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Abstract: Driven by rapid urbanization, land use patterns have undergone dramatic changes, which
have in turn influenced ecosystem services (ESs). The government has implemented ecological
compensation and conservation actions to mitigate this negative impact, especially in metropolises.
However, whether these measures will have the desired effect remains unclear. Therefore, under-
standing the spatio-temporal characteristics of ESs and their driving factors are crucial for regional
development. In this study, we quantified carbon storage, water yield and soil conservation services
based on land use maps. A Geographical Detector (GD) was used to analyze the driving mechanisms
of ES changes in Beijing from 1985 to 2020. The results showed that (1) the obvious landscape pattern
changes are urbanization, afforestation and cultivated land degradation in Beijing, (2) the three
services showed an increasing trend overall, but the changes were different in each period, (3) in
general, land use change is the main factor affecting ESs, and the urbanization and afforestation
contributed the most. These results suggest that in highly urbanized metropolises, humans can still
balance the demands of regional development and ESs reasonable planning. This study highlights
the importance of afforestation for ESs, the necessity of harmonizing environmental concerns and
human activities, and the need to conduct ecological management in Beijing to protect the ecological
environment and coordinate regional development.

Keywords: ecosystem services; urbanization; driving factors; afforestation; geographical detector

1. Introduction

Ecosystem services (ESs) are the benefits and goods that people obtain from ecosys-
tems [1], and the ESs concept incorporates the well-being provided by an ecosystem into
sustainable management policies [2–4]. As an important link between humans and ecosys-
tems, ESs are critical to the sustainable development of human society and the stability
of ecosystems [5,6]. However, the pressures of urbanization and global change mean that
the ESs provided by ecosystems are facing unprecedented threats, and at least 15 types of
global ESs are in a state of degradation [7,8]. Such deterioration damages the restorative
capacity of ecosystems and produces irreversible effects, resulting in adverse outcomes for
both human development and the ecological environment [9–11].

Human activities and climate change have been considered to be the two main fac-
tors driving the provision and trade-offs of ESs [12]. Climate change influences ESs by
affecting the biophysical processes of ecosystems. The energy flow, material circulation
and information transfer of ecosystems fluctuate due to climate change, which may cause
irreversible effects on regional ecosystems [13]. Many studies have shown that global
warming intensifies the ecological impact of climate change and poses a nonnegligible
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threat to human survival [14]. For example, under the dual effect of climate change and
human activities, many cities around the world are facing water crises [15].

Furthermore, land use change can directly affect the composition of ecosystems by
altering their internal processes, which can significantly impact ESs [16,17]. China has ex-
perienced rapid urbanization over the past decades, which has been accompanied by rapid
changes in land use patterns that have affected regional ESs [18,19]. On the one hand, these
changes have led to a series of ecological problems [18,20], such as soil erosion [21], reduced
carbon storage and water yield [22], deteriorating water quality [23], and the destruction of
biodiversity [24]. These ecological problems threaten the sustainable development of urban
areas and endanger the health of urban ecosystems [20,25]. Assessing and mitigating the
impacts of urbanization on ecosystems have become priorities for landscape planning. On
the other hand, the government has implemented ecological projects to mitigate the impacts
of human activities on the ecosystem. For example, Chen et al. [26] found that China has
accounted for 25% of the global net increase in leaf area over the past 17 years, which has
significantly reduced the CO2 content in the atmosphere. These results illustrated that the
impact of human factors on ecosystems depends on scientific planning, which makes it
particularly important to understand the driving mechanisms of ESs changes [27].

In regions with strong human intervention, the effect of socio-economic factors on
ecosystem interventions must not be overlooked [28]. Zhang et al. [29] found that the
mismatch between supply and demand of ESs in urbanized areas and rural areas has
a large gap, and ESs supply and demand were most sensitive to population density in
developed urban areas and artificial land proportion in rural areas. Research on the
driving mechanisms of regional ES changes is still at the exploratory stage, some studies
have recognized and quantified multiple ESs at different scales, and many studies have
analyzed the driving factors of ESs [30,31]. However, most of these studies have focused
on the effects of land use change, climate change or their interaction on ESs while ignoring
socio-economic factors [5]. Integrating these three types of driving factors can help us
systematically study the mechanisms driving changes in regional ESs, which can help to
make regional policies and implement the ecological projects.

Beijing, as the largest city in China, is facing increasingly serious environmental
problems in the process of rapid urbanization. The government of Beijing has implemented
some ecological compensation and conservation actions to alleviate the negative effects of
urbanization, such as two phases of “One Million-Mu Plain Afforestation Project” from
2012 to 2020 [32]. However, the specific effects of these measures remain unclear. Thus,
clarifying the driving mechanisms of ESs changes is critical to designing policies that
reduce the negative impacts of human activities and promote sustainable development in
the region [33]. This study focused on Beijing, which is one of the most developed urban
areas in China, to analyze the spatio-temporal changes in carbon storage, water yield and
soil conservation services over the past 35 years. Additionally, the driving mechanisms of
the changes in different ESs were explored. Based on the research results, corresponding
policy recommendations were developed to improve the ecological environment in Beijing
and provide a reliable reference for the sustainable development of megacities in China.

2. Materials and Methods
2.1. Study Area

Beijing, which is located between 39◦26′–41◦03′ N and 115◦25′–117◦30′ E, is the po-
litical, economic and cultural center of China. It has a total area of 16,808 km2 and is
dominated by hills and mountains, with the terrain declining from north to south (Figure 1).
The mean annual temperature in Beijing is 11 ◦C–13 ◦C, and the yearly average precipita-
tion is 644 mm in the typical warm temperate semi-humid continental monsoon climate
zone. Beijing has experienced rapid development since the beginning of the Reform
and Opening-up in 1978, with its Gross Domestic Product (GDP) increasing from CNY
10.88 billion to 3032 billion and the total resident population swelling from 8.715 million to
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21.542 million during the period from 1985 to 2020 (http://tjj.beijing.gov.cn/, last accessed
on 29 January 2022).
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Figure 1. Location of the study area.

2.2. Data Sources

The land use/cover data were acquired from Landsat TM and OLI (downloaded
from the United States Geological Survey, https://www.usgs.gov/, last accessed on
29 January 2022) by random forest classification at a 30 m spatial resolution for the years
1985, 1990, 2005, 2000, 2005, 2010, 2015, and 2020. In this study, we analyzed ESs changes
based on changes in land use patterns.

