Processing and Wood Factors Influence Medium Density Fiberboard Production from Young Eucalyptus grandis, E. amplifolia, Corymbia torelliana, and Cottonwood Grown in Florida USA
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase I
3.2. Phase II
4. Conclusions
- In Phase I, using 4% PF resin in a tube blender, there was some variation among species, considerable variation within species, minor within-tree variation, some influence of basic wood characteristics on MDF properties TS, W, IB, MOE, and MOR, and a large sampling variation for some MDF properties;
- The top 6 of the 17 S/GB genotypes were three of the six 8.3-year-old EA progenies (Ea1, Ea2, and Ea6), one of the three 7- to 13-year-old EG clones (Eg2), one of three 3.2-year-old PD clones (Pd4), and the one ~55-year-old PT tree (Pt1);
- Phase II, involving the six top S/GBs, provided valuable insight into the needed fiber and processes improvements. For example, MDF made with UF resin at 8% or 12% had generally better performance properties than PF resin at 4% or 6%;
- Screened TMP fiber produced better MDF than unscreened fiber, and resin application by tube blenders made better MDF than by drum blenders;
- Overall, genetic variation among and, particularly, within these species affected MDF performance properties;
- Refining and MDF-making aspects have such major impacts on MDF properties that specific processing requirements are needed and must be optimized for future commercial MDF options for appropriate EG, EA, PD, and/or CT genotypes;
- EG and EA utilization may, thus, expand from the current mulchwood market to various interior-use wood composites such as MDF and cement board;
- These results are encouraging for the development and use of wood composites from SRWCs in Florida and the southeastern USA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockwood, D.L.; Carter, D.R.; Langholtz, M.H.; Stricker, J.A. Eucalyptus and Populus short rotation woody crops for phosphate mined lands in Florida USA. Biomass Bioenergy 2006, 30, 728–734. [Google Scholar] [CrossRef]
- Langholtz, M.H.; Carter, D.R.; Alavalapati, J.; Rockwood, D.L. The economic feasibility of reclaiming phosphate mined lands with short-rotation woody crops in Florida. J. For. Econ. 2007, 12, 237–249. [Google Scholar] [CrossRef]
- Meskimen, G.F.; Rockwood, D.L.; Reddy, K.V. Development of Eucalyptus clones for a summer rainfall environment with periodic severe frosts. New For. 1987, 3, 197–205. Available online: https://link.springer.com/article/10.1007/BF00118757 (accessed on 15 January 2022). [CrossRef]
- Segrest, S.A.; Rockwood, D.L.; Stricker, J.A.; Green, A.E.S. Biomass Cofiring with Coal at Lakeland Utilities. Southeastern Regional Biomass Energy Program Publication No. 219287-1, TVA, Muscle Shoals, AL. 1998. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197.5270&rep=rep1&type=pdf (accessed on 15 January 2022).
- Groom, L.H.; Mott, L.; Shaler, S.M. Relationship between fiber furnish properties and the structural performance of MDF. In Proceedings of the 33rd International Particleboard/Composite Materials Symposium Proceedings, Pullman, WA, USA, 13–15 April 1999. [Google Scholar]
- Geimer, R.L. Properties of structural flakeboard manufactured from 7-year-old intensively cultured poplar, tamarack, and pine. For. Prod. J. 1986, 36, 42–46. [Google Scholar]
- Geimer, R.L.; Crist, J.B. Structural flakeboard from short-rotation, intensively cultured hybrid populus clones. For. Prod. J. 1980, 30, 42–48. [Google Scholar]
- Gorrini, B.; Poblete, H.; Hernandez, G.; Dunn, F. Particleboard and MDF using Eucalyptus nitens: Industrial scale experiments. Bosque 2004, 25, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.J. The relation of fiber and pulp properties to the properties of structural fiberboard products. Tappi 1960, 43, 600–602. [Google Scholar]
- Krzysik, A.M.; Muehl, J.H.; Youngquist, J.A.; Franca, F.S. Medium density fiberboard made from Eucalyptus saligna. For. Prod. J. 2001, 51, 47–50. [Google Scholar]
- Shi, J.L.; Zhang, S.Y.; Riedl, B.; Brunette, G. Flexural properties, internal bond strength, and dimensional stability of medium density fiberboard panels made from hybrid poplar clones. Wood Fiber Sci. 2005, 37, 629–637. [Google Scholar]
- Maloney, T.M. Modern Particleboard & Dry-Process Fiberboard Manufacturing; Updated Edition; Miller Freeman Inc.: San Francisco, CA, USA, 1993. [Google Scholar]
- Myers, G.C. Relationship of Fiber Preparation and Characteristics to Performance of Medium-Density Hardboards. 1983. Available online: https://www.fpl.fs.fed.us/documnts/pdf1993/myers93b.pdf (accessed on 15 January 2022).
