Chloroplast Genomic Variation in Euonymus maackii Rupr. and Its Differentiation Time in Euonymus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection and Whole-Genome Sequencing
2.2. De novo Assembly and Annotation
2.3. Comparative Analysis
2.4. Phylogenetic Analysis and Differentiation Time Estimation
3. Results
3.1. Characterization of Plastome Features
3.2. Sequence Variation
3.3. Phylogenetic Relationships and Divergence Time Estimation
4. Discussion
4.1. Intraspecific Nucleotide Mutations and Highly Variable Regions
4.2. Intraspecific Indels and Their Distribution Patterns
4.3. Phylogenetic Relationships and Molecular Dating
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weng, H.; Liu, Y.H.; Zhu, Y.W.; Sun, W.Z.; Liu, K.; Zuo, L.M.; Gu, L.N. A Study on the Drought Resistance and Salt Tolerance of Euonymus Bungenus Maxim. Arid. Zone Res. 1996, 13, 67–72. [Google Scholar]
- Su, W.G.; Meng, Q.T.; Wang, W. Study on Extraction and Stability of Yellow Pigment from Euonymus Maackii Rupr. North. Hortic. 2011, 2011, 52–55. [Google Scholar]
- Liu, J.; Cui, Q.; Kang, Y.; Meng, Y.; Gao, M.; Efferth, T.; Fu, Y. Euonymus Maackii Rupr. Seed Oil as a New Potential Non-Edible Feedstock for Biodiesel. Renew. Energ. 2019, 133, 261–267. [Google Scholar] [CrossRef]
- Li, N.W.; Teng, W.J.; Shu, X.C. Growth Adaptability of Euonytnus Maackii in Coastal Areas. J. Anhui Agr. Sci. 2018, 46, 76–78. [Google Scholar]
- Ning, K.; Zhou, T.; Jiang, C.Z.; Wu, H.M.; Jiang, J.L.; Chen, J.; Ei-kassaby, Y.A.; Ma, Y. Rapid and Efficient Leaf Regeneration Propagation System for Euonymus Bungeanus. Biol. Plant. 2021, 65, 118–125. [Google Scholar] [CrossRef]
- Yang, H.T.; Wang, R.J.; Wang, S.L.; Li, J.R.; Zhang, D.J.; Wei, H.; Zhang, K.Z.; Li, Y. Horticultural Characteristics and Cultivation Techniques of 3 Species of Colored Leas Silk Cotton Tree in Puyang. Agr. Sci. 2018, 7, 87–89. [Google Scholar]
- Ding, Y.; Zhang, J.; Liu, C.; Li, Z. Preparation of Polysaccharides from Euonymus Bungeanus Fruit and Anti-Tumor Activity. J. Northwest AF Univ. 2018, 46, 122–129. [Google Scholar]
- Pang, C.; Zuo, Y.; Zhang, G.; Zhen, P. Chemical Constituents from the Seeds of Euonymus Maackii and their Antitumor Activities. Chin. Tradit. Pat. Med. 2020, 42, 1208–1214. [Google Scholar]
- Fu, Y.; Wang, W.; Gong, Q.; Zhang, H.; Zhao, W. Neuroprotective Dihydro-β-Agarofuran-Type Desquiterpenes from the Seeds of Euonymus Maackii. J. Nat. Prod. 2019, 82, 3096–3103. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K.; et al. The Complete Nucleotide Sequence of the Tobacco Chloroplast Genome-its Gene Organization and Expression. EMBO J. 1986, 5, 2043–2049. [Google Scholar] [CrossRef]
- Birky, C.W. Uniparental Inheritance of Mitochondrial and Chloroplast Genes-Mechanisms and Evolution. Proc. Natl. Acad. Sci. USA 1995, 92, 11331–11338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeb, U.; Wang, X.; Fiaz, S.; Azizullah, A.; Shah, A.A.; Ali, S.; Rahim, F.; Ullah, H.; Leghari, U.A.; Wang, W.; et al. Novel Insights into Pinus Species Plastids Genome through Phylogenetic Relationships and Repeat Sequence Analysis. PLoS ONE 2022, 17, e0262040. [Google Scholar] [CrossRef]