The meteorological data used in this study, including daily precipitation, temperature,
humidity, air pressure, sunshine, wind speed, and evaporation data, were obtained from
the China Meteorological Data Service Center (http://data.cma.cn/, last accessed on
29 January 2022). We interpolated the meteorological data from 94 stations by ANUSPLIN
in R and obtained gridded images of the meteorological parameters as the input for the
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model.

A digital elevation model (DEM) with a 30 m resolution was obtained from the United
States Geological Survey (https://www.usgs.gov/, last accessed on 29 January 2022). Soil
texture and depth data with a 1 km resolution were acquired from the Harmonized World
Soil Database (HWSD) [34]. The dynamic economic, social, and development statistics
in this research came from the Beijing Statistical Yearbook (http://tjj.beijing.gov.cn/, last
accessed on 29 January 2022). The population density data was download from WorldPop
with a 1 km resolution (http:// www.worldpop.org/, last accessed on 29 January 2022) and
the GDP data with a 1 km resolution was downloaded from the Resource and Environment
Data Cloud Platform (http://www.resdc.cn/, last accessed on 29 January 2022) [35].

2.3. Methods

The modified Morris screening method was used to analyze the sensitivity of param-
eters required for model calculation. Components of the InVEST model and the Revised
Universal Soil Loss Equation (RUSLE) model were jointly applied to measure the ESs of
Beijing. The InVEST model was used to evaluate the ESs of carbon storage and water
yield, and the RUSLE model was used to evaluate soil conservation in the region. Then,
we calculated the change values for the three ESs from 1985 to 2020, collected and sorted
the meteorological, ecological, and socio-economic driving factors, selected eight driving
factors through principal component analysis (PCA), and analyzed the driving mechanism

http://tjj.beijing.gov.cn/
https://www.usgs.gov/
http://data.cma.cn/
https://www.usgs.gov/
http://tjj.beijing.gov.cn/
www.worldpop.org/
http://www.resdc.cn/
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of each service change through the Geographical Detector (GD) method. The structure of
our study is shown in Figure 2.
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2.3.1. LULC Maps

In this study, cloudless growth season images were selected, radiometric calibration
and atmospheric correction performed in ENVI 5.3, random forest classification applied to
classify the corrected image and land use/land cover (LULC) maps were obtained from
1985, 1990, 1995, 2000, 2005, 2010, 2015, and 2020. Finally, based on the field data from
forest inventories of Beijing, the random sampling method was used to verify the accuracy
of the results. In the classification results, all images had kappa values above 0.8, which
means that the characterized LULC maps were acceptable.

The LULC maps highlighted six patterns: (1) construction land, including urban,
rural, roadways, water conservancy projects and other artificial lands; (2) water, including
rivers, lakes, reservoirs and ponds; (3) cropland, including paddy fields, dry land and
orchards; (4) woodland, including evergreen broad-leaved forest, deciduous broad-leaved
forest, coniferous forest, coniferous and broad-leaved mixed forest; (5) grassland, including
natural grassland and partial shrubland; and (6) bare land, including bare soil covered with
low vegetation, bare rock and unutilized land.

2.3.2. Sensitivity Analysis

The Morris screening method is a global sensitivity analysis method with high ef-
ficiency and accuracy, which adopts the One factor At a Time (OAT) type calculation
method [36]. In the Morris method, only one parameter xi is modified within its range and
the change result is reflected in the model outcome y = y (x1, x2, . . . , xn) [37]. Finally, the
elementary effect ei is used to represent the influence of parameter xi change on the output
result and can be calculated as follows:

ei =
y∗ − y

∆i
(1)

where y∗ is the new output after the parameter changes, y is the previous output, and ∆i is
the variation in the parameter i. In this study, the modified Morris screening method was
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used, which perturbs a parameter with a fixed step and calculates the model output [38].
Additionally, the sensitivity index S was calculated as follows:

S =
n−1

∑
i=0

(Yi+1 −Yi)/Y0

(Pi+1 − Pi)/100
/n (2)

where Yi+1 is the output after the parameter changes for i + 1th, Yi is the output after the
parameter changes for ith, and Y0 is the initial output after parameter calibration. Pi+1 is the
percentage change in parameter for i + 1th, and Pi is the percentage change in parameter
for ith. The sensitivity was classified into four levels: highly sensitive parameter (|S| ≥ 1),
sensitive parameter (0.2 ≤ |S| < 1), medium sensitive parameter (0.05 ≤ |S| < 0.2), and
insensitive parameter (0 ≤ |S| < 0.05).

In this study, we sorted out the parameters needed for model calculation and their
value range (Table 1). We disturbed a parameter with −15%, −10%, −5%, 5%, 10% and
15% of the original value, while the other parameters remained unchanged, to explore the
sensitivity parameters of three ESs in 1990, 2000, 2010 and 2020.

Table 1. Evaluation parameters and value range of ESs.

Pattern Parameter Unit Value Range

Carbon storage Carbon Densities t/ha Unlimited

Precipitation mm Unlimited

Reference Evapotranspiration mm Unlimited

Soil Depth mm Unlimited

Water yield Plant Available Water Content 0–1

Evapotranspiration Coefficient
of Vegetation 0–1.5

Maximum Root Depth for Plants mm 0–10,000

Z Parameter Unlimited

Soil conservation

Rainfall Erodibility Factor MJ·mm/(t/ha/yr) Unlimited

Soil Erodibility Factor t·h/(MJ·mm) 0–1

Slope Length Factor Unlimited

Slope Steepness Factor Unlimited

Crop/Vegetation and
Management Factor 0–1

Support Practice Factor 0–1

2.3.3. Carbon Storage

Based on multiple spatio-temporal LULC maps, the InVEST model was used to assess
the carbon storage for the different regions and to estimate the carbon stock changes in
each unit [39]. The carbon density of the InVEST model includes the aboveground biomass
carbon density, belowground biomass carbon density, soil organic carbon density and dead
organic carbon density. The relationship among the different carbon densities and carbon
stocks is as follows:

Ct =
j

∑
j=1

Ajt ×
(
Caj + Cbj + Csj + Cdj

)
(3)

where Ct is the carbon storage in the region at time t, and Ajt is the land use pattern at time
t. j = 1, 2, . . . represents the different land use patterns in Beijing. Caj,Cbj,Csj and Cdj are
the carbon densities of the aboveground biomass, belowground biomass, soil and dead
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organic matter, respectively. In this study, land use pattern carbon density information was
collected from local studies [40–43].