- Myers, G.C.; Crist, J.B. Feasibility of manufacturing hardboard from short-rotation intensively cultured Populus. For. Prod. J. 1986, 36, 37–44. [Google Scholar]
- Nelson, N.D. Effects of wood and pulp properties on medium density, dry formed hardboard. For. Prod. J. 1973, 23, 72–80. [Google Scholar]
- Woodson, G.E. Effects of bark, density profile, and resin content on medium density fiberboards from Southern hardboards. For. Prod. J. 1976, 26, 39–42. [Google Scholar]
- Pugel, A.D.; Price, E.W.; Hse, C.Y. Composites from southern pine juvenile wood. Part 1. Panel fabrication and initial properties. For. Prod. J. 1989, 40, 29–33. [Google Scholar]
- Pugel, A.D.; Price, E.W.; Hse, C.Y. Composites from southern pine juvenile wood. Part 2. Durability and dimensional stability. For. Prod. J. 1990, 40, 57–61. [Google Scholar]
- Shi, J.L.; Zhang, S.Y.; Riedl, B. Effect of juvenile wood on strength properties and dimensional stability of black spruce medium-density fiberboard panels. Holzforschung 2005, 59, 1–9. [Google Scholar] [CrossRef]
- Shi, J.L.; Zhang, S.Y.; Riedl, B. Multivariate modeling of MDF panel properties in relation to wood fiber characteristics. Holzforschung 2006, 60, 285–293. [Google Scholar] [CrossRef]
- Savastano, H., Jr.; Warden, P.G.; Coutts, R.S.P. Potential of alternative fibre cements as building materials for developing areas, Cement and Concrete Composites. Infrastruct. Dev. 2003, 25, 585–592. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0958946502000719270c4f3ceba4d414c895120ca31aa2de (accessed on 15 January 2022).
- Savastano, H., Jr.; Warden, P.G.; Coutts, R.S.P. Microstructure and mechanical properties of waste fibre–cement composites. Cem. Concr. Compos. 2005, 27, 583–592. [Google Scholar] [CrossRef]
- Cai, Z.; Wescott, J.M.; Winandy, J.E. Strandboard made from soy-based adhesive with high soy content. In Proceedings of the Wood Adhesives 2005, San Diego, CA, USA, 2–4 November 2005; Forest Products Society: Madison, WI, USA, 2005; pp. 531–537. [Google Scholar]
- American Society for Testing and Materials. Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials; Annual Book of ASTM Standards. ASTM D 1037–12; ASTM: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Cai, Z.; Muehl, J.H.; Winandy, J.E. Effects of panel density and mat moisture content on processing medium density fiberboard. For. Prod. J. 2006, 56, 20–25. [Google Scholar]
- Li, X.; Cai, Z.; Winandy, J.E.; Basta, A.H. Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards. Ind. Crops Prod. 2011, 33, 665–669. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Rudie, A.W.; Ralph, S.A.; Zhu, J.Y.; Winandy, J.E. Energy product options for Eucalyptus species grown as Short Rotation Woody Crops. Int. J. Mol. Sci. 2008, 9, 1361–1378. [Google Scholar] [CrossRef]
- American National Standard Institute. Standard ANSI A208.2-2016 Medium Density Fiberboard (MDF) for Interior Applications; Composite Panel Association: Leesburg, VA, USA, 2016; 12p. [Google Scholar]
- Pelaez-Samaniego, M.R.; Yadama, V.; Lowell, E.; Espinoza-Herrera, R. A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 2013, 47, 1285–1319. [Google Scholar] [CrossRef]
- Cai, Z.; Muehl, J.H.; Winandy, J.E. Effects of pressing schedule on formation of vertical density profile for MDF panels. In Proceedings of the 40th International Wood Composites Symposium Proceedings, Seattle, WA, USA, 11–12 April 2006; Washington State University: Pullman, WA, USA, 2006. [Google Scholar]
- Ragauskas, A.J. Fast Curing of Composite Wood Products; USDOE Office of Industrial Technologies (OIT)-(EE-20). Final Technical Report GO10625; USDOE Office of Industrial Technologies: Atlanta, GA, USA, 2006. Available online: https://www.osti.gov/servlets/purl/892708-g8YT2y/ (accessed on 15 January 2022).
