Financial Analysis of Potential Carbon Value over 14 Years of Forest Restoration by the Framework Species Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Forest Restoration Method
2.2. Carbon Accumulation in Trees and Soil
2.3. Financial Modeling
3. Results
3.1. Tree- and Soil-Carbon Value
3.2. Restoration Costs
3.3. Financial Modeling
3.4. Comparison with Maize Farming
4. Discussion
4.1. Carbon
4.2. Costs and Revenue
4.3. Comparison with Maize Farming
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Sacco, A.; Hardwick, K.A.; Blakesley, D.; Brancalion, P.H.S.; Breman, E.; Cecilio Rebola, L.; Chomba, S.; Dixon, K.; Elliott, S.; Ruyonga, G.; et al. Ten guidelines for tree planting initiatives to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Chang. Biol. 2021, 27, 1328–1348. [Google Scholar] [CrossRef]
- Mitchard, E.T.A. The tropical forest carbon cycle and climate change. Nature 2018, 559, 527–534. [Google Scholar] [CrossRef]
- Seymour, F.; Busch, J. Why Forests? Why Now? The Science, Economics, and Politics of Tropical Forests and Climate Change; Centre for Global Development: Washington, DC, USA, 2016; p. 140. [Google Scholar]
- United Nations. Report of the Conference of the Parties on Its Thirteenth Session. 2007. Available online: www.unfccc.int/resource/docs/2007/cop13/eng/06a01.pdf (accessed on 24 August 2020).
- IUCN. Restore Our Future: The Bonn Challenge. 2020. Available online: https://www.bonnchallenge.org/ (accessed on 7 September 2020).
- Lewis, S.L.; Wheeler, C.E.; Mitchard, E.T.A.; Koch, A. Regenerate natural forests to store carbon. Nature 2019, 568, 25–28. [Google Scholar] [CrossRef]
- Hamrick, K.; Gallant, M. State of the Voluntary Carbon Markets 2017: Unlocking Potential; Ecosystem Marketplace: Washington, DC, USA, 2017. [Google Scholar]
- World Bank. Pricing Carbon: What is Carbon Pricing? Available online: https://www.worldbank.org/en/programs/pricing-carbon (accessed on 7 September 2020).
- European Union. EU ETS Handbook. Available online: https://ec.europa.eu/clima/sites/clima/files/docs/ets_handbook_en.pdf (accessed on 24 August 2020).
- Kawasaki, J.; Pagdee, A.; Silalertruksa, T.; Waijaroen, D.; Iamittipon, S.; Phumee, P. Developing REDD+ Strategies in Thailand: A Case Study of Drivers of Deforestation, Forest Degradation and Possible Countermeasures in the Phu Wiang National Park (PWNP) Area, Khon Kaen Province; Commissioned Report; Institute for Global Environmental Strategies: Hayama, Kanagawa, 2015; Available online: https://iges.or.jp/en/pub/developing-redd-strategies-thailand-case-study (accessed on 24 August 2020).
- United Nations. Report of the Conference of the Parties on Its Sixteenth Session. 2010. Available online: http://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf (accessed on 24 August 2020).