2.3.4. Water Yield

The water yield module in the InVEST model provides estimates based on the water
balance method [44], which calculates the actual precipitation minus the actual evapotran-
spiration in each unit. The result of this method is surface runoff, which does not consider
the interactions among surface water, subsurface water and baseflow. The annual water
yield Yx was calculated as follows:

Yxj =

(
1−

AETxj

Px

)
× Px (4)

where Yxj represents the water yield of land use pattern j in unit x; AETxj is the annual
actual evapotranspiration of land use pattern j in unit x, and Px is the annual actual
precipitation of unit x. Evapotranspiration was calculated according to the improved
Penman–Monteith formula [45], which uses meteorological data such as temperature,
sunshine, and wind speed. Then, we used the evapotranspiration data for the regional site
to interpolate the precipitation spatial distribution map by ANUSPLIN in RStudio, used
soil texture data to obtain the plant available water fraction [41] and used precipitation
data to calculate the Z parameter [46]. Finally, the DEM data and regional statistical data
were used to obtain the regional watershed data.

2.3.5. Soil Conservation

Considering the topography in Beijing is dominated by mountains and hills, the
RUSLE model was applied to assess the soil conservation. The RUSLE model calculates the
difference between the potential and the actual soil loss to reflect the soil conservation [46],
and thus the annual soil conservation of the region was calculated as follows:

SRx = Rx × Kx × Lx × Sx × (1− Cx × Px) (5)

where SRx reflects the soil retention in unit x. Rx is the rainfall erosivity factor in unit x,
which was estimated by precipitation data in the region; and Kx is the soil erodibility factor
in unit x, which was estimated by the Erosion-Productivity Impact Calculator (EPIC) [47].
Soil texture (silt, clay, sand) and organic carbon content data from the HWSD were used in
this process. Lx reflects the slope length factor and Sx reflects the slope steepness factor,
which we obtained in ArcGIS 10.4.1 based on the DEM data with a 30 m resolution [48];
Cx is the crop/vegetation and management factor in unit x, which captures the effect of
surface vegetation on soil erosion reduction; and Px represents the support practice factor
in unit x, which has a value between 0 and 1. In this study, Cx and Px were collected from
local studies [49–51].

2.3.6. Identification of Driving Factors

According to relevant studies [4,6,30], our research selected 17 driving factors that
included three aspects: ecological, socio-economic and meteorological factors. Among the
total driving factors, some showed a high redundancy in PCA, and we removed these
factors. Finally, we selected eight driving factors to study the changes in ESs, and these
factors are shown in Table 2. In particular, LULC changes were selected to represent the
total change of human activities in the past 35 years, while GDP data in 2015 and population
density data in 2020 were used to represent the spatial distribution of human activities due
to the availability of data and non-repeatability of research contents.
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Table 2. Driving factors of ESs change.

Pattern Variable Definition Unit

Ecological
DEM Elevation m

Slope Slope ◦

Meteorological
Precipitation 40-year average precipitation mm

Temperature 40-year average temperature ◦C

Socio-economic

GDP Gross national product yuan/km2

Population Population of cell Person/km2

NDVIm 40-year average NDVI %

LULC 35-year land use change -

2.3.7. Factors Influencing ESs

GD is a model to describe the spatial effects of the explanatory variables on the
interpreted variables, including factor detector, risk detector, interactive detector, and
ecological detector [27]. The factor detector is commonly used to represent the explanatory
ability of driving factors to independent variables, and its result is represented by q value,
in the range of [0,1]. The risk detector is used to determine whether there are significant
differences in the mean values of attributes between driver sub-regions. GD has been
widely used in ecology and economics. Therefore, we used standardized processing of
various ES changes combined with the factor detector to explore the influences of different
driving factors on ES changes. We used the quantile method to classify the eight driving
factors. Then, we divided the independent driving factors into six categories. The categories
of LULC represent the conversion of land use types during the study period, while the
categories of other factors are arranged in value order from low to high. Finally, we used
the risk detector to calculate the mean value of changes in ESs in different categories of
each driving factor and analyze the ESs changes in different categories. These processes
were performed using the “GD” package in R [52–54].

3. Results
3.1. Land Use Changes from 1985 to 2020 in Beijing

The land use patterns in Beijing underwent significant changes from 1985 to 2020
according to Figure 3. Because the terrain of Beijing is high in the Northwest and low in the
Southeast, woodland and grassland are mainly distributed in the west and north, while
cropland mainly covers the east and south. The area of construction land in the central
area showed an obvious increasing trend. The area results of different land use types in
each period showed that woodland, cropland and grassland areas accounted for the most
abundant, followed by construction land, water, and bare land (Table 3). Construction
land, woodland and water showed an increasing trend, while cropland, grassland and
bare land showed a decreasing trend during the past 35 years. Among them, the most
significant change was the increase in the ratio of construction land from 5.85% in 1985
to 16.36% in 2020, representing a growth area of 1725 km2 that was primarily converted
from cropland. The biggest change was in woodland areas increased by 823 km2, while the
ratios of grassland, bare land and cropland decreased, especially that of cropland which
experienced the greatest decrease of 31%.

3.2. Sensitivity of Parameters

There were slight differences in parameter indexes, while the sensitivity rank of
parameters was completely consistent in each period. Additionally, the results of sensitivity
analysis showed that parameters have different sensitivities to ESs (Table 4). Carbon
density was the most important parameter for evaluating carbon storage, precipitation
and reference evapotranspiration determined the water yield, and precipitation and soil
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erodibility had the most significant effect on soil conservation in Beijing. According to the
results of sensitivity analysis, we adjusted the parameters to highly sensitive. For example,
in order for the precipitation, potential evapotranspiration and rainfall erodibility factor to
better reflect the authenticity of the data, we considered the influence of DEM and slope
during interpolation. Meanwhile, we referred to the research of Beijing and its environs as
much as possible in the process of carbon density data collection [40–43].
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Table 3. The land use pattern changes from 1985 to 2020 in Beijing (km2).

Year Construction Land Water Cropland Woodland Grassland Bare Land
1985 960.13 108.19 4944.52 8751.76 1630.23 15.17
1990 1754.16 196.93 4379.36 9030.97 1031.09 17.49
1995 2223.47 265.08 3233.82 9607.60 1061.19 18.84
2000 2337.99 156.67 3595.84 9244.94 1059.11 15.45
2005 2565.07 121.49 3668.81 9006.78 1033.04 14.81
2010 2607.82 139.47 3547.70 9335.20 768.33 11.48
2015 2631.09 163.82 3469.63 9463.53 669.48 12.45
2020 2685.91 158.56 3385.23 9575.12 594.23 10.95

Table 4. Sensitivity rank of parameters to ESs.