- Jansen, R.K.; Cai, Z.; Raubeson, L.A.; Daniell, H.; Depamphilis, C.W.; Leebens-Mack, J.; Müller, K.F.; Guisinger-Bellian, M.; Haberle, R.C.; Hansen, A.K.; et al. Analysis of 81 Genes from 64 Plastid Genomes Resolves Relationships in Angiosperms and Identifes Genome-Scale Evolutionary Patterns. Proc. Natl. Acad. Sci. USA 2007, 104, 19369–19374. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.X.; Dong, X.; Yang, J.X.; Guo, C.; Cao, B.B.; Guo, Y.; Hu, G.W. Complete Chloroplast Genome of Clethra Fargesii Franch., an Original Sympetalous Plant from Central China: Comparative Analysis, Adaptive Evolution, and Phylogenetic Relationships. Forests 2021, 12, 441. [Google Scholar] [CrossRef]
- Yang, J.; Choi, M.J.; Kim, S.H.; Choi, H.J.; Kim, S.C. Plastome Characterization and Phylogenomic Analysis Yield New Insight into the Evolutionary Relationship among the Species of the Subgenus Bryocles (Hosta; Asparagaceae) in East Asia. Plants 2021, 10, 1980. [Google Scholar] [CrossRef]
- Chung, H.Y.; Won, S.Y.; Kim, Y.K.; Kim, J.S. Development of the Chloroplast Genome-Based InDel Markers in Niitaka (Pyrus Pyrifolia) and its Application. Plant Biotechnol. Rep. 2019, 13, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Zeb, U.; Wang, X.; AzizUllah, A.; Fiza, S.; Khan, H.; Ullah, S.; Ali, H.; Shahzad, K. Comparative Genome Sequence and Phylogenetic Analysis of Chloroplast for Evolutionary Relationship among Pinus Species. Saudi J. Bio. Sci. 2021. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, J.; Oh, K.-R.; Kim, A.-K.; Choi, C. Comparative Analysis of Complete Chloroplast Genome Sequences and Insertion-Deletion (Indel) Polymorphisms to Distinguish Five Vaccinium Species. Forests 2020, 11, 927. [Google Scholar] [CrossRef]
- Nock, C.J.; Hardner, C.M.; Motenegro, J.D.; Ahmad, T.; Ainnatul, A.; Hayashi, S.; Playford, J.; Edwards, D.; Batley, J. Wild Origins of Macadamia Domestication Identified through Intraspecific Chloroplast Genome Sequencing. Front. Plant Sci. 2019, 10, 334. [Google Scholar] [CrossRef]
- Xiao, S.; Xu, P.; Deng, Y.; Dai, X.; Zhao, L.; Heider, B.; Zhang, A.; Zhou, Z.; Cao, Q. Comparative Analysis of Chloroplast Genomes of Cultivars and Wild Species of Sweetpotato (Ipomoea Batatas [L.] Lam). BMC Genom. 2021, 22, 262. [Google Scholar]
- Park, J.; Xi, H.; Kim, Y. The Complete Chloroplast Genome of Arabidopsis Thaliana Isolated in Korea (Brassicaceae)-An Investigation of Intraspecific Variations of the Chloroplast Genome of Korean A. Thaliana. Int. J. Genom. 2020, 3236461, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ishizuka, W.; Hara, T.; Goto, S. Complete Chloroplast Genome of Japanese Larch (Larix Kaempferi): Insight into IntraSpeciefic Variation with an Isolated Northern Limit Population. Forests 2020, 11, 884. [Google Scholar] [CrossRef]
- Feng, L.; Liu, J.; Gao, C.; Wu, H.; Li, G.; Gao, L. Higher Genomic Variation in Wild than Cultivated Rubber Trees, Hevea Brasiliensis, Revealed by Comparative Analyses of Chloroplast Genomes. Front. Ecol. Evol. 2020, 8, 237. [Google Scholar] [CrossRef]
