What Makes Agroforestry a Potential Restoration Measure in a Degraded Conservation Forest?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Restoration Efforts and Challenges to Their Implementation
3.2. Regulations Regarding the Management of the Conservation Area with the Involvement of the Local Community
3.3. Driving Factors of Communities in Developing the Agroforestry System in WAR GFP
3.4. Characteristics of the Agroforestry System Developed in WAR GFP
3.5. Agroforestry Impact on the Environment, Biodiversity, and Socio-Economic Status
4. Discussion
4.1. Restoration Efforts and Challenges to Their Implementation
4.2. Regulations Regarding the Management of the Conservation Area with the Involvement of the Local Community
4.3. Driving Factors and Characteristics of the Agroforestry System Developed in WAR GFP
4.4. The Impact of Agroforestry and Enabling Conditions for Its Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Classification | Scientific Name | Common Name | Family |
---|---|---|---|
Aleurites moluccana | Candlenut | Euphorbiaceae | |
Annona muricata | Soursop | Annonaceae | |
Archidendron pauciflorum | Jengkol | Fabaceae | |
Areca catechu | Areca nut | Arecaceae | |
Arenga pinnata | Sugar Palm | Arecaceae | |
Artocarpus altilis | Breadfruit | Moraceae | |
Artocarpus heterophylla | Jackfruit | Moraceae | |
Ceiba pentandra | Kapok tree | Malvaceae | |
Citrus sp. | Orange | Rutaceae | |
Cocos nucifera | Coconut | Arecaceae | |
Coffea arabica | Coffee | Rubiaceae | |
Cytrus hystrix | Lime | Rutaceae | |
Multipurpose tree | Durio zibethinus | Durian | Malvaceae |
species (MPTS) | Garcinia xanthochymus | Asam kandis | Clusiaceae |
Gnetum gnemon | Melinjo | Gnetaceae | |
Hevea brasiliensis | Rubber | Euphorbiaceae | |
Lansium domesticum | Duku | Meliaceae | |
Mangifera indica | Mango | Anacardiaceae | |
Moringa oleifera | Moringa | Moringaceae | |
Musa sp. | Banana | Musaceae | |
Myristica fragrans | Nutmeg | Myristicaceae | |
Nephelium lappaceum | Rambutan | Sapindaceae | |
Parkia spesiosa | Petai | Fabaceae | |
Persea americana | Avocado | Lauraceae | |
Psidium guajava | Guava | Myrtaceae | |
Syzygium aromaticum | Clove | Myrtaceae | |
Theobroma cacao | Cacao | Malvaceae | |
Albizzia procera | Ki hiyang/weru | Fabaceae | |
Alstonia scholaris | Pulai | Apocynaceae | |
Antidesma bunins | Kayu wuwingan | Euphorbiaceae | |
Antocephalus cadamba | Kayu kelompayan | Rubiaceae | |
Anocephalus macrophyllus | Jabon merah | Rubiaceae | |
Bischofia javanica | Kayu gintung | Euphorbiaceae | |
Dalbergia latifolia | Sonokeling | Fabaceae | |
Dracontomelon mangiferum | Kayu dahu/gahu | Anacardiaceae | |
Forest species | Erythrina variegata | Dadap | Fabaceae |
Ficus variegata | Kayu kondang | Moraceae | |
Gigantochloa spp. | Bamboo | Poaceae | |
Litsea spp. | Medang | Lauraceae | |
Michelia champaca | Cempaka | Magnoliaceae | |
Pangium edule | Kayu kepayang | Achariaceae | |
Pterocarpus indicus | Kayu kembang | Fabaceae | |
Pterospermum spp. | Bayur | Sterculiaceae | |
Swietenia macrophylla | Mahogany | Meliaceae | |
Tetrameles nudiflora | Kayu binong tabu | Datiscaceae | |
Alpinia galangal | Galangal | Zingiberaceae | |
Capsicum sp. | Chili | Solanaceae | |
Colocasia esculenta | Taro | Araceae | |
Curcuma longa | Tumeric | Zingiberaceae | |
Understory | Cymbopogon citratus | Lemongrass | Poaceae |