Pattern Parameter Sensitivity Rank

Carbon storage Carbon Densities Highly sensitive

Precipitation Highly sensitive

Reference Evapotranspiration Highly sensitive

Soil Depth Insensitive

Water yield Plant Available Water Content Insensitive

Evapotranspiration Coefficient of Vegetation Insensitive

Maximum Root Depth for Plants Insensitive

Z Parameter Insensitive

Soil conservation

Rainfall Erodibility Factor Highly sensitive

Soil Erodibility Factor Sensitive

Slope Length Factor Medium sensitive

Slope Steepness Factor Medium sensitive

Crop/Vegetation and Management Factor Insensitive

Support Practice Factor Insensitive
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3.3. Spatio-Temporal Changes in ESs from 1985 to 2020

According to Table 5, the three ESs had a decreased and then increased trend during
the past 35 years. The total carbon storage increased from 2.38 × 108 tons in 1985 to
2.45 × 108 tons in 2020, with an increase of 3%. The total water yield service was affected by
meteorological factors and fluctuates greatly. Over the total study period, the water yield
was the highest in 1990, with a value of 2.01 × 109 m3, and the total water yield increased
from 1.62 × 109 m3 in 1985 to 1.72 × 109 m3 in 2020, with an increase of 6%. The total soil
conservation, with trends of fluctuations roughly the same as water yield service, increased
from 1.76 × 108 tons in 1985 to 1.96 × 108 tons in 2020, representing an increase of 11%. It is
worth noting that the lowest values of three ESs occurred in the decade from 2005 to 2015.
Although ESs have lower growth rates in total, compared with the lowest value the increase
rate of ESs was more obvious (water yield service had the highest increase of 156%).

Table 5. The indicator values of multiple ESs from 1985 to 2020 in Beijing.

Year Carbon Storage (108 tons/yr) Water Yield
(109 m3/yr) Soil Conservation (108 tons/yr)

1985 2.38 1.62 1.76
1990 2.41 2.01 1.89
1995 2.45 1.77 2.26
2000 2.39 1.25 1.61
2005 2.35 0.68 1.41
2010 2.33 0.97 1.12
2015 2.37 1.82 0.91
2020 2.45 1.72 1.96

The spatial distribution and changes in ESs in different periods from 1985 to 2020
are shown in Figure 4. The high-provision areas of carbon storage and soil conservation
services were mainly located in the northern, western, and southern regions, which were
the main areas for woodland and grassland in Beijing; these areas had high carbon storage
and low soil loss. The low-provision areas of carbon storage and soil conservation were
distributed in the central region, which is the main urban region with low vegetation
coverage. However, the distribution of water yield was opposite to that of soil conser-
vation and carbon storage, with high-provision areas located in the central region and
low-provision areas distributed in the mountainous region. This result is related to the high
evapotranspiration of woodland and grassland, as areas with higher evapotranspiration
have lower water production. In addition, the three service values provided by water were
relatively low, and that provided by cropland was at a moderate level.

3.4. Driving Factor Analysis

The GD results showed that the impacts of the driving factors on ESs changes were
diverse (Figure 5). Four socio-economic factors had a clear influence on the ESs changes
compared to other driving factors (the q value was generally greater than 0.2), but their
impacts are still different. Among them, the q values of GDP and population in the change
of three ESs have little difference and the NDVIm has a more significant impact on carbon
storage service change among three ESs. The q values of LULC for carbon storage and water
yield both exceeded 0.8, indicating that land use change caused by economic development
and human activities was the most obvious driving factor of ESs changes in Beijing. The
temperature has a stronger impact on ESs changes than precipitation among two meteoro-
logical factors. In addition, the slope has the most significant impact on soil conservation
service change compared to other driving factors (the q value was greater than 0.4).

According to the classification results of GD in R, we obtained the mean value of ESs
changes in each driving factor category (Figure 6). LULC was mainly classified according
to the conversion of land use type, while other factors were divided into six categories
ranging from large to small. We highlighted the maximum and minimum ESs changes for
each driving factor. The results showed that the changes of driving factors except LULC
had no significant impact on the carbon storage service change, which was similar to the
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result in Figure 5. In all land use type changes, the expansion of woodland had the most
significant impact on the increase in carbon storage, and the expansion of construction
land had the most significant impact on the increase in water yield and the decrease in
soil conservation. The driving results of the water yield service and soil conservation
service showed an opposite trend. Furthermore, water yield increased and soil and water
conservation decreased with the increase in socio-economic factors and the decrease in
ecological factors from 1985 to 2020. The changes of temperature and precipitation of the
water yield and soil conservation services were disordered, indicating that the influence of
meteorological factors on the two services was not a simple linear relationship.
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4. Discussion
4.1. Comparison with Previous Studies

Urban planning is complex and needs to integrate social, environmental, cultural, and
other factors. There are many challenges in the integration of ESs into regional planning,
especially in metropolises. The land use change was dominated by urbanization and
afforestation from 1985 to 2020 in Beijing, which was similar to the result of Sun et al. [19].
The carbon storage, water yield and soil conservation also showed a trend of first decreasing
and then increasing during the past 35 years. This result illustrated that local governments
were trying to seek a balance between ecological environment and economic development.
For example, the government actively carried out two phases of the “One Million-Mu
Plain Afforestation Project” from 2012 to 2020 [55], which has increased 600 km2 of green
space in Beijing and is directly reflected in remote sensing images. At the same time, it
is affected by ecological engineering as Beijing has sequestered 4.4 million tons of CO2
annually since 2010. In addition, the results of the factor detector indicated that ecological
factors are generally stronger than meteorological factors in influencing ESs changes. This
may be related to regional meteorological characteristics that Beijing has, such as a typical
rain and heat synchronization climate with a relatively stable climate and less extreme
weather disasters. Additionally, the temperature has a stronger effect on changes in ESs
than precipitation. This may be because the main tree species are poplar and oak in Beijing,
which are more sensitive to temperature differences and are more drought tolerant. Among
all ecological factors, DEM has a significant impact on the changes of all ESs (q value
over 0.2), which may be related to the landscape pattern and topographic distribution of
Beijing; the construction land was mainly distributed in the plain area, while woodland
and grassland were mostly distributed in the mountain area where there was an ecological
security barrier in Beijing. The results also showed that the LULC was the most important
factor of regional ESs changes, which highlighted the dominance of human activities on
ESs changes and was similar to the research of Mashizi et al. [56].