- Stark, N.; Cai, Z. Chapter 11: Wood-based composite materials: Panel products, glued laminated timber, structural composite lumber and wood-nonwood composites. In 2021. Wood Handbook: Wood as an Engineering Material; FPL-GTR-282; Forest Products Laboratory: Madison, WI, USA, 2021; 29p. [Google Scholar]
- Cai, Z.; Senalik, C.A.; Ross, R.J. Chapter 12: Mechanical properties of wood-based composite materials. In Wood Handbook: Wood as an Engineering Material. FPL-GTR-282; Forest Products Laboratory: Madison, WI, USA, 2021; 15p. [Google Scholar]
Species | Genotype | S/GB | Age (Years) | # of Trees | # of Logs |
---|---|---|---|---|---|
PT | unknown | Pt1 | unknown | 1 | 1 |
PD | 94-1 | Pd2-3 | 3.2 | 3 | 2-3 |
PD | Ken-8 | Pd4 | 3.2 | 2 | 1-3 |
PD | S13C20 | Pd5 | 3.2 | 2 | 2-3 |
EG | 2805 | Eg1 | 11.8 | 1 | 1 |
EG | 2814 | Eg2 | 6.7 | 1 | 1 |
EG | 2817 | Eg3 | 13.3 | 1 | 1 |
EA | 4853 | Ea1 | 8.3 | 1 | 1 |
EA | - | Ea2/3 | 8.3 | - | - |
EA | 4875 | Ea4 | 8.3 | 1 | 1 |
EA | 4836 | Ea5 | 8.3 | 1 | 5 |
EA | 4543 | Ea6 | 8.3 | 1 | 1 |
CT | unknown | Ct1 | 15 | 1 | 1 |
CT | unknown | Ct2 | 15 | 1 | 1 |
CT | unknown | Ct3 | 15 | 1 | 1 |
CT | unknown | Ct4 | 15 | 1 | 1 |
S/GB | Tube Blender | Drum Blender | ||||||
---|---|---|---|---|---|---|---|---|
PF Unscreened | PF Screened | UF Unscreened | UF Unscreened | |||||
4% | 6% | 4% | 6% | 8% | 12% | 8% | 12% | |
Pt1 | 5 | 1 | 1 | 1 | 1 | 1 | ||
Pd4 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Eg2 | 5 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
Ea4 | 5 | 1 | 2 | 1 | 1 | 1 | ||
Ct3 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Total | 25 | 6 | 7 | 6 | 6 | 6 | 3 | 3 |
Species S/GB | Genotype | Age (Years) | No. of Trees | Density (kg/m3) | Moisture Content (%) | Fines (%) | pH | Fiber Length (mm) |
---|---|---|---|---|---|---|---|---|
EG | 3 clones | 10.6 | 3 | 544 | 107 | 38.9 | 4.05 | 0.673 |
Eg1 | 2805 | 11.8 | 1 | 522 | 104 | 30.3 | 3.96 | - |
Eg2 | 2814 | 6.7 | 1 | 470 | 129 | 32.1 | 4.30 | - |
Eg3 | 2817 | 13.3 | 1 | 640 | 89 | 54.1 | 3.92 | - |
EA | 4 progenies | 8.3 | 4 | 508 | 108 | 59.5 | 3.97 | 0.502 |
Ea1 | 4853 | 8.3 | 1 | 506 | 109 | 70.7 | - | - |
Ea4 | 4875 | 8.3 | 1 | 529 | 88 | 60.5 | 4.11 | - |
Ea5 | 4836 | 8.3 | 1 | 527 | 107 | 53.1 | 3.89 | - |
Ea6 | 4843 | 8.3 | 1 | 469 | 115 | 53.5 | 3.89 | - |
CT | 4 trees | 15 | 4 | 526 | 101 | 50.0 | 4.20 | 0.472 |
Ct1 | unknown | 15 | 1 | 526 | 80 | 48.6 | 4.17 | - |
Ct2 | unknown | 15 | 1 | 610 | 98 | 52.6 | 4.20 | - |
