Impacts of Temporal Changes in Land Use/Cover on the Remaining Historical Forests in Guiyang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Identification of Historical Forest Patches
2.2.2. Assessment of Threat Levels
2.2.3. Morphological Spatial Pattern Analysis
2.2.4. Measurement of Probability of Connectivity
3. Results
3.1. Transformation into Other Land-Use/Cover Types
3.2. Threats to Historical Forests
3.3. Morphological Spatial Patterns
3.4. Probability of Connectivity
4. Discussion
4.1. The Impacts of Urbanization on Historical Forests
4.2. Implications for the Management of Urban Historical Forests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramalho, C.E.; Laliberte, E.; Poot, P.; Hobbs, R.J. Complex effects of fragmentation on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot. Ecology 2014, 95, 2466–2478. [Google Scholar] [CrossRef] [Green Version]
- Stiles, A.; Scheiner, S.M. A multi-scale analysis of fragmentation effects on remnant plant species richness in Phoenix, Arizona. J. Biogeogr. 2010, 37, 1721–1729. [Google Scholar] [CrossRef]
- Zipperer, W.C. Species composition and structure of regenerated and remnant forest patches within an urban landscape. Urban Ecosyst. 2002, 6, 271–290. [Google Scholar] [CrossRef]
- Kowarik, I.; von der Lippe, M. Plant population success across urban ecosystems: A framework to inform biodiversity conservation in cities. J. Appl. Ecol. 2018, 55, 2354–2361. [Google Scholar] [CrossRef] [Green Version]
- Niemelä, J.; Saarela, S.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Väre, S.; Kotze, D.J. Using the ecosystem services approach for better planning and conservation of urban green spaces: A Finland case study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Derkzen, M.L.; Teeffelen, A.J.; Verburg, P.H. REVIEW: Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, the Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Fahey, R.T.; Casali, M. Distribution of forest ecosystems over two centuries in a highly urbanized landscape. Landsc. Urban Plan. 2017, 164, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Lopez, B.E.; Urban, D.; White, P.S. Nativity and seed dispersal mode influence species’ responses to habitat connectivity and urban environments. Glob. Ecol. Biogeogr. 2018, 27, 1017–1030. [Google Scholar] [CrossRef]
- Williams, N.M.; Winfree, R. Local habitat characteristics but not landscape urbanization drive pollinator visitation and native plant pollination in forest remnants. Biol. Conserv. 2013, 160, 10–18. [Google Scholar] [CrossRef]
- Smale, M.; Gardner, R. Survival of Mount Eden Bush, an urban forest remnant in Auckland, New Zealand. Pac. Conserv. Biol. 1999, 5, 83–93. [Google Scholar] [CrossRef]
- Salghuna, N.; Prasad, P.R.C.; Kumari, J.A. Assessing the impact of land use and land cover changes on the remnant patches of Kondapalli reserve forest of the Eastern Ghats, Andhra Pradesh, India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 419–429. [Google Scholar] [CrossRef]
- Bagnall, R. A study of human impact on an urban forest remnant: Redwood Bush, Tawa, near Wellington, New Zealand. N. Z. J. Bot. 1979, 17, 117–126. [Google Scholar] [CrossRef]