- Barlow, J.; Gardner, T.; Araujo, I.; Avila-Pires, T.; Bonaldo, A.; Costa, J.; Esposito, M.; Ferreira, L.; Hawes, J.; Hernández, M.; et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. USA 2007, 104, 18555–18560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, D. Large-Scale Forest Restoration; Routledge: Abingdon, Oxford, UK, 2014. [Google Scholar] [CrossRef]
- Elliott, S.; Blakesley, D.; Hardwick, K. Restoring Tropical Forests: A Practical Guide; Royal Botanic Gardens: Kew, UK, 2013. [Google Scholar]
- Jantawong, K.; Elliott, S.; Wangpakapattanawong, P. Above-ground carbon sequestration during restoration of upland evergreen forest in northern Thailand. Open J. For. 2017, 7, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Bridhikitti, A. Soil and biomass carbon stocks in forest and agricultural lands in tropical climates. Songklanakarin J. Sci. Technol. 2017, 39, 697–707. [Google Scholar] [CrossRef]
- Kavinchan, N.; Wangpakapattanawong, P.; Elliott, S.; Pinthong, J. Soil organic carbon stock in restored and natural forests in northern Thailand. Asia Pac. J. Sci. Technol. 2015, 20, 294–304. [Google Scholar] [CrossRef]
- Kavinchan, N.; Wangpakapattanawong, P.; Elliott, S.; Chairuangsri, S.; Pinthong, J. Use of the framework species method to restore carbon flow via litterfall and decomposition in an evergreen tropical forest ecosystem, northern Thailand. Kasetsart J. (Nat. Sci.) 2015, 49, 639–650. [Google Scholar]
- Elliott, S.; Navakitbumrung, P.; Kuaraka, C.; Zangkuma, S.; Anusarnsunthorn, V.; Blakesley, D. Selecting framework tree species for restoring seasonally dry tropical forests in northern Thailand based on field performance. For. Ecol. Manag. 2003, 184, 177–191. [Google Scholar] [CrossRef]
- Elliott, S.; Chairuangsri, S.; Kuaraksa, C.; Sangkum, S.; Sinhaseni, K.; Shannon, D.; Nippanon, P.; Manohan, B. Collaboration and conflict: Developing Forest restoration techniques for northern Thailand’s upper watersheds whilst meeting the needs of science and communities. Forests 2019, 10, 732. [Google Scholar] [CrossRef] [Green Version]
- Goosem, S.P.; Tucker, N.I.J. Repairing the Rainforest: Theory and Practice of Rainforest Re-Establishment in North Queensland’s Wet Tropics; Wet Tropics Management Authority: Cairns, Australia, 1995. [Google Scholar]
- Snowdon, P.; Raison, J.; Keith, H.; Ritson, P.; Grierson, P.; Adams, M.; Montagu, K.; Bi, H.; Burrows, W.; Eamus, D. National Carbon Accounting System: Protocol for Sampling Tree and Stand Biomass; Technical Report No. 31; Commonwealth of Australia: Sydney, Australia, 2002. [Google Scholar]
- Royal Society of Chemistry. AMC Technical Briefs: CHNS Elemental Analyzers. AMCTB No. 29; ISSN 1757-5958. Available online: https://www.rsc.org/images/CHNS-elemental-analysers-technical-brief-29_tcm18-214833.pdf (accessed on 24 August 2020).
- IPCC. Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil. Sci. 1934, 63, 251–263. [Google Scholar] [CrossRef]
- Perie, C.; Ouimet, R. Organic carbon, organic matter and bulk density relationships in bored forest soils. Can. J. Soil Sci. 2008, 88, 315–325. [Google Scholar] [CrossRef]
- Weerakkody, J.; Parkinson, D. Input, accumulation and turnover of organic matter, nitrogen and phosphorus in surface organic layers of an upper montane rainforest in Sri Lanka. Pedobiologia (Jena) 2006, 50, 377–383. [Google Scholar] [CrossRef]
- BAAC. Credit Services. Available online: https://www.baac.or.th/en/content-product.php?content_group_sub=2 (accessed on 20 August 2021).
- BAAC. Loan Interest Rates. Available online: https://www.baac.or.th/th/content-rate.php?content_group=9&content%20_group_sub=2&inside=1 (accessed on 20 August 2021).
- EMBER. EU ETS Data: Carbon Price Viewer. Available online: https://ember-climate.org/data/carbon-price-viewer/ (accessed on 5 August 2021).
- European Central Bank. Euro Foreign Exchange Reference Rates: US Dollar (USD). Available online: https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchangerat (accessed on 5 August 2021).
- Trading Economics. Available online: https://tradingeconomics.com/thailand/deposit-interest-rate (accessed on 5 August 2021).
- Office of Agricultural Economics. Agricultural Economic Information: Maize (Published in Thai Language). Available online: http://www.oae.go.th/view/1/Information/EN-US (accessed on 5 August 2021).
- Bank of Thailand. Daily Foreign Exchange Rates: US Dollars. Available online: https://www.bot.or.th/English/Statistics/FinancialMarkets/ExchangeRate/_layouts/Application/ExchangeRate/ExchangeRate.aspx (accessed on 7 September 2020).