However, most studies have ignored the positive effects of human activities on ecosys-
tems [57]. To explore this impact, we analyzed the specific responses of each driving factor
to changes in ESs. The results of the risk detector showed that the expansion of woodland
has an obvious impact on the increase in carbon storage. Meanwhile, the fluctuations
in other factors did not have a significant impact on the change of carbon storage. This
may be explained by the fact that the influence of other factors on regional carbon storage
changes was unobvious, which was also correlated to the result of the factor detector.
Social-economic factors and meteorological factors contributed to the increase in water
yield service, while ecological factors had negative effects on water yield. The InVEST
model evaluated the regional water yield based on the water balance method, and the
high evapotranspiration of woodland and grassland may result in less water production in
regions at higher elevations. It should be noted that slope influenced soil conservation ser-
vice more than the land use change, and soil conservation has been improved significantly
with the increase in slope. It showed regions with low human disturbance also existed,
even in a highly developed metropolis, and that these areas may be the major ESs supply
area. This result highlighted the necessity and importance of reasonable urban planning.
In addition, the expansion of construction land leads to a significant increase in water
yield and a decrease in soil conservation. This result also indicated that although ongoing
ecological projects have improved regional ESs, the negative impacts of urbanization have
not been fully offset, especially in areas of urban expansion. One unexpected finding
was the extent to which there may be some correlation between ESs trade-off and driving
mechanisms. The risk detector results for water yield service and soil conservation service
were almost opposite, and the research of Shen et al. [58] showed that there was a clear
trade-off relationship between water yield service and soil conservation service in Beijing.
It means that the driving mechanism of ESs changes may indirectly reflect the trade-off and
synergy between ESs, and this will be the focus of future work.
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The results of GD fully revealed the duality of human disturbance to ESs. We, there-
fore, recommend the following suggestions to improve the quality of living and achieve
sustainable development in Beijing: (1) repair and safeguard the ecological conservation
function of Beijing through implementation of ecosystem protection projects such as the
“Three-North Shelterbelt Program” [59]. (2) Expand the use range of clean energy to reduce
carbon emissions. The government of Beijing has vigorously advocated for the use of
clean energy such as solar energy in recent years and has achieved significant results, these
efforts represent important measures for reducing urban carbon emissions, as proven by
Zhang et al. [23]. (3) Strengthen urban greening, limit large-scale urban expansion, optimize
urban water yield systems, improve people’s awareness of water conservation, and reduce
domestic water waste [60]. (4) Plan for regional land functions and restrict the conversion of
land use patterns in some areas, such as lake reclamation, to protect the ecological function
within Beijing [61].

4.2. Strengths and Limitations

Most previous studies focused on exploring the driving factors of ESs in a particular
year, but our methodological framework provided a way to explore the driving mechanism
and the impact of each factor on ES changes [6,30]. This method requires straightforward
data, is simple and easy to implement, and can be applied for driving factor analysis in
other regions. The research revealed the impact of the regional landscape patterns changes
due to human disturbance on ESs and has certain implications for the region, providing an
important reference for future ecological management and landscape planning in Beijing.

Despite the abovementioned strengths, some limitations exist in this study. The
models used in the study have been proved to be reasonable and widely used in ESs
assessment [6,20], but also have some limitations. The carbon storage module calculated
the historical carbon storage based only on the conversion of land use patterns, which
is not sufficiently comprehensive [20]; due to the availability of data, we did not refer to
the permanent monitoring sites data and NDVI in the evaluation, which meant that the
results could not better characterize the impact of afforestation on regional carbon sinks.
The InVEST model used the water balance method to calculate the annual water yield, and
this module fails to consider the surface water and groundwater [62]. The soil conservation
module mainly relies on the RUSLE, and this model represents an improvement over the
Universal Soil Loss Equation (USLE) model but is mainly appropriate for plain areas and
areas with gentle slopes. The terrain is dominated by mountains in the northwest of Beijing,
therefore, the RUSLE model will generate errors when calculating certain rainfall amounts.

In this research, only three key ecosystem services were selected for evaluation due
to data availability and regional ecological characteristics. Therefore, we did not fully
characterize the status of ESs in Beijing. Our research is only at the city scale because of
the characteristics of regional landscape patterns, which means that our research results
may not be applicable to other scales. Finally, in the analysis of the driving factors, eight
driving factors were selected, but the range of factors may not have been comprehensive.
By combining our driving analysis with the research of Sun et al. [20], we found that as
the values of the driving factors change, their impacts on different ESs change, and this
difference is related to the trade-off and synergy relationships between ESs. In future
studies, we will focus on problems caused by a rapid urban expansion in metropolises,
subdivide the land use patterns and analyze the regional landscape structure. Meanwhile,
more types of ESs should be analyzed such as water purification, food supply and habitat
provision; the trade-offs between different ESs should be assessed to acknowledge the
complex connections between them; the changes in ESs and their driving factors should be
analyzed at multiple scales; a more comprehensive mechanism should be applied to screen
and obtain highly correlated driving factors.
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5. Conclusions

In this study, we used land use maps to calculate the carbon storage, water yield and
soil conservation services from 1985 to 2020 in Beijing. Furthermore, we analyzed the
influence of driving factors on ESs changes. The results show that land use change was
dominated by urbanization and afforestation in Beijing over the 35-year period. In the
process of rapid urbanization, carbon storage, water yield and soil conservation services
showed a first decreased and then increased trend with changes in landscape patterns. The
characteristics of the driving mechanisms for changes in the three ESs are different. Socio-
economic factors, especially land use change, had the greatest impact on ESs changes, while
meteorological and ecological factors played different roles for each ES change. It is worth
noting that this study explored the positive effects and limitations of human disturbances
on ESs changes and demonstrated the necessity of positive disturbances in ecological
restoration. Our research provides useful examples for the sustainable development of
megacities in China. Moreover, future research should pay more attention to exploring the
internal relationship between ESs trade-off and driving mechanisms, which can provide
more favorable theoretical support for balancing urbanization and regional sustainable
development to realize healthy development.

Author Contributions: Conceptualization, H.L. and J.Z.; methodology, H.L.; software, Q.L.; valida-
tion, H.L., Y.T. and Q.L.; formal analysis, H.L.; investigation, W.X.; resources, Q.L.; data curation,
Q.L.; writing—original draft preparation, H.L.; writing—review and editing, J.Z.; visualization, W.X.;
supervision, W.X.; project administration, J.Z.; funding acquisition, J.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Beijing, China (Grant
No. 5192020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data included in this study are available upon request by contact with
the corresponding author.