- Ranta, P.; Viljanen, V.; Virtanen, T. Spatiotemporal dynamics of plant occurrence in an urban forest fragment. Plant Ecol. 2013, 214, 669–683. [Google Scholar] [CrossRef]
- Yang, Y.C.; Fujihara, M.; Li, B.Z.; Yuan, X.Z.; Hara, K.; Da, L.J.; Tomita, M.; Zhao, Y. Structure and diversity of remnant natural evergreen broad-leaved forests at three sites affected by urbanization in Chongqing metropolis, Southwest China. Landsc. Ecol. Eng. 2014, 10, 137–149. [Google Scholar] [CrossRef]
- Yang, J.; Yang, J.; Xing, D.; Luo, X.; Lu, S.; Huang, C.; Hahs, A.K. Impacts of the remnant sizes, forest types, and landscape patterns of surrounding areas on woody plant diversity of urban remnant forest patches. Urban Ecosyst. 2021, 24, 245–254. [Google Scholar] [CrossRef]
- Maiorano, L.; Falcucci, A.; Boitani, L. Size-dependent resistance of protected areas to land-use change. Proc. R. Soc. B Biol. Sci. 2008, 275, 1297–1304. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, S.M.; Willig, M.R. Developing unified theories in ecology as exemplified with diversity gradients. Am. Nat. 2005, 166, 458–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.J.; DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 2007, 17, 974–988. [Google Scholar] [CrossRef] [PubMed]
- Stamps, J.A.; Buechner, M.; Krishnan, V.V. The Effects of Edge Permeability and Habitat Geometry on Emigration from Patches of Habitat. Am. Nat. 1987, 129, 533–552. [Google Scholar] [CrossRef]
- Yamaura, Y.; Kawahara, T.; Iida, S.; Ozaki, K. Relative importance of the area and shape of patches to the diversity of multiple Taxa. Conserv. Biol. 2008, 22, 1513–1522. [Google Scholar] [CrossRef]
- Caryl, F.M.; Thomson, K.; Ree, R. Permeability of the urban matrix to arboreal gliding mammals: Sugar gliders in Melbourne, Australia. Austral Ecol. 2013, 38, 609–616. [Google Scholar] [CrossRef]
- Niu, H.Y.; Xing, J.J.; Zhang, H.M.; Wang, D.; Wang, X.R. Roads limit of seed dispersal and seedling recruitment of Quercus chenii in an urban hillside forest. Urban Urban For. Gree. 2018, 30, 307–314. [Google Scholar] [CrossRef]
- Malkinson, D.; Kopel, D.; Wittenberg, L. From rural-urban gradients to patch-matrix frameworks: Plant diversity patterns in urban landscapes. Landsc. Urban Plan. 2018, 169, 260–268. [Google Scholar] [CrossRef]
- Fernández, I.C.; Wu, J.; Simonetti, J.A. The urban matrix matters: Quantifying the effects of surrounding urban vegetation on natural habitat remnants in Santiago de Chile. Landsc. Urban Plan. 2018, 187, 181–190. [Google Scholar] [CrossRef]
- Huang, L.; Chen, H.; Ren, H.; Wang, J.; Guo, Q. Effect of urbanization on the structure and functional traits of remnant subtropical evergreen broad-leaved forests in South China. Environ. Monit. Assess. 2013, 185, 5003–5018. [Google Scholar] [CrossRef] [PubMed]
- Modica, G.; Praticò, S.; Laudari, L.; Ledda, A.; Montis, A.D. Implementation of multispecies ecological networks at the regional scale: Analysis and multi-temporal assessment. J. Environ. Manag. 2021, 289, 112494. [Google Scholar] [CrossRef]
- Han, Y.; Kang, W.; Thorne, J.; Song, Y. Modeling the effects of landscape patterns of current forests on the habitat quality of historical remnants in a highly urbanized area. Urban For. Urban Gree. 2019, 41, 354–363. [Google Scholar] [CrossRef]