- Su, Q.; Liu, L.X.; Zhao, M.Y.; Zhang, C.C.; Zhang, D.L.; Li, Y.Y.; Li, S.P. The Complete Chloroplast Genomes of Seventeen Aegilops Tauschii: Genome Comparative Analysis and Phylogenetic Inference. PeerJ 2020, 8, 8678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.P.; Lou, G.L.; Cai, X.R.; Zhang, B.; Cheng, Y.Q.; Wang, H.W. Comparison of the Complete Plastomes and the Phylogenetic Analysis of Paulownia Species. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De Novo Assembly of Organelle Genomes from Whole Genome Data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar] [PubMed] [Green Version]
- Zhao, Q.Y.; Wang, Y.; Kong, Y.M.; Luo, D.; Li, X.; Hao, P. Optimizing de Novo Transcriptome Assembly from Short-Read RNA-Seq Data: A Comparative Study. BMC Bioinform. 2011, 12 (Suppl. S2), 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics 2012, 28, 647–1649. [Google Scholar] [CrossRef]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef]
- Miller, M.; Pfeifer, W.; Schwartz, T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. Proc. Gatew. Comput. Environ. 2010, 14, 1–8. [Google Scholar]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Dong, Y.; Liu, Y.; Yu, X.; Yang, M.; Huang, Y. Comparative Analyses of Euonymus Chloroplast Genomes: Genetic Structure, Screening for Loci with Suitable Polymorphism, Positive Selection Genes, and Phylogenetic Relationships within Celastrineae. Front. Plant Sci. 2021, 11, 2307. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. Figtree Version 1.4.3 (Computer Program). Available online: http://tree.bio.ed.ac.uk (accessed on 14 August 2018).
- Park, J.; Min, J.; Kim, Y.; Chung, Y. The Comparative Analyses of Six Complete Chloroplast Genomes of Morphologically Diverse Chenopodium album L (Amaranthaceae) Collected in Korea. Int. J. Genom. 2021, 6, 643444. [Google Scholar] [CrossRef] [PubMed]
- Muraguri, S.; Xu, W.; Chapman, M.; Muchuri, A.; Oluwaniyi, A.; Oyebanji, O.; Liu, A. Intraspecific Variation within Castor Bean (Ricinus Communis L.) Based on Chloroplast Genomes. Ind. Crop. Prod. 2020, 155, 112779. [Google Scholar] [CrossRef]
- Sancho, R.; Cantalapiedra, C.P.; Lopez-Alvarez, D.; Gordon, S.P.; Vogel, J.P.; Catalan, P.; Contreras-Moreira, B. Comparative Plastome Genomics and Phylogenomics of Brachypodium: Flowering Time Signatures, Introgression and Recombination in Recently Diverged Ecotypes. New Phytol. 2018, 218, 1631–1644. [Google Scholar] [CrossRef] [Green Version]
- Heo, K.; Park, J.; Xi, H.; Min, J. The Complete Chloroplast Genome of Agrimonia Pilosa Ledeb. Isolated in Korea (Rosaceae): Investigation of Intraspecific Variations on its Chloroplast Genomes. Mitochondrial DNA Part B 2020, 5, 2264–2266. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Xu, Y.; Wang, L.; Liu, J.; Yu, J.; Chen, H. High Level of Intraspecific Divergence and Low Frequency of RNA Editing in the Chloroplast Genome Sequence of Tagetes Erecta. Mitochondrial DNA Part B 2020, 5, 2948–2953. [Google Scholar] [CrossRef]
- Cao, J.L.; Jiang, D.; Zhao, Z.Y.; Yang, S.B.; Zhang, Y.J.; Zhang, T.; Zhong, W.H.; Yuang, Q.J.; Huang, L.Q. Development of Chloroplast Genomic Resources in Chinese Yam (Dioscorea Polystachya). BioMed. Res. Int. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Mikhaylova, Y.; Gordon, M.; Maslova, A.R.; Polev, D.E.; Punina, E.O.; Rodionov, A.V. Chloroplast Genome of Native Silene Latifolia subsp. Alba from Fennoscandia Shows High Level of Differences from Invasive White Campion. Plant Mol. Biol. Rep. 2020, 39, 226–239. [Google Scholar] [CrossRef]
