; Gram, L.; Strube, M.; et al. Deciphering the Microbial Taxonomy and Functionality of Two Diverse Mangrove Ecosystems and Their Potential Abilities to Produce Bioactive Compounds. mSystems 2020, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.N.; Sharma, D.; Gulati, S.; Singh, S.; Dey, R.; Pal, K.K.; Kaushik, R.; Saxena, A.K. Haloarchaea Endowed with Phosphorus Solubilization Attribute Implicated in Phosphorus Cycle. Sci. Rep. 2015, 5, 12293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, W.; Wang, S.; Dong, H.; Jiang, H.; Briggs, B.R.; Peacock, J.P.; Huang, Q.; Huang, L.; Wu, G.; Zhi, X.; et al. A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing. PLoS ONE 2013, 8, e53350. [Google Scholar] [CrossRef]
- Fernandes, S.O.; Kirchman, D.L.; Michotey, V.D.; Bonin, P.C.; LokaBharathi, P.A. Bacterial diversity in relatively pristine and anthropogenically-influenced mangrove ecosystems (Goa, India). Braz. J. Microbiol. 2014, 45, 1161–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tláskal, V.; Baldrian, P. Deadwood-Inhabiting Bacteria Show Adaptations to Changing Carbon and Nitrogen Availability during Decomposition. Front. Microbiol. 2021, 12, 685303. [Google Scholar] [CrossRef]
- Mujakić, I.; Piwosz, K.; Koblížek, M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022, 10, 151. [Google Scholar] [CrossRef]
- Duarte, C.M.; Agusti, S.; Barbier, E.; Britten, G.L.; Castilla, J.C.; Gattuso, J.-P.; Fulweiler, R.W.; Hughes, T.P.; Knowlton, N.; Lovelock, C.E.; et al. Rebuilding marine life. Nature 2020, 580, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Ellison, A. Mangrove Restoration: Do We Know Enough? Restor. Ecol. 2000, 8, 219–229. [Google Scholar] [CrossRef]
- Lewis, R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- Selvam, V.; Thamizoli, P. Science-Based and Community-Centred Approach to Restore and Sustain Mangrove Wetlands of India. Curr. Sci. 2022, 121, 1288. [Google Scholar] [CrossRef]
- Booth, J.M.; Fusi, M.; Marasco, R.; Mbobo, T.; Daffonchio, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 2019, 9, 3749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef] [Green Version]
- Padhy, S.R.; Bhattacharyya, P.; Dash, P.K.; Reddy, C.S.; Chakraborty, A.; Pathak, H. Seasonal fluctuation in three mode of greenhouse gases emission in relation to soil labile carbon pools in degraded mangrove, Sundarban, India. Sci. Total Environ. 2020, 705, 135909. [Google Scholar] [CrossRef]
- Das, N.; Mondal, A.; Mandal, S. Polluted waters of the reclaimed islands of Indian Sundarban promote more greenhouse gas emissions from mangrove ecosystem. Stoch. Environ. Res. Risk Assess. 2022, 36, 1277–1288. [Google Scholar] [CrossRef]
- Thomson, T.; Fusi, M.; Bennett-Smith, M.F.; Prinz, N.; Aylagas, E.; Carvalho, S.; Lovelock, C.E.; Jones, B.H.; Ellis, J.I. Contrasting Effects of Local Environmental and Biogeographic Factors on the Composition and Structure of Bacterial Communities in Arid Monospecific Mangrove Soils. Microbiol. Spectr. 2022, 10, e0090321. [Google Scholar] [CrossRef]
- Holguin, G.; Vazquez, P.; Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 2001, 33, 265–278. [Google Scholar] [CrossRef]
- Meng, S.; Peng, T.; Liu, X.; Wang, H.; Huang, T.; Gu, J.-D.; Hu, Z.; Suen, G. Ecological Role of Bacteria Involved in the Biogeochemical Cycles of Mangroves Based on Functional Genes Detected through GeoChip 5.0. mSphere 2022, 7, e00936-21. [Google Scholar] [CrossRef] [PubMed]
- Kruse, T.; Ratnadevi, C.M.; Erikstad, H.-A.; Birkeland, N.-K. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph “Candidatus Methylacidiphilum kamchatkense” strain Kam1 and comparison with its closest relatives. BMC Genom. 2019, 20, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, R.S.; Hanson, T.E. Methanotrophic bacteria. Microbiol. Rev. 1996, 60, 439–471. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Matsen, J.B.; Konopka, M.; Green-Saxena, A.; Clubb, J.; Sadilek, M.; Orphan, V.J.; Beck, D.; Kalyuzhnaya, M.G. Global molecular analyses of methane metabolism in methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front. Microbiol. 2013, 4, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dar, S.A.; Kleerebezem, R.; Stams, A.J.; Kuenen, J.G.; Muyzer, G. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl. Microbiol. Biotechnol. 2008, 78, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Cruz, S.; Vaksmaa, A.; Horn, M.A.; Niemann, H.; Pijuan, M.; Ho, A. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front. Microbiol. 2021, 12, 678057. [Google Scholar] [CrossRef] [PubMed]
- Feller, I.; Whigham, D.; McKee, K.; Lovelock, C. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia 2003, 134, 405–414. [Google Scholar] [CrossRef]