species | Elettaria cardamomum | Cardamom | Zingiberaceae |
Piper nigrum | Pepper | Piperaceae | |
Piper retrofractum | Java chili | Piperaceae | |
Vanilla planifolia | Vanila | Orchidaceae | |
Zingiber officinale | Ginger | Zingiberaceae |
Variables | Distance from Farmer’s Settlement to Farming | Size of Cultivated Area | Number of Harvested Species | Number of Non-harvested Species | Farmer’s Activity |
---|---|---|---|---|---|
Distance | 1 | 0.1609 | −0.0408 | 0.1390 | −0.1913 |
Area | 0.1609 | 1 | 0.4160 | 0.3343 | −0.2041 |
Harvested | −0.0408 | 0.4160 | 1 | 0.0793 | 0.0087 |
Non-harvested | 0.1390 | 0.3343 | 0.0793 | 1 | −0.1200 |
Activity | −0.1913 | −0.2041 | 0.0087 | −0.1200 | 1 |
References
- Pimentel, D.; Stachow, U.; Takacs, D.A.; Brubaker, H.W.; Dumas, A.R.; Meaney, J.J.; O’Neil, J.A.S.; Onsi, D.E.; Corzilius, D.B. Observing biological diversity in agricultural/forestry. Bioscience 1992, 42, 354–362. [Google Scholar] [CrossRef]
- Gray, C.L.; Hill, S.L.L.; Newbold, T.; Hudson, L.N.; Börger, L.; Contu, S.; Hoskins, A.J.; Ferrier, S.; Purvis, A.; Scharlemann, J.P.W. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 2016, 7, 12306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WRI; IUCN; UNEP. Global Biodiversity Strategy; WRI: Washington, DC, USA; IUCN: Gland, Switzerland; UNEP: Nairobi, Kenya, 1992; p. 224. [Google Scholar]
- Butchart, S.H.; Clarke, M.; Smith, R.J.; Sykes, R.E.; Scharlemann, J.P.; Harfoot, M.; Buchanan, G.M.; Angulo, A.; Balmford, A.; Bertzky, B.; et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 2015, 8, 329–337. [Google Scholar] [CrossRef]
- Larsen, F.W.; Turner, W.R.; Mittermeier, R.A. Will protection of 17% of land by 2020 be enough to safeguard biodiversity and critical ecosystem services? Oryx 2015, 49, 74–79. [Google Scholar] [CrossRef] [Green Version]
- UPTD Tahura WAR. Blok Pengelolaan Taman Hutan Raya Wan Abdul Rachman, Provinsi Lampung; UPTD Tahura Wan Abdul Rachman: Bandar Lampung, Indonesia, 2017; p. 50. [Google Scholar]
- Handoko; Darmawan, A. Perubahan tutupan hutan di Taman Hutan Raya Wan Abdul Rachman. J. Sylva Lestari 2015, 3, 43–52. [Google Scholar] [CrossRef]
- Simarmata, G.B.; Qurniati, R.; Kaskoyo, H. Faktor-faktor yang mempengaruhi pemanfaatan lahan Taman Hutan Raya Wan Abdul Rachman. J. Sylva Lestari 2018, 6, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Wulandari, C.; Budiono, P.; Yuwono, S.B.; Herwanti, S. Adoption of agroforestry patterns and crop systems around register 19 forest park, Lampung province, Indonesia. J. Manaj. Hutan Trop. 2014, 20, 86–93. [Google Scholar] [CrossRef]
- Minarningsih; Murniati. Complex agroforestry system in Wan Abdul Rachman Grand Forest Park: Composition and characteristics of food-producing plants. In Proceedings of the International Conference on Forest Conservation and Management (ICFCM) 2019: Innovative Solution for Managing Tropical Forests and Conserving Biodiversity to Support Sustainable Development Goals, Bogor, Indonesia, 28 August 2019; IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd.: Bristol, UK, 2020; Volume 533, p. 012018. [Google Scholar] [CrossRef]
- Froufe, L.C.M.; Schwiderke, D.K.; Castilhano, A.C.; Cezar, R.M.; Steenbock, W.; Seoane, E.; Bognola, I.A.; Vezzani, F.M. Nutrient cycling from leaf litter in multi strata successional agroforestry systems and natural regeneration at Brazilian Atlantic Rainforest Biome. Agrofor. Syst. 2020, 94, 159–171. [Google Scholar] [CrossRef]