- Ramalho, C.E.; Hobbs, R.J. Time for a change: Dynamic urban ecology. Trends Ecol. Evol. 2012, 27, 179–188. [Google Scholar] [CrossRef]
- Ramalho, C.E.; Laliberte, E.; Poot, P.; Hobbs, R. Effects of fragmentation on the plant functional composition and diversity of remnant woodlands in a young and rapidly expanding city. J. Veg. Sci. 2018, 29, 285–296. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Yang, J.; Yang, J.; Luo, X.; Huang, C. Impacts by expansion of human settlements on nature reserves in China. J. Environ. Manag. 2019, 248, 109233. [Google Scholar] [CrossRef] [PubMed]
- Lees, A.C.; Peres, C.A. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv. Biol. 2008, 22, 439–449. [Google Scholar] [CrossRef]
- Reider, I.J.; Donnelly, M.A.; Watling, J.I. The influence of matrix quality on species richness in remnant forest. Landsc. Ecol. 2018, 33, 1147–1157. [Google Scholar] [CrossRef]
- Xu, X.; Pang, Z.; Yu, X. Spatial-Temporal Pattern Analysis of Land Use/Cover Change: Methods & Application; Science and Technology Literature Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST +VERSION+ User’s Guide; The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund: Palo Alto, CA, USA, 2016. [Google Scholar]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuna, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafo, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Qiao, F.; Jiang, L. Effects of land use pattern change on regional scale habitat quality based on InVEST model—A Case Study in Beijing. Acta Sci. Nat. Univ. Pekin. 2016, 52, 553–562. (In Chinese) [Google Scholar]
- Wu, J.; Zhang, X.; Cao, Q. Ecological Security Assessment of Wetlands in Rapidly Urbanizing Areas: A Case Study of Shenzhen, China. Wetl. Sci. 2017, 15, 321–328. (In Chinese) [Google Scholar]
- Wu, C.; Lin, Y.; Chiang, L.; Huang, T. Assessing highway’s impacts on landscape patterns and ecosystem services: A case study in Puli Township, Taiwan. Landsc. Urban Plan. 2014, 128, 60–71. [Google Scholar] [CrossRef]
- Kim, T.; Song, C.; Lee, W.K.; Kim, M.; Lim, C.H.; Jeon, S.W.; Kim, J. Habitat Quality Valuation Using InVEST Model in Jeju Island. J. Korea Soc. Environ. Restor. Technol. 2015, 18, 1–11. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Ma, T.; Li, X.; Cui, B. The Simulation and Assessment of the Ecosystem Services in the Coastal Wetlands of the Yellow River Delta based on InVEST Model. Wetl. Sci. 2015, 13, 667–674. (In Chinese) [Google Scholar]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K. GuidosToolbox: Universal digital image object analysis. Eur. J. Remote Sens. 2017, 50, 352–361. [Google Scholar] [CrossRef]
- Vogt, P.; Ferrari, J.R.; Lookingbill, T.R.; Gardner, R.H.; Riitters, K.H.; Ostapowicz, K. Mapping functional connectivity. Ecol. Indic. 2009, 9, 64–71. [Google Scholar] [CrossRef]
- Bentrup, G. Conservation buffers—design guidelines for buffers, corridors, and greenways. Gen. Tech. Rep.—South. Res. Stn. USDA For. Serv. 2008, 109, 110. [Google Scholar]
- Environment Canada. How Much Habitat is Enough? 3rd ed.; Environment Canada: Toronto, ON, Canada, 2013.