- Silva, S.R.; Pinheiro, D.G.; Penha, H.A.; Płachno, B.J.; Michael, T.P.; Meer, E.J.; Miranda, V.F.O.; Varani, A.M. Intraspecific Variation within the Utricularia Amethystina Species Morphotypes Based on Chloroplast Genomes. Int. J. Mol. Sci. 2019, 20, 6130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.P.; Zhang, X.C. Phylogeography of the Widespread Fern Lemmaphyllum in East Asia: Species Differentiation and Population Dynamics in Response to Change in Climate and Geography. J. Syst. Evo. 2021. [Google Scholar] [CrossRef]
- Choi, Y.G.; Yun, N.; Park, J.; Xi, H.; Min, J.; Kim, Y.; Oh, S.H. The Second Complete Chloroplast Genome Sequence of the Viburnum Erosum Adoxaceae Showed a Low Level of Intra Species Variations. Mitochondrial DNA Part B 2020, 5, 271–272. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Oh, S. A Second Complete Chloroplast Genome Sequence of Fagus Multinervis Nakai (Fagaceae): Intraspecific Variations on Chloroplast Genome. Mitochondrial DNA Part B 2020, 5, 1868–1869. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Park, J.; Chung, Y. The Comparison of the Complete Chloroplast Genome of Suaeda Japonica Makino Presenting Different External Morphology (Amaranthaceae). Mitochondrial DNA Part B 2020, 5, 1616–1618. [Google Scholar] [CrossRef]
- Kwon, W.; Kim, Y.; Park, J. The Complete Chloroplast Genome of Korean Marchantia Polymorpha subsp. Ruderalis Bischl. & Boisselier: Low Genetic Diversity between Korea and Japan. Mitochondrial DNA Part B 2019, 4, 959–960. [Google Scholar]
- Zhang, R.S.; Yang, J.; Hu, H.L.; Xia, R.X.; Li, Y.P.; Su, J.F.; Li, Q.; Liu, Y.Q.; Qin, L. A High Level of Chloroplast Genome Sequence Variability in the Sawtooth Oak Quercus Acutissima. Int. J. Biol. Macromol. 2020, 152, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Park, J. The Complete Chloroplast Genome of Zoysia Matrella (L.) Merr. Isolated in Korea (Poaceae): Investigation of Intraspecific Variations on Chloroplast Genomes. Mitochondrial DNA Part B 2021, 6, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.C.; Ming, X.; Tu, Q.; Wu, X.; Wang, R.H. Observation of Leaf Epidermal Cells of 28 Species of Euonymus in China by Electron Microscope Scanning. Hunan Agr. Sci. 2012, 9, 107–112. [Google Scholar]
- Liu, Y.; Meng, S.; Liu, Q. A Numerical Taxonomic Analysis of Glyptopetalum and Euonymus (Celastraceae). Guihaia 2021, 41, 92–102. [Google Scholar]
- Yao, C.Y.; Du, C.; Zuo, Y.J.; Liu, Q.R.; Ma, J.S. The Significance of Floral Features within Infrageneric Classification of Euonymus (Celastraceae). Flora 2018, 242, 53–60. [Google Scholar] [CrossRef]
Euonymus maackii 1 | Euonymus maackii 2 | Euonymus japonicus | Euonymus schensianus | Euonymus hamiltonianus | Euonymus szechuanensis | Euonymus phellomanus | Euonymus fortunei | |
---|---|---|---|---|---|---|---|---|
Accession number | MW771518 | MW288091 | NC_028067 | NC_036019 | NC_037518 | NC_047463.1 | MW288092 | MW288090 |
Total plastome size (bp) | 157,551 | 156,860 | 157,637 | 157,702 | 157,360 | 157,465 | 157,543 | 157,611 |
LSC (bp) | 86,525 | 85,826 | 85,941 | 86,026 | 86,399 | 86,261 | 86,299 | 85,892 |