- Nurlia, A.; Martin, E.; Winarno, B. Pengelolaan kolaboratif kawasan hutan di Tahura WAR. In Proceedings of the Seminar Teknologi Perbenihan, Silvikultur dan Kelembagaan dalam Peningkatan Produktivitas Hutan dan Lahan, Bandarlampung, Indonesia, 11 August 2015; Mindawati, N., Bramasto, Y., Astho, A., Rahmat, M., Sudrajat, D.J., Eds.; Pusat Penelitian dan Pengembangan Hutan: Bogor, Indonesia, 2015; pp. 229–235. [Google Scholar]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Catacutan, D.C.; Finlayson, R.F.; Gassner, A.; Perdana, A.; Lusiana, B.; Leimona, B.; Simelton, E.; Öborn, I.; Gamma, G.; Roshetko, J.M.; et al. ASEAN Guidelines for Agroforestry Development; The ASEAN Secretariat: Jakarta, Indonesia, 2018; p. 48. [Google Scholar]
- Jumiyati, S.; Arsyad, M.; Rajindra; Pulubuhu, D.A.T.; Hadid, A. Cocoa Based Agroforestry: An Economic Perspective in Resource Scarcity Conflict Era. In Proceedings of the International Conference on Food Security and Sustainable Agriculture in the Tropics, Sulawesi Selatan, Indonesia, 24–25 October 2017; IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd.: Bristol, UK, 2018; Volume 157, p. 012009. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Basamba, T.A.; Mayanja, C.; Kiiza, B.; Nakileza, B.; Matsiko, F.; Nyende, P.; Bacwayo, K.E.; Tumushabe, A.; Ssekabira, K. Enhancing adoption of agroforestry in the eastern agro-ecological zone of Uganda. Int. J. Ecol. Sci. Environ. Eng. 2016, 3, 20–31. [Google Scholar]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4, 170012. [Google Scholar] [CrossRef] [Green Version]
- Gebru, B.M.; Wang, S.W.; Kim, S.J.; Lee, W.K. Socio-ecological niche and factors affecting agroforestry practice adoption in different agroecologies of southern Tigray, Ethiopia. Sustainability 2019, 11, 3729. [Google Scholar] [CrossRef] [Green Version]
- Oostendorp, R.H.; Zaal, F. Land acquisition and the adoption of soil and water conservation techniques: A Duration Analysis for Kenya and The Philippines. World Dev. 2012, 40, 1240–1254. [Google Scholar] [CrossRef]
- Jara-Rojas, R.; Russy, S.; Roco, L.; Fleming-Muñoz, D.; Engler, A. Factors affecting the adoption of agroforestry practices: Insights from silvopastoral systems of Colombia. Forests 2020, 11, 648. [Google Scholar] [CrossRef]
- Nkamleu, G.B.; Manyong, V.M. Factors affecting the adoption of agroforestry practices by farmers in Cameroon. Small-Scale For. Econ. Manag. Policy 2005, 4, 135–148. [Google Scholar] [CrossRef]
- Jera, R.; Ajayi, O.C. Logistic modelling of smallholder livestock farmers’ adoption of tree-based fodder technology in Zimbabwe. Agrekon 2008, 47, 379–392. [Google Scholar] [CrossRef]
- Cedamon, E.; Nuberg, I.; Pandit, B.H.; Shrestha, K.K. Adaptation factors and futures of agroforestry systems in Nepal. Agrofor. Syst. 2018, 92, 1437–1453. [Google Scholar] [CrossRef]
- Sabastian, G.E.; Yumn, A.; Roshetko, J.M.; Manalu, P.; Martini, E.; Perdana, A. Adoption of silvicultural practices in smallholder timber and NTFPs production systems in Indonesia. Agrofor. Syst. 2019, 93, 607–620. [Google Scholar] [CrossRef]