Acknowledgments: We greatly appreciate the National Forest Ecosystem Station of Three Gorges
Reservoir in Zigui County. Special thanks are extended to the editors and reviewers for providing
valuable insight into this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Costanza, R.; d’Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al.

The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [CrossRef]
2. Daily, G.C.; Matson, P.A. Ecosystem services: From theory to implementation. Proc.Natl.Acad.Sci.U.S.A. 2008, 105(28), 9455–9456.

[CrossRef] [PubMed]
3. Benjamin, B.; Neville, C.; Stoyan, N.; Katalin, P.; Rob, A. Mapping and modelling ecosystem services for science, policy and

practice. Ecosyst. Serv. 2013, 4, 1–3. [CrossRef]
4. Luo, Q.L.; Zhou, J.F.; Li, Z.G.; Yu, B.L. Spatial differences of ecosystem services and their driving factors: A comparation analysis

among three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [CrossRef]
[PubMed]

5. Rositano, F.; Bert, F.E.; Piñeiro, G.; Ferraro, D.O. Identifying the factors that determine ecosystem services provision in Pampean
agroecosystems (Argentina) using a data-mining approach. Environ. Dev. 2018, 25, 3–11. [CrossRef]

6. Lyu, R.F.; Clarke, K.C.; Zhang, J.M.; Feng, J.L.; Jia, X.H.; Li, J.J. Spatial correlations among ecosystem services and their socio-
ecological driving factors: A case study in the city belt along the Yellow River in Ningxia, China. Appl. Geogr. 2019, 108, 64–73.
[CrossRef]

7. MEA. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005.
8. Pan, Z.Z.; He, J.H.; Liu, D.F.; Wang, J.W.; Guo, X.N. Ecosystem health assessment based on ecological integrity and ecosystem

services demand in the Middle Reaches of the Yangtze River Economic Belt, China. Sci. Total Environ. 2021, 774, 144837. [CrossRef]
9. Callesen, I. Biodiversity and ecosystem services in life cycle impact assessment—Inventory objects or impact categories?

Ecosyst. Serv. 2016, 22, 94–103. [CrossRef]

http://doi.org/10.1038/387253a0
http://doi.org/10.1073/pnas.0804960105
http://www.ncbi.nlm.nih.gov/pubmed/18621697
http://doi.org/10.1016/j.ecoser.2013.04.005
http://doi.org/10.1016/j.scitotenv.2020.138452
http://www.ncbi.nlm.nih.gov/pubmed/32302846
http://doi.org/10.1016/j.envdev.2017.11.003
http://doi.org/10.1016/j.apgeog.2019.05.003
http://doi.org/10.1016/j.scitotenv.2020.144837
http://doi.org/10.1016/j.ecoser.2016.09.021


Forests 2022, 13, 260 15 of 16

10. Yu, K.J.; Gong, Y. Exploration on Ecological Restoration Model for the Improvement of Ecosystem Services of Yellow River
Floodplains—A Case Study of Zhengzhou Yellow River Floodplain Park Planning and Design. Landscape Architecture Frontiers
2021, 9, 86–97. [CrossRef]

11. Li, Z.H.; Deng, X.Z.; Jin, G.; Mohmmed, A.; Arowolo, A.O. Tradeoffs between agricultural production and ecosystem services: A
case study in Zhangye, Northwest China. Sci. Total Environ. 2020, 707, 136032. [CrossRef]

12. Mahmoud, S.H.; Gan, T.Y. Impact of anthropogenic climate change and human activities on environment and ecosystem services
in arid regions. Sci. Total Environ. 2018, 633, 1329–1344. [CrossRef] [PubMed]

13. Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA.
Ecol. Indic. 2019, 102, 51–64. [CrossRef]

14. Strefler, J.; Kriegler, E.; Bauer, N.; Luderer, G.; Pietzcker, R.C.; Giannousakis, A.; Edenhofer, O. Alternative carbon price trajectories
can avoid excessive carbon removal. Nat. Commun. 2021, 12, 2264. [CrossRef] [PubMed]

15. Li, B.; Sivapalan, M. Long-Term Coevolution of an Urban Human-Water System Under Climate Change: Critical Role of Human
Adaptive Actions. Water Resour. Res. 2020, 56, e2020WR027931. [CrossRef]

16. Gao, J.; Tang, X.G.; Lin, S.Q.; Bian, H.Y. The Influence of Land Use Change on Key Ecosystem Services and Their Relationships in
a Mountain Region from Past to Future (1995-2050). Forests. 2021, 12, 616. [CrossRef]

17. Sun, X.; Li, F. Spatio-temporal assessment and trade-offs of multiple ecosystem services based on land use changes in Zengcheng,
China. Sci. Total Environ. 2017, 609, 1569–1581. [CrossRef]

18. Haas, J.; Ban, Y.F. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int.
J. Appl Earth Obs. Geoinf. 2014, 30, 42–55. [CrossRef]

19. Qiu, B.K.; Li, H.L.; Zhou, M.; Zhang, L. Vulnerability of ecosystem services provisioning to urbanization: A case of China.
Ecol. Indic. 2015, 57, 505–513. [CrossRef]

20. Sun, X.; Lu, Z.M.; Li, F.; Crittenden, J.C. Analyzing spatio-temporal changes and trade-offs to support the supply of multiple
ecosystem services in Beijing, China. Ecol. Indic. 2018, 94, 117–129. [CrossRef]

21. Hu, T.; Wu, J.S.; Li, W.F. Assessing relationships of ecosystem services on multi-scale: A case study of soil erosion control and
water yield in the Pearl River Delta. Ecol. Indic. 2019, 99, 193–202. [CrossRef]

22. Jiang, W.G.; Deng, Y.; Tang, Z.H.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage
under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [CrossRef]

23. Zhang, Y.X.; Min, Q.W.; Zhao, G.G.; Jiao, W.J.; Liu, W.W.; Bijaya, G.C.D.; Lu, L. Can Clean Energy Policy Improve the Quality of
Alpine Grassland Ecosystem? A Scenario Analysis to Influence the Energy Changes in the Three-River Headwater Region, China.
Sustainability 2016, 8, 231. [CrossRef]

24. Cheng, F.Y.; Liu, S.L.; Hou, X.Y.; Zhang, Y.Q.; Dong, S.K. Response of bioenergy landscape patterns and the provision of
biodiversity ecosystem services associated with land-use changes in Jinghong County, Southwest China. Landsc. Ecol. 2018, 33,
783–798. [CrossRef]