Ct3 | unknown | 15 | 1 | 555 | 94 | 37.1 | 4.23 | - |
Ct4 | unknown | 15 | 1 | 411 | 131 | 61.5 | 4.21 | - |
PD | 3 clones | 3.2 | 4 | 367 | 0.670 | |||
Pd2-3 | 94-1 | 3.2 | 1 | 369 | 4.54 | - | ||
Pd4 | Ken8 | 3.2 | 1 | 381 | 4.51 | - | ||
Pd5 | S13C20 | 3.2 | 1 | 351 | 4.41 | - | ||
P Pt1 | unknown | ~55 | 1 | 360 | 4.17 | 0.754 |
TS | WA | MOE | MOR | IB | |
---|---|---|---|---|---|
Log SG | 0.77 | 0.78 | 0.13 | 0.04 | 0.06 |
kW | 0.50 | 0.51 | −0.10 | −0.12 | −0.09 |
Fines | −0.44 | −0.36 | −0.38 | −0.33 | −0.30 |
pH | −0.54 | −0.56 | −0.21 | −0.18 | −0.36 |
Buff | 0.35 | 0.42 | −0.24 | −0.23 | 0.00 |
TS | WA | MOE | MOR | IB | |
---|---|---|---|---|---|
TS | 0.96 | 0.19 | 0.19 | 0.20 | |
WA | 0.07 | 0.05 | 0.06 | ||
MOE | 0.97 | 0.76 | |||
MOR | 0.81 |
Species | TS24 (%) | WA24 (%) | IB (kPa) | MOE (GPa) | MOR (MPa) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | Mean | Range | |
Pt | 60.7 bc | - | 156.6 bc | - | 296 | - | 1.47 | - | 7.72 | - |
Pd | 48.7 c | 41.8–58.8 | 137.6 c | 130.5–145.7 | 445 | 0.0–445 | 1.17 | 0.88–1.70 | 5.01 | 3.37–9.52 |
Eg | 77.1 a | 73.6–81.6 | 186.4 a | 179.1–186.0 | 226 | 169–272 | 1.59 | 1.42–1.84 | 8.01 | 6.64–10.27 |
Ea | 71.0 ab | 62.8–77.9 | 173.9 ab | 160.5–189.2 | 294 | 193–483 | 1.47 | 1.20–1.71 | 7.74 | 5.82–9.41 |
Ct | 80.5 a | 64.5–88.9 | 192.2 a | 177.8–205.6 | 196 | 138–263 | 1.24 | 0.93–1.45 | 5.90 | 4.43–7.74 |
Ave. | 68.1 | 170.7 | 264 | 1.35 | 6.76 | |||||
Significance of Source of Variation | ||||||||||
Species | 0.0004 | 0.0002 | 0.4025 | 0.3429 | 0.4270 | |||||
Geno | 0.0150 | 0.0909 | <0.0001 | <0.0001 | <0.0001 | |||||
Batch | 0.0412 | 0.1772 | 0.5240 | 0.4877 | 0.8014 | |||||
Board | <0.0001 | <0.0001 | <0.0001 | 0.0095 | <0.0001 |
S/GB | Density (kg/m3) | TS24 (%) | WA24 (%) | MOE (GPa) | MOR (MPa) | IB (kPa) |
---|---|---|---|---|---|---|
Pt1 | 360 | 60.7 | 156.6 | 1.466 bcdef | 7.72 bc | 269.9 b |
Pd2-3 | 369 | 45.4 | 137.1 | 0.885 bcdef | 3.37 h | - |
Pd4 | 381 | 58.8 | 145.7 | 1.697 abc | 9.52 a | 445 a |
Pd5 | 351 | 41.8 | 130.5 | 0.919 gh | 3.77 gh | - |
Eg1 | 11.8 | 73.6 | 179.1 | 1.418 cdef | 6.64 bcde | - |
Eg2 | 6.7 | 76.2 | 186.0 | 1.835 a | 10.27 a | 272 bcd |
Eg3 | 13.3 | 81.6 | 194.1 | 1.507 bcde | 7.12 bcd | 169 bcd |
Ea1 | 506 | 70.4 | 168.4 | 1.591 abcd | 7.86 b | 301 b |
Ea2 | - | 69.6 | 170.3 | 1.754 ab | 9.59 a | 237 bcd |
Ea3 | - | 72.7 | 184.9 | 1.273 ef | 6.32 cde | 193 bcd |
Ea4 | 529 | 77.9 | 177.2 | 1.254 ef | 7.14 bcd | 265 bcd |
Ea5 | 527 | 73.0 | 189.2 | 1.195 fg | 5.82 def | 281 bc |