- Ranjit, Y. Economic impact of people’s participation in forest management (A case study of Kabhre Palanchwok, Nepal). Econ. J. Dev. Issues 2011, 13, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Iftekhar, M.S.; Hoque, A.K.F. Causes of forest encroachment: An analysis of Bangladesh. GeoJournal 2005, 62, 95–106. [Google Scholar] [CrossRef]
- Koech, C.P. Household factors affecting the implementation of forest conservation strategies: A case of south Nandi forest, Nandi county, Kenya. Open J. Soc. Sci. 2020, 8, 125–144. Available online: https://www.scirp.org/journal/jss (accessed on 6 November 2021). [CrossRef]
- Sugiyono. Metode Penelitian Kuantitatif Kualitatif Dan R&D; Alfabeta: Bandung, Indonesia, 2010; pp. 81–86. [Google Scholar]
- Torres-Salinas, D.; Robinson-Garcia, N.; Jiménez-Contreras, E.; Herrera, F.; Delgado-López-Cózar, E. On the use of biplot analysis for multivariate bibliometric and scientific indicators. J. Am. Soc. Inf. Sci. Technol. 2013, 64, 1468–1479. [Google Scholar] [CrossRef]
- Diansari, D.; Sriati, S.; Lionardo, A. Implementasi peraturan daerah provinsi Lampung No. 3 Tahun 2012 tentang kolaborasi pengelolaan Taman Hutan Raya Wan Abdul Rachman. Demogr. J. Sriwij. 2015, 2, 40–50. Available online: http://ejournal-pps.unsri.ac.id/index.php/dejos/article/view/44 (accessed on 6 November 2021).
- Suharti, S.; Darusman, D.; Nugroho, B.; Sundawati, L. Economic valuation as a basis for sustainable mangrove resource management: A case in east Sinjai, south Sulawesi. J. Manaj. Hutan Trop. 2016, 22, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Hanif, M.A.; Roy, R.M.; Bari, M.S.; Ray, P.C.; Rahman, M.S.; Hasan, M.F. Livelihood improvements through agroforestry: Evidence from northern Bangladesh. Small-Scale For. 2018, 17, 505–522. [Google Scholar] [CrossRef]
- Measham, T.G.; Lumbasi, J. Success factors for community based natural resource management (CBNRM): Lessons from Kenya and Australia. Environ. Manag. 2013, 52, 649–659. [Google Scholar] [CrossRef]
- Ndalama, E.; Kamanga-Thole, G.; Missanjo, E. Agroforestry contribution to the improvement of rural community livelihoods in Balaka, Malawi. Int. J. For. Hortic. 2015, 1, 5–11. [Google Scholar]
- Braga, D.P.P.; Domene, F.; Gandara, F.B. Shade trees composition and diversity in cacao agroforestry systems of southern Para, Brazilian Amazon. Agrofor. Syst. 2018, 93, 1409–1421. [Google Scholar] [CrossRef]
- Cannell, M.G.R. Plant management in agroforestry: Manipulation of trees, population densities and mixtures of trees and herbaceous crops. In Plant Research and Agroforestry; Huxley, P.A., Ed.; ICRAF: Nairobi, Kenya, 1983; pp. 455–502. [Google Scholar]
- Suprayogo, D.; Van Noordwijk, M.; Hairiah, K.; Cadisch, G. The inherent ‘safety-net’ of an acrisol: Measuring and modelling retarded leaching of mineral nitrogen. Eur. J. Soil Sci. 2002, 53, 185–194. [Google Scholar] [CrossRef]
- Yulianti, T.; Abdoellah, S.; Suprayogo, D.; Sari, N.P. Cocoa production as affected by shade tree species and soil quality. Pelita Perkeb. 2018, 34, 80–89. [Google Scholar] [CrossRef]
- Tetteh, D.A.; Asase, A.; Ofori-Frimpong, K.; Attuquayefio, D. Effect of cocoa farming intensification on biodiversity and ecosystem properties in southern Ghana. J. Ecol. Nat. Environ. 2018, 10, 172–181. [Google Scholar] [CrossRef]
- Amare, D.; Wondie, M.; Mekuria, W.; Darr, D. Agroforestry of smallholder farmers in Ethiopia: Practices and benefits. Small-Scale For. 2018, 18, 39–56. [Google Scholar] [CrossRef]
- Pumariño