25. Wang, J.T.; Peng, J.; Zhao, M.Y.; Liu, Y.X.; Chen, Y.Q. Significant trade-off for the impact of Grain-for-Green Programme on
ecosystem services in North-western Yunnan, China. Sci. Total Environ. 2017, 574, 57–64. [CrossRef] [PubMed]

26. Chen, C.; Park, T.; Wang, X.H.; Piao, S.L.; Xu, B.D.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and
India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [CrossRef]

27. Fang, L.L.; Wang, L.C.; Chen, W.X.; Sun, J.; Cao, Q.; Wang, S.Q.; Wang, L.Z. Identifying the impacts of natural and human factors
on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [CrossRef]

28. Zhang, Z.M.; Gao, J.F.; Fan, X.Y.; Lan, Y.; Zhao, M.S. Response of ecosystem services to socio-economic development in the
Yangtze River Basin, China. Ecol. Indic. 2017, 72, 481–493. [CrossRef]

29. Zhang, Z.M.; Peng, J.; Xu, Z.H.; Wang, X.Y.; Meersmans, J. Ecosystem services supply and demand response to urbanization: A
case study of the Pearl River Delta, China. Ecosyst. Serv. 2021, 49, 101274. [CrossRef]

30. Chen, T.Q.; Feng, Z.; Zhao, H.F.; Wu, K.N. Identification of ecosystem service bundles and driving factors in Beijing and its
surrounding areas. Sci. Total Environ. 2020, 711, 134687. [CrossRef]

31. Luo, Q.L.; Zhang, X.L.; Li, Z.G.; Yang, M.; Lin, Y.H. The effects of China’s ecological control line policy on ecosystem services: The
case of Wuhan City. Ecol. Indic. 2018, 93, 292–301. [CrossRef]

32. Jia, B.Q.; Qiu, K.B. The cooling effect of plain afforestation in the Beijing Project and its remote sensing-based valuation.
Acta Ecol. Sin. 2017, 37, 726–735. (In Chinese)

33. Gong, S.H.; Xiao, Y.; Xiao, Y.; Zhang, L.; Ouyang, Z.Y. Driving forces and their effects on water conservation services in forest
ecosystems in China. Chin. Geogr. Sci. 2017, 27, 216–228. [CrossRef]

34. FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy, 2012.
35. Xu, X.L. China GDP Spatial Distribution Kilometer Grid Data Set. Data Registration and Publication System of Resources and

Environmental Sciences and Data Center, Cas. 2017. Available online: http://www.resdc.cn/DOI (accessed on 29 January 2022).
36. Haghnegahdar, A.; Razavi, S. Insights into sensitivity analysis of Earth and environmental systems models: On the impact of

parameter perturbation scale. Environ Model Softw. 2017, 95, 115–131. [CrossRef]
37. Sanchez-Canales, M.; Benito, A.L.; Passuello, A.; Terrado, M.; Ziv, G.; Acuna, V.; Schuhmacher, M.; Elorza, F.J. Sensitivity analysis

of ecosystem service valuation in a Mediterranean watershed. Sci. Total Environ. 2012, 440, 140–153. [CrossRef] [PubMed]

http://doi.org/10.15302/J-LAF-1-040025
http://doi.org/10.1016/j.scitotenv.2019.136032
http://doi.org/10.1016/j.scitotenv.2018.03.290
http://www.ncbi.nlm.nih.gov/pubmed/29758885
http://doi.org/10.1016/j.ecolind.2019.01.079
http://doi.org/10.1038/s41467-021-22211-2
http://www.ncbi.nlm.nih.gov/pubmed/33859170
http://doi.org/10.1029/2020WR027931
http://doi.org/10.3390/f12050616
http://doi.org/10.1016/j.scitotenv.2017.07.221
http://doi.org/10.1016/j.jag.2013.12.012
http://doi.org/10.1016/j.ecolind.2015.04.025
http://doi.org/10.1016/j.ecolind.2018.06.049
http://doi.org/10.1016/j.ecolind.2018.11.066
http://doi.org/10.1016/j.ecolmodel.2016.12.002
http://doi.org/10.3390/su8030231
http://doi.org/10.1007/s10980-018-0634-z
http://doi.org/10.1016/j.scitotenv.2016.09.026
http://www.ncbi.nlm.nih.gov/pubmed/27623527
http://doi.org/10.1038/s41893-019-0220-7
http://doi.org/10.1016/j.jclepro.2021.127995
http://doi.org/10.1016/j.ecolind.2016.08.035
http://doi.org/10.1016/j.ecoser.2021.101274
http://doi.org/10.1016/j.scitotenv.2019.134687
http://doi.org/10.1016/j.ecolind.2018.05.009
http://doi.org/10.1007/s11769-017-0860-3
http://www.resdc.cn/DOI
http://doi.org/10.1016/j.envsoft.2017.03.031
http://doi.org/10.1016/j.scitotenv.2012.07.071
http://www.ncbi.nlm.nih.gov/pubmed/22925484


Forests 2022, 13, 260 16 of 16

38. Zhao, Y.; Zhang, J.F.; Li, T.; Xia, W. Parameter Sensitivity Analysis and Method Comparison of Rainfall Runoff Model.
China Water Wastewater 2021, 37, 114–120. (In Chinese) [CrossRef]

39. Fernandes, M.M.; Fernandes, M.R.D.M.; Garcia, J.R.; Matricardi, E.A.T.; Almeida, A.Q.D.; Pinto, A.S.; Menezes, R.S.C.; Silva,
A.D.J.; Lima, A.H.D.S. Assessment of land use and land cover changes and valuation of carbon stocks in the Sergipe semiarid
region, Brazil: 1992–2030. Land Use Policy 2020, 99, 104795. [CrossRef]

40. He, C.Y.; Zhang, D.; Huang, Q.X.; Zhao, Y.Y. Assessing the potential impacts of urban expansion on regional carbon storage by
linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [CrossRef]

41. Jiang, J.H.; Qi, S.; Hu, J.; Lu, J.S.; Li, Y.; Jin, M.L. Assessment of Forest Ecosystem Carbon Storage in the Mountain Area of Beijing
Based on the InVEST Model. Earth Environ. 2019, 47, 326–335. (In Chinese)

42. Wang, C.; Zhan, J.Y.; Chu, X.; Liu, W.; Zhang, F. Variation in ecosystem services with rapid urbanization: A study of carbon
sequestration in the Beijing–Tianjin–Hebei region, China. Phys. Chem. Earth. 2019, 110, 195–202. [CrossRef]

43. Xu, Q.R.; Zheng, X.Q.; Zheng, M.R. Do urban planning policies meet sustainable urbanization goals? A scenario-based study in
Beijing, China. Sci. Total Environ. 2019, 670, 498–507. [CrossRef] [PubMed]

44. Belete, M.; Deng, J.S.; Wang, K.; Zhou, M.M.; Zhu, E.Y.; Shifaw, E.; Bayissa, Y. Evaluation of satellite rainfall products for modeling
water yield over the source region of Blue Nile Basin. Sci. Total Environ. 2020, 708, 134834. [CrossRef]

45. Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T. VEST 3.3.2 User’s Guide; The Natural Capital Project;
Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington,
VA, USA; World Wildlife Fund: Gland, Switzerland, 2016.

46. Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydro-logical processes into
Budyko‘s hydrological model. J. Hydrol. 2012, 436-437, 35–50. [CrossRef]

47. Williams, J.R.; Renard, K.G.; Dyke, P.T. EPIC: A new method for assessing erosion’s effect on soil productivity. J. Soil Water Conserv.
1983, 38, 381–383. Available online: https://www.jswconline.org/content/38/5/381.short (accessed on 29 January 2022).

48. Rao, E.M.; Ouyang, Z.Y.; Yu, X.X.; Xiao, Y. Spatial patterns and impacts of soil conservation service in China. Geomorphology 2014,
207, 64–70. [CrossRef]

49. Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0):
Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524-525, 166–177. [CrossRef]

50. Pacheco, F.A.L.; Varandas, S.G.P.; Fernandes, L.F.S.; Junior, R.F.V. Soil losses in rural watersheds with environmental land use
conflicts. Sci. Total Environ. 2014, 485-486, 110–120. [CrossRef]

51. Feng, Q.; Zhao, W.W.; Wang, J.; Zhang, X.; Zhao, M.Y.; Zhong, L.N.; Liu, Y.X.; Fang, X.N. Effects of Different Land use Types on
Soil Erosion under Natural Rainfall in the Loess Plateau, China. Pedosphere. 2016, 26, 243–256. [CrossRef]

52. Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic
characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote
Sens. 2020, 57, 593–610. [CrossRef]

53. Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [CrossRef]
54. Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.T. Geographical Detectors-Based Health Risk Assessment

and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr Inf. Sci. 2020, 24, 107–127.
[CrossRef]

55. Hu, T.Y.; Li, X.C.; Gong, P.; Yu, W.C.; Huang, X.C. Evaluating the effect of plain afforestation project and future spatial suitability
in Beijing. Sci. China Earth Sci. 2020, 63, 1587–1598. [CrossRef]

56. Mashizi, A.K.; Sharafatmandrad, M. Investigating tradeoffs between supply, use and demand of ecosystem services and their
effective drivers for sustainable environmental management. J. Environ. Manage. 2021, 289, 112534. [CrossRef] [PubMed]

57. He, Y.Y.; Kuang, Y.Q.; Zhao, Y.L.; Ruan, Z. Spatial Correlation between Ecosystem Services and Human Disturbances: A Case
Study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. Remote Sens. 2021, 13, 1174. [CrossRef]

58. Shen, J.S.; Li, S.C.; Liang, Z.; Liu, L.B.; Li, D.L.; Wu, S.Y. Exploring the heterogeneity and nonlinearity of trade-offs and synergies
among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101103. [CrossRef]

59. Jiang, C.; Wang, F.; Zhang, H.Y.; Dong, X.L. Quantifying changes in multiple ecosystem services during 2000–2012 on the Loess
Plateau, China, as a result of climate variability and ecological restoration. Ecol. Eng. 2016, 97, 258–271. [CrossRef]

60. Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and
Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [CrossRef]

61. Xu, X.B.; Yang, G.S.; Tan, Y. Identifying ecological red lines in China’s Yangtze River Economic Belt: A regional approach.
Ecol. Indic. 2019, 96, 635–646. [CrossRef]

62. Li, X.; Sun, W.; Zhang, D.; Huang, J.L.; Li, D.H.; Ding, N.; Zhu, J.F.; Xie, Y.J.; Wang, X.R. Evaluating water provision service at the
sub-watershed scale by combining supply, demand, and spatial flow. Ecol. Indic. 2021, 127, 107745. [CrossRef]

http://doi.org/10.19853/j.zgjsps.1000-4602.2021.07.017
http://doi.org/10.1016/j.landusepol.2020.104795
http://doi.org/10.1016/j.envsoft.2015.09.015
http://doi.org/10.1016/j.pce.2018.09.001
http://doi.org/10.1016/j.scitotenv.2019.03.128
http://www.ncbi.nlm.nih.gov/pubmed/30904661
http://doi.org/10.1016/j.scitotenv.2019.134834
http://doi.org/10.1016/j.jhydrol.2012.02.033
https://www.jswconline.org/content/38/5/381.short
http://doi.org/10.1016/j.geomorph.2013.10.027
http://doi.org/10.1016/j.scitotenv.2015.04.027
http://doi.org/10.1016/j.scitotenv.2014.03.069
http://doi.org/10.1016/S1002-0160(15)60039-X
http://doi.org/10.1080/15481603.2020.1760434
http://doi.org/10.1016/j.ecolind.2016.02.052
http://doi.org/10.1080/13658810802443457
http://doi.org/10.1007/s11430-019-9636-0
http://doi.org/10.1016/j.jenvman.2021.112534
http://www.ncbi.nlm.nih.gov/pubmed/33857711
http://doi.org/10.3390/rs13061174
http://doi.org/10.1016/j.ecoser.2020.101103
http://doi.org/10.1016/j.ecoleng.2016.10.030
http://doi.org/10.2134/jeq2015.11.0567
http://doi.org/10.1016/j.ecolind.2018.09.052
http://doi.org/10.1016/j.ecolind.2021.107745

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources 
	Methods 
	LULC Maps 
	Sensitivity Analysis 
	Carbon Storage 
	Water Yield 
	Soil Conservation 
	Identification of Driving Factors 
	Factors Influencing ESs 


	Results 
	Land Use Changes from 1985 to 2020 in Beijing 
	Sensitivity of Parameters 
	Spatio-Temporal Changes in ESs from 1985 to 2020 
	Driving Factor Analysis 

	Discussion 
	Comparison with Previous Studies 
	Strengths and Limitations 

	Conclusions 
	References