- Naidoo, G. Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves. Aquat. Bot. 2009, 90, 184–190. [Google Scholar] [CrossRef]
- Alfaro-Espinoza, G.; Ullrich, M.S. Bacterial N2-fixation in mangrove ecosystems: Insights from a diazotroph–mangrove interaction. Front. Microbiol. 2015, 6, 445. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, Q.; Ling, J.; Van Nostrand, J.D.; Shi, Z.; Zhou, J.; Dong, J. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing. Front. Microbiol. 2017, 8, 2032. [Google Scholar] [CrossRef]
- Gantar, M.; Rowell, P.; Kerby, N.W.; Sutherland, I.W. Role of extracellular polysaccharide in the colonization of wheat (Triticum vulgare L.) roots by N2-fixing cyanobacteria. Biol. Fertil. Soils 1995, 19, 41–48. [Google Scholar] [CrossRef]
- Behera, B.; Mishra, R.; Dutta, S.; Thatoi, H. Sulphur oxidising bacteria in mangrove ecosystem: A review. Afr. J. Biotechnol. 2014, 13, 2897–2907. [Google Scholar]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming our world: The 2030 Agenda for Sustainable Development. Treaty Ser. 2015, 1771, 1–35. [Google Scholar]
- Wu, P.; Xiong, X.; Xu, Z.; Lu, C.; Cheng, H.; Lyu, X.; Zhang, J.; He, W.; Deng, W.; Lyu, Y.; et al. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China. PLoS ONE 2016, 11, e0164082. [Google Scholar] [CrossRef]
Search Terms |
---|
microb* OR bacteria* OR fung* OR prokaryot* |
diversity OR structure OR assemblage |
mangrove |
regenerat* OR pristine OR disturb* OR restor* OR degradat* |
Well-Preserved | Disturbed | Sampling Criteria | References | ||||
---|---|---|---|---|---|---|---|
Shannon | Chao1 | Shannon | Chao1 | Cores Collected per Plot | Total Cores | Sediment Sample Depth | |
- | 16,439.80 | - | 12,172.76 | 3 | 6 | 2 cm | [113] |
5.83 | - | 5.69 | - | 3 | 18 | 10 to 30 cm | [110] |
2.9 | - | 2.85 | - | 3 | 12 | 30 cm | [108] |
5.81 | 7645.06 | 7.58 | 11,710.45 | - | - | - | [130] |
10.8 | 8905.00 | 11.1 | 10,662.00 | 3 | 45 | 15 cm | [115] |
7.4 | - | 9.9 | - | 3 | 18 | 10 cm | [99] |
394.4 | 326.20 | 417.53 | 223.27 | 2 | 10 | 10 cm | [124] |
- | - | - | - | 2 | 39 | - | [132] |
- | - | - | - | 3 | 15 | 15 cm | [117] |
Sampling Site | Condition Categorized | TS | References |
---|---|---|---|
Mai Po Wetland, Hong Kong, China | Disturbed | 0.59% to 0.86% | [98] |
Yunxiao Zhangjiangkou Nature Reserve, Fujian, China | Disturbed | 4.27 g/kg | [91] |
Coastal Zones of China | Disturbed | 0.19% to 1.33% | [94] |
Mangalavanam, India | Disturbed | 0.26% to 0.04% | [56] |
Rantau Abang, Terengganu, Malaysia | Disturbed | 1.374 g/kg | [31] |
Valle de Los Cangrejos, La Guajira, Colombia | Disturbed | 0.523 to 0.849 g/kg | [85] |
La Guajira, Colombia | Disturbed | 0.803 to 0.324 g/kg | [97] |
Bertioga, Sao Paulo State, Brazil | Disturbed | 0.17% to 0.34% | [95] |
Bertioga, Sao Paulo State, Brazil | Disturbed | 0.13% to 0.45% | [109] |
Quanzhou bay, Fujian, China | Restored | 1.59 to 4.09 g/kg | [75] |
Quanzhou bay, Fujian, China | Restored | 1.59 to 6.08 g/kg | [58] |
Matang Virgin Jungle Forest, Perak, Malaysia | Well Preserved | 3.64 to 3.84 g/kg | [68] |
Saint Vincent Bay, New Caledonia | Well Preserved | 0.72% to 0.99% | [60] |
Saint Vincent Bay, New Caledonia | Well Preserved | 0.21% to 0.23% | [60] [73] |
Ilha do Cardoso, Sao Paulo, Brazil | Well Preserved | 0.14% to 0.19% | |
Estuary of Cananéia, São Paulo, Brazil | Well Preserved | 0.1% to 0.2% | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, J.; Cheah, W.; Palaniveloo, K.; Suwa, R.; Sharma, S. A Systematic Review of the Physicochemical and Microbial Diversity of Well-Preserved, Restored, and Disturbed Mangrove Forests: What Is Known and What Is the Way Forward? Forests 2022, 13, 2160. https://doi.org/10.3390/f13122160
Lai J, Cheah W, Palaniveloo K, Suwa R, Sharma S. A Systematic Review of the Physicochemical and Microbial Diversity of Well-Preserved, Restored, and Disturbed Mangrove Forests: What Is Known and What Is the Way Forward? Forests. 2022; 13(12):2160. https://doi.org/10.3390/f13122160
Chicago/Turabian StyleLai, Jiayong, Wee Cheah, Kishneth Palaniveloo, Rempei Suwa, and Sahadev Sharma. 2022. "A Systematic Review of the Physicochemical and Microbial Diversity of Well-Preserved, Restored, and Disturbed Mangrove Forests: What Is Known and What Is the Way Forward?" Forests 13, no. 12: 2160. https://doi.org/10.3390/f13122160
APA StyleLai, J., Cheah, W., Palaniveloo, K., Suwa, R., & Sharma, S. (2022). A Systematic Review of the Physicochemical and Microbial Diversity of Well-Preserved, Restored, and Disturbed Mangrove Forests: What Is Known and What Is the Way Forward? Forests, 13(12), 2160. https://doi.org/10.3390/f13122160