- Silver, W.L.; Ostertag, R.; Lugo, A.E. The Potential for Carbon Sequestration through Reforestation of Abandoned Tropical Agricultural and Pasture Lands. Restor. Ecol. 2000, 8, 394–407. [Google Scholar] [CrossRef]
- Jha, N.; Tripathi, N.K.; Chanthorn, W.; Brockelman, W.; Nathalang, A.; Pélissier, R.; Pimmasarn, S.; Ploton, P.; Sasaki, N.; Virdis, S.G.P.; et al. Forest aboveground biomass stock and resilience in a tropical landscape of Thailand. Biogeosciences 2020, 17, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Chayaporn, P.; Sasaki, N.; Venkatappa, M.; Issei, A. Assessment of the overall carbon storage in a teak plantation in Kanchanaburi province, Thailand—Implications for carbon-based incentives. Clean. Environ. Syst. 2021, 2, 100023. [Google Scholar] [CrossRef]
- West, P.W. Do increasing respiratory costs explain the decline with age of forest growth rate? J. For. Res. 2020, 31, 693–712. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Lugo, A. Tropical Secondary Forest. J. Trop. Ecol. 1990, 6, 1–32. [Google Scholar] [CrossRef]
- Scharlemann, J.; Tanner, E.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Crouzeilles, R.; Beyer, H.; Monteiro, L.; Feltran-Barbieri, R.; Moreira Pessôa, A.; Barros, F.; Lindenmayer, D.; Lino, E.; Grelle, C.; Chazdon, R.; et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 2020, 13, e12709. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Masera, O.; Andrasko, K.; Benitez-Ponce, P.; Boer, R.; Dutschke, M.; Elsiddig, E.; Ford-Robertson, J.; Frumhoff, P.; Karjalainen, T.; et al. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Deerai, J. The Cost for Thailand of Joining the United Nations Collaborative Program on Reducing Emissions from Deforestation and Forest Degradation (REDD). Ph.D. Thesis, Thammasat University, Bangkok, Thailand, 2011. [Google Scholar]
- Cacho, O.J.; Lipper, L.; Moss, J. Transaction costs of carbon offset projects: A comparative study. Ecol. Econ. 2013, 88, 232–243. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.; Sohngen, B.; Henman, J.; Ohrel, S. Transaction costs for carbon sequestration projects in the tropical forest sector. Mitig. Adapt Strateg. Glob. Chang. 2014, 19, 1209–1222. [Google Scholar] [CrossRef] [Green Version]
- Danielsen, F.; Adrian, T.; Brofeldt, S.; Van Noordwijk, M.; Poulsen, M.K.; Rahayu, S.; Rutishauser, E.; Theilade, I.; Widayati, A.; Ngo, T.A.; et al. Community Monitoring for REDD+: International Promises and Field Realities. Ecol. Soc. 2013, 18, 41. [Google Scholar] [CrossRef] [Green Version]
- Boissiere, M.; Herold, M.; Atmadja, S.; Sheil, D. The feasibility of local participation in Measuring, Reporting and Verification (PMRV) for REDD+. PLoS ONE 2017, 12, e0176897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wangpakapattanawong, P.; Kavinchan, N.; Vaidhayakarn, C.; Schmidt-Vogt, D.; Elliott, S. Fallow to forest: Applying indigenous and scientific knowledge of swidden cultivation to tropical forest restoration. For. Ecol. Manag. 2010, 260, 1399–1406. [Google Scholar] [CrossRef]
- Shang, X.; Chazette, P. Interest of a full-waveform flown UV lidar to derive forest vertical structures and aboveground carbon. Forests 2014, 5, 1454–1480. [Google Scholar] [CrossRef] [Green Version]
- Mutwiri, F.K.; Odera, P.A.; Kinyanjui, M.J. Estimation of tree height and forest biomass using airborne lidar data: A case study of Londiani forest block in the Mau complex, Kenya. Open J. For. 2017, 7, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Almeida, D.; Broadbent, E.; Almeyda, A.Z.; Wilkinson, B.; Ferreira, M.; Chazdon, R.; Meli, P.; Gorgens, E.; Silva, C.; Stark, S.; et al. Monitoring the structure of forest restoration plantations with a drone-lidar system. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 192–198. [Google Scholar] [CrossRef]
- Paneque-Gálvez, J.; Mccall, M.K.; Napoletano, B.M.; Wich, S.A.; Koh, L.P. Small Drones for Community-Based Forest Monitoring: An Assessment of Their Feasibility and Potential in Tropical Areas. Forests 2014, 5, 1481–1507. [Google Scholar] [CrossRef] [Green Version]
- RECOFTC. Trees Are Loan Collateral: Valuation Methodology for Smallholder Teak Plantations; Working Paper; RECOFTC—The Center for People and Forests: Bangkok, Thailand, 2015. [Google Scholar]
- Ekasingh, B.; Gypmantasiri, P.; Thong-ngam, K.; Grudloyma, P. Maize in Thailand: Production Systems, Constraints, and Research Priorities; CIMMYT: El Batan, Mexico, 2004; 35p. [Google Scholar] [CrossRef]
- Carter, A. Chiang Mai’s Air Pollution Sends over 30,000 to Hospital, Ranked Worst in World Today. Available online: https://thethaiger.com/hot-news/pollution/chiang-mais-air-pollution-sends-over-30000-to-hospital-ranked-worst-in-world-today (accessed on 15 March 2021).