IR (bp) | 26,345 | 26,328 | 26,678 | 26,484 | 26,322 | 26,366 | 26,354 | 26,700 |
SSC (bp) | 18,337 | 18,378 | 18,340 | 18,708 | 18,317 | 18,472 | 18,536 | 18,319 |
Total number of genes | 131 | 131 | 130 | 130 | 131 | 133 | 130 | 130 |
CDSs | 86 | 86 | 85 | 85 | 86 | 88 | 85 | 85 |
tRNAs | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 |
rRNAs | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
GC content (%) | 37.2 | 37.3 | 37.3 | 37.2 | 37.3 | 37.2 | 37.3 | 37.3 |
Category of Genes | Group of Genes | Names of Genes | ||||
---|---|---|---|---|---|---|
Photosynthesis-related genes | photosystem I | psaA | psaB | psaC | psaI | psaJ |
ycf3 ** | ycf4 | |||||
photosystem II | psbA | psbB | psbC | psbD | psbE | |
psbF | psbH | psbI | psbJ | psbK | ||
psbL | psbM | psbN | psbT | psbZ | ||
NADPH dehydrogenase | ndhA * | ndhB * | ndhC | ndhD | ndhE | |
ndhF | ndhG | ndhH | ndhl | ndhJ | ||
ndhK | ||||||
ATP synthase | atpA | atpB | atpE | atpF * | atpH | |
atpI | ||||||
Rubisco | rbcL | |||||
cytochrome b/f complex | petA | petB * | petD* | petG | petL | |
petN | ||||||
cytochrome c synthesis | ccsA | |||||
Transcription- and translation-related genes | ribosomal proteins | rpl2 * | rpl14 | rpl16 * | rpl20 | rpl22 |
rpl23 | rpl32 | rpl33 | rpl36 | rps2 | ||
rps3 | rps4 | rps7 | rps8 | rps11 | ||
rps12 ** | rps14 | rpsl5 | rpsl6 | rps18 | ||
rps19 | ||||||
transcription | rpoA | rpoB | rpoC1* | rpoC2 | ||
translation initiation factor | infA | |||||
RNA genes | transfer RNA | trnA-UGC * | trnC-GCA | trnD-GUC | trnE-UUC | trnF-GAA |
trnfM-CAU | trnG-GCC | trnG-UCC * | trnH-GUG | trnI-CAU | ||
trnI-GAU * | trnK-UUU * | trnL-CAA | trnL-UAA * | trnL-UAG | ||
trnM-CAU | trnN-GUU | trnP-UGG | trnQ-UUG | trnR-ACG | ||
trnR-UCU | trnS-GCU | trnS-GGA | trnS-UGA | trnT-GGU | ||
trnT-UGU | trnV-GAC | trnV-UAC * | trnW-CCA | trnY-GUA | ||
ribosomal RNA | rrn4.5 | rrn5 | rrn16 | rrn23 | ||
Other genes | RNA processing | matK | ||||
fatty acid synthesis | accD | |||||
carbon metabolism | cemA | |||||
proteolysis | clpP ** | |||||
Genes of unknown function | conserved reading frames | ycf1 | ycf2 |
Group | Genome | Structural Region | Noncoding Region | Coding Region | ||
---|---|---|---|---|---|---|
LSC | IRa | SSC | ||||
Euonymus maackii | 0.00443 | 0.00562 | 0.00086 | 0.00914 | 0.00607 | 0.00299 |
Euonymus | 0.00887 | 0.01131 | 0.00379 | 0.01139 | 0.01149 | 0.00619 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-C.; Zhou, H.-Y.; Liu, X.-Q. Chloroplast Genomic Variation in Euonymus maackii Rupr. and Its Differentiation Time in Euonymus. Forests 2022, 13, 265. https://doi.org/10.3390/f13020265
Wang Y-C, Zhou H-Y, Liu X-Q. Chloroplast Genomic Variation in Euonymus maackii Rupr. and Its Differentiation Time in Euonymus. Forests. 2022; 13(2):265. https://doi.org/10.3390/f13020265
Chicago/Turabian StyleWang, Yu-Cheng, Hao-Yang Zhou, and Xiu-Qun Liu. 2022. "Chloroplast Genomic Variation in Euonymus maackii Rupr. and Its Differentiation Time in Euonymus" Forests 13, no. 2: 265. https://doi.org/10.3390/f13020265
APA StyleWang, Y. -C., Zhou, H. -Y., & Liu, X. -Q. (2022). Chloroplast Genomic Variation in Euonymus maackii Rupr. and Its Differentiation Time in Euonymus. Forests, 13(2), 265. https://doi.org/10.3390/f13020265