- Forman, R.T. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Saura, S.; Torné, J. Conefor sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 2009, 22, 135–139. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Laita, A.; Kotiaho, J.S.; Mönkkönen, M. Graph-theoretic connectivity measures: What do they tell us about connectivity? Landsc. Ecol. 2011, 26, 951–967. [Google Scholar] [CrossRef]
- Velázquez, J.; Gutiérrez, J.; Hernando, A.; García-Abril, A. Evaluating landscape connectivity in fragmented habitats: Cantabrian capercaillie (tetrao urogallus cantabricus) in northern spain. For. Ecol. Manag. 2017, 389, 59–67. [Google Scholar] [CrossRef]
- An, Y.; Liu, S.; Sun, Y.; Shi, F.; Beazley, R. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc. Ecol. 2021, 36, 2059–2076. [Google Scholar] [CrossRef]
- Saura, S.; Vogt, P.; Velazquez, J.; Hernando, A.; Tejera, R. Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For. Ecol. Manag. 2011, 262, 150–160. [Google Scholar] [CrossRef]
- Gao, Y.; Mu, H.; Zhang, Y.; Tian, Y.; Tang, D.; Li, X. Research on construction path optimization of urban-scale green network system based on MSPA analysis method: Taking Zhaoyuan City as an example. Acta Ecol. Sin. 2019, 39, 7547–7556. (In Chinese) [Google Scholar]
- Du Toit, M.J.; Kotze, D.J.; Cilliers, S.S. Landscape history, time lags and drivers of change: Urban natural grassland remnants in Potchefstroom, South Africa. Landsc. Ecol. 2016, 31, 2133–2150. [Google Scholar] [CrossRef] [Green Version]
- Geslin, B.; Gauzens, B.; Thebault, E.; Dajoz, I. Plant Pollinator Networks along a Gradient of Urbanisation. PLoS ONE 2013, 8, e63421. [Google Scholar] [CrossRef] [PubMed]
- Solano, F.; Praticò, S.; Piovesan, G.; Chiarucci, A.; Argentieri, A.; Modica, G. Characterizing historical transformation trajectories of the forest landscape in rome’s metropolitan area (italy) for effective planning of sustainability goals. Land Degrad. Dev. 2021, 32, 4708–4726. [Google Scholar] [CrossRef]
- The Chinese State Council. Several Opinions of the State Council on Further Promoting Sound and Fast Economic and Social Development in Guizhou; The Chinese State Council: Beijing, China, 2012.
- Yao, L.; Wu, C.; Lu, Z. Co-evolution Relationship between the Quality of Urbanization and the Health of Land Use System in Karst Regions. Resour. Environ. Yangtze Basin 2018, 27, 768–778. (In Chinese) [Google Scholar]
- Martinuzzi, S.; Radeloff, V.C.; Joppa, L.N.; Hamilton, C.M.; Helmers, D.P.; Plantinga, A.J.; Lewis, D.J. Scenarios of future land use change around United States’ protected areas. Biol. Conserv. 2015, 184, 446–455. [Google Scholar] [CrossRef]
- Isaksson, C. Urbanization, oxidative stress and inflammation: A question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 2015, 29, 913–923. [Google Scholar] [CrossRef]
- Alberti, M. Maintaining ecological integrity and sustaining ecosystem function in urban areas. Curr. Opin. Sust. 2010, 2, 178–184. [Google Scholar] [CrossRef]
- Kuhn, I.; Klotz, S. Urbanization and homogenization—Comparing the floras of urban and rural areas in Germany. Biol. Conserv. 2006, 127, 292–300. [Google Scholar] [CrossRef]
- Olejniczak, M.J.; Spiering, D.J.; Potts, D.L.; Warren, R.J. Urban forests form isolated archipelagos. J. Urban Ecol. 2018, 4, juy007. [Google Scholar] [CrossRef] [Green Version]