Ea6 | 469 | 62.8 | 160.5 | 1.709 abc | 9.62 a | 488 a |
Ct1 | 526 | 88.9 | 205.6 | 0.927 gh | 4.44 fgh | 138 d |
Ct2 | 610 | 80.0 | 198.4 | 1.197 fg | 5.14 efg | 159 cd |
Ct3 | 555 | 74.5 | 177.8 | 1.370 def | 6.30 cde | 263 bcd |
Ct4 | 411 | 78.5 | 187.0 | 1.448 cdef | 7.74 bc | 225 bcd |
Species S/GB | Average Rank & Factored Score | Combined Rank | |||||
---|---|---|---|---|---|---|---|
TS24 | WA24 | IB | MOE | MOR | |||
Ct | 5 | 5 | 5 | 4 | 4 | ||
Ct1 | 17 | 17 | 15 | 15 | 15 | 15.80 | 15 |
Ct2 | 15 | 16 | 14 | 13 | 14 | 14.40 | 14 |
Ct3 | 11 | 9 | 8 | 10 | 12 | 10.00 | 10 |
Ct4 | 14 | 13 | 11 | 8 | 6 | 10.40 | 9 |
Ea | 3 | 3 | 3 | 2 | 2 | ||
Ea1 | 7 | 6 | 3 | 5 | 5 | 5.20 | 3 |
Ea2 | 6 | 7 | 10 | 2 | 3 | 5.60 | 5 |
Ea3 | 8 | 11 | 12 | 11 | 11 | 10.60 | 11 |
Ea4 | 13 | 8 | 5.5 | 12 | 8 | 9.30 | 7 |
Ea5 | 9 | 14 | 5.5 | 14 | 13 | 11.10 | 13 |
Ea6 | 5 | 5 | 1 | 3 | 2 | 3.20 | 1 |
Eg | 4 | 4 | 4 | 1 | 1 | ||
Eg1 | 10 | 10 | 9 | 9 | 10 | 9.60 | 8 |
Eg2 | 12 | 12 | 7 | 1 | 1 | 6.60 | 6 |
Eg3 | 16 | 15 | 13 | 6 | 9 | 11.80 | 12 |
Pd | 1 | 1 | 5 | 5 | |||
Pd2 | 2 | 2 | - | 17 | 17 | - | |
Pd4 | 3 | 3 | 2 | 4 | 4 | 3.20 | 2 |
Pd5 | 1 | 1 | - | 16 | 16 | - | |
Pt | 2 | 2 | 2 | 3 | 3 | ||
Pt1 | 4 | 4 | 4 | 7 | 7 | 5.20 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rockwood, D.L.; Winandy, J.E.; Gribbins, N.R. Processing and Wood Factors Influence Medium Density Fiberboard Production from Young Eucalyptus grandis, E. amplifolia, Corymbia torelliana, and Cottonwood Grown in Florida USA. Forests 2022, 13, 266. https://doi.org/10.3390/f13020266
Rockwood DL, Winandy JE, Gribbins NR. Processing and Wood Factors Influence Medium Density Fiberboard Production from Young Eucalyptus grandis, E. amplifolia, Corymbia torelliana, and Cottonwood Grown in Florida USA. Forests. 2022; 13(2):266. https://doi.org/10.3390/f13020266
Chicago/Turabian StyleRockwood, Donald L., Jerrold E. Winandy, and Neil R. Gribbins. 2022. "Processing and Wood Factors Influence Medium Density Fiberboard Production from Young Eucalyptus grandis, E. amplifolia, Corymbia torelliana, and Cottonwood Grown in Florida USA" Forests 13, no. 2: 266. https://doi.org/10.3390/f13020266
APA StyleRockwood, D. L., Winandy, J. E., & Gribbins, N. R. (2022). Processing and Wood Factors Influence Medium Density Fiberboard Production from Young Eucalyptus grandis, E. amplifolia, Corymbia torelliana, and Cottonwood Grown in Florida USA. Forests, 13(2), 266. https://doi.org/10.3390/f13020266