- Johnston, H.J.; Mueller, W.; Steinle, S.; Vardoulakis, S.; Tantrakarnapa, K.; Loh, M.; Cherrie, J.W. How harmful is particulate matter emitted from biomass burning? A Thailand perspective. Curr. Pollut. Rep. 2019, 5, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, R.; Butchart, S.; Fisher, B.; Hughes, F.; Ingwall King, L.; MacDonald, M.; Merriman, J.; Peh, K.; Anne-Sophie, P.; Thomas, D.; et al. The economic consequences of conserving or restoring sites for nature. Nat. Sustain. 2021, 4, 602–608. [Google Scholar] [CrossRef]
- Elliott, S.; Chairuangsri, S.; Shannon, D.; Nippanon, P.; Amphon, R. Where science meets communities: Developing Forest restoration approaches for northern Thailand. Nat. Hist. Bull. Siam Soc. 2018, 63, 11–26. [Google Scholar]
- IEA. Putting a Price on Carbon—An Efficient Way for Thailand to Meet Its Bold Emission Target. Available online: https://www.iea.org/articles/putting-a-price-on-carbon-an-efficient-way-for-thailand-to-meet-its-bold-emission-target (accessed on 19 March 2021).
- Office of Natural Resources and Environmental Policy and Planning. Thailand’s Biennial Update Report: BUR 3 Submitted to UNFCCC. Available online: https://unfccc.int/documents/181765 (accessed on 19 March 2021).
- TGO. The Greenhouse Gas Reduction Projects: Forestry Sector. Available online: http://www.tgo.or.th/ (accessed on 14 September 2021).
No. | Species | Successional Status | Leafing |
---|---|---|---|
1 | Bischofia javanica | Pioneer | Deciduous |
2 | Erythrina subumbrans | Pioneer | Deciduous |
3 | Gmelina arborea | Pioneer | Deciduous |
4 | Heynea trijuga | Climax | Semi-deciduous |
5 | Hovenia dulcis | Climax | Deciduous |
6 | Melia toosendan | Pioneer | Deciduous |
7 | Nyssa javanica | Pioneer | Evergreen/ semi-deciduous |
8 | Prunus cerasoides | Pioneer | Deciduous |
9 | Sapindus rarak | Climax | Deciduous |
10 | Sarcosperma arboreum | Climax | Evergreen |
11 | Spondias axillaris | Pioneer | Deciduous |
Forest Age (Since Start of Restoration) | Tree Carbon Stock 1 | Increment | Increment Potential Cash Value 2 |
---|---|---|---|
(Year) | (tC/ha) | (tC/ha) | (USD) |
0 | 1.73 | - | - |
5 | 18.04 | 16.31 | 3950.39 |
10 | 60.75 | 42.71 | 10,344.65 |
14 | 144.81 | 84.06 | 20,359.90 |
Total (0–14 Y) | 143.08 | 34,654.95 |
Year Plots Planted> | 2007 | 2002 | 1998 | |||
---|---|---|---|---|---|---|
Plot age (years since restoration initiated) | 2 | 10 | 7 | 15 | 11 | 19 |
Kavinchan et al. (2015a) (tC/ha)—down to 2 m depth (in 2009) | 254.40 | 251.14 | 161.82 | |||
This study (tC/ha)—0–50 cm depth extrapolated down to 2 m using Kavinchan et al. [17] equations (in 2017) | 261.77 | 255.75 | 170.39 | |||
Soil-carbon accumulation over 8 years (tC/ha) (measured) | 7.37 | 4.61 | 8.57 | |||
Average annual soil-carbon increase (measured) (tC/ha/year) | 0.92 | 0.58 | 1.07 | |||
Litter-carbon accumulation over 8 years (modeled) | 1.11 | 3.84 | 10.73 | |||
Average annual litter-carbon increase (measured) (tC/ha/year) | 0.14 | 0.48 | 1.34 | |||