- Soga, M.; Kanno, N.; Yamaura, Y.; Koike, S. Patch size determines the strength of edge effects on carabid beetle assemblages in urban remnant forests. J. Insect. Conserv. 2013, 17, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Wintle, B.A.; Kujala, H.; Whitehead, A.; Cameron, A.; Veloz, S.; Kukkala, A.; Moilanen, A.; Gordon, A.; Lentini, P.E.; Cadenhead, N.C.R.; et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 909–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewers, R.M.; Didham, R.K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 2006, 81, 117–142. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Zhang, H.; Ouyang, Z. Practice and Consideration for Ecological Redlining. Bull. Chin. Acad. Sci. 2014, 29, 448, 457–461. (In Chinese) [Google Scholar]
- Ballantyne, M.; Pickering, C.M. Differences in the impacts of formal and informal recreational trails on urban forest loss and tree structure. J. Environ. Manag. 2015, 159, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Pirnat, J.; Hladnik, D. Connectivity as a tool in the prioritization and protection of sub-urban forest patches in landscape conservation planning. Landsc. Urban Plan. 2016, 153, 129–139. [Google Scholar] [CrossRef]
- Liang, J.; He, X.; Zeng, G.; Zhou, M.; Gao, X.; Li, X.; Li, X.; Wu, H.; Feng, C.; Xing, W.; et al. Integrating priority areas and ecological corridors into national network for conservation planning in China. Sci. Total Environ. 2018, 626, 22–29. [Google Scholar] [CrossRef]
- Hong, L.; Huang, Y.; Lin, S.; Zhao, K.; Zou, Y.; Yu, X.; Yang, L.; Wang, X.; Zhu, M.; Zhou, Z. Study on plant diversity of mountain areas of yangmeikeng and chiao, Shenzhen, China. Am. J. Plant Sci. 2016, 7, 2527–2552. [Google Scholar]
Threat Source | |||
---|---|---|---|
Infrastructure and residential land | 1 | 7.1 | 0.85 |
Industrial land | 0.80 | 5.6 | 0.72 |
Irrigated cropland | 0.68 | 4.00 | 0.70 |
Rainfed cropland | 0.50 | 4.00 | 0.70 |
1978 | 2018 | |||||
---|---|---|---|---|---|---|
Forestland | Grassland | Water Body | Urban Land | Farmland | Total | |
Forestland | 2930.76 | 1.17 | 0 | 1983.69 | 4.59 | 4920.21 |
Grassland | 3.33 | 1349.19 | 0 | 2921.94 | 145.62 | 4420.08 |
Water body | 0 | 0 | 68.13 | 0 | 0 | 68.13 |
Urban land | 0 | 0 | 0 | 13,329.81 | 805.23 | 14,626.08 |
Farmland | 24.57 | 17.37 | 1.53 | 6009.57 | 1804.41 | 7857.45 |
Total | 2958.66 | 1367.73 | 69.66 | 24,245.01 | 2759.85 |
Period | Urban Land | Cropland | Grassland |
---|---|---|---|
1976–1993 | 124.65 | 8.73 | 0 |
1993–2001 | 131.34 | 2.43 | 0 |
2001–2009 | 237.24 | 0.45 | 1.08 |
2009–2018 | 1490.13 | 3.51 | 1.17 |
Year | Core | Bridge | Edge | Branch | Islet | Loop |
---|---|---|---|---|---|---|
1976 | 106 | 33 | 131 | 426 | 226 | 13 |
2018 | 62 | 21 | 67 | 238 | 275 | 0 |
ID | Pattern | Area (ha) | dPC Value (%) | |
---|---|---|---|---|
C1 | Core | 67.14 | 13.05 | 0.20 |
B1 | bridge | 57.24 | 11.87 | 0.19 |
I1 | islet | 41.31 | 6.81 | 0.13 |
I2 | islet | 39.69 | 5.97 | 0.14 |
B2 | bridge | 29.25 | 5.56 | 0.19 |
B3 | bridge | 16.29 | 3.28 | 0.19 |
I3 | islet | 29.61 | 3.13 | 0.23 |
B4 | bridge | 23.40 | 2.88 | 0.18 |
I4 | islet | 27.45 | 2.86 | 0.16 |
B5 | bridge | 13.23 | 2.23 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wu, F. Impacts of Temporal Changes in Land Use/Cover on the Remaining Historical Forests in Guiyang, China. Forests 2022, 13, 146. https://doi.org/10.3390/f13020146
Yang J, Wu F. Impacts of Temporal Changes in Land Use/Cover on the Remaining Historical Forests in Guiyang, China. Forests. 2022; 13(2):146. https://doi.org/10.3390/f13020146
Chicago/Turabian StyleYang, Jingyi, and Feng Wu. 2022. "Impacts of Temporal Changes in Land Use/Cover on the Remaining Historical Forests in Guiyang, China" Forests 13, no. 2: 146. https://doi.org/10.3390/f13020146
APA StyleYang, J., & Wu, F. (2022). Impacts of Temporal Changes in Land Use/Cover on the Remaining Historical Forests in Guiyang, China. Forests, 13(2), 146. https://doi.org/10.3390/f13020146