Ratio soil-carbon:litter-carbon | 6.65 | 1.20 | 0.80 |
Field Establishment Costs | 100% Tree Planting | Tree Planting: ANR 50:50 | 100% ANR | ||||||
---|---|---|---|---|---|---|---|---|---|
By budget items | Y1 | Y2 | TOTAL | Y1 | Y2 | TOTAL | Y1 | Y2 | TOTAL |
Planting stock | 1838.00 | 0.00 | 1838.00 | 919.00 | 0.00 | 919.00 | 0.00 | 0.00 | 0.00 |
Materials and equipment | 315.37 | 129.03 | 444.40 | 253.80 | 129.03 | 382.83 | 192.23 | 129.03 | 321.26 |
Transportation | 145.50 | 23.94 | 169.44 | 99.55 | 23.94 | 123.49 | 53.60 | 23.94 | 77.54 |
Labor | 1033.30 | 549.05 | 1582.35 | 874.00 | 546.56 | 1420.56 | 714.71 | 544.07 | 1258.78 |
Quantifiable transaction costs | 54.42 | 20.61 | 75.03 | 54.42 | 20.61 | 75.03 | 54.42 | 20.61 | 75.03 |
Total field costs by budget item | 3386.59 | 722.63 | 4109.22 | 2200.77 | 720.14 | 2920.91 | 1014.96 | 717.65 | 1732.61 |
By task | |||||||||
Pre-planting site survey | 13.07 | 0.00 | 13.07 | 13.07 | 0.00 | 13.07 | 13.07 | 0.00 | 13.07 |
Site preparation | 297.40 | 0.00 | 297.40 | 244.10 | 0.00 | 244.10 | 190.80 | 0.00 | 190.80 |
Tree planting (+initial ANR tasks) | 2346.20 | 0.00 | 2346.20 | 1218.59 | 0.00 | 1218.59 | 90.98 | 0.00 | 90.98 |
Maintenance (weeding, fertilizer) 2 years | 693.97 | 704.38 | 1398.36 | 693.97 | 704.38 | 1398.36 | 693.97 | 704.38 | 1398.36 |
Monitoring—2 years | 35.94 | 18.24 | 54.19 | 31.04 | 15.75 | 46.80 | 26.14 | 13.27 | 39.41 |
Total field costs by task | 3386.59 | 722.63 | 4109.21 | 2200.77 | 720.14 | 2920.91 | 1014.96 | 717.65 | 1732.61 |
10% contingency for unanticipated transaction costs | 338.66 | 72.26 | 410.92 | 220.08 | 72.01 | 292.09 | 101.50 | 71.77 | 173.26 |
SUBTOTAL | 3725.25 | 794.89 | 4520.14 | 2420.85 | 792.15 | 3213.00 | 1116.45 | 789.42 | 1905.87 |
INTEREST | 1160.59 | 672.39 | 284.40 | ||||||
GRAND TOTAL (USD) | 5680.72 | 3885.39 | 2190.27 | ||||||
Costs per tC sequestered (USD/tC) | 10.34 | 7.07 | 3.99 | ||||||
Costs per tree established (USD/tree) | 1.83 | 1.25 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jantawong, K.; Kavinchan, N.; Wangpakapattanawong, P.; Elliott, S. Financial Analysis of Potential Carbon Value over 14 Years of Forest Restoration by the Framework Species Method. Forests 2022, 13, 144. https://doi.org/10.3390/f13020144
Jantawong K, Kavinchan N, Wangpakapattanawong P, Elliott S. Financial Analysis of Potential Carbon Value over 14 Years of Forest Restoration by the Framework Species Method. Forests. 2022; 13(2):144. https://doi.org/10.3390/f13020144
Chicago/Turabian StyleJantawong, Kanlayarat, Nuttira Kavinchan, Prasit Wangpakapattanawong, and Stephen Elliott. 2022. "Financial Analysis of Potential Carbon Value over 14 Years of Forest Restoration by the Framework Species Method" Forests 13, no. 2: 144. https://doi.org/10.3390/f13020144
APA StyleJantawong, K., Kavinchan, N., Wangpakapattanawong, P., & Elliott, S. (2022). Financial Analysis of Potential Carbon Value over 14 Years of Forest Restoration by the Framework Species Method. Forests, 13(2), 144. https://doi.org/10.3390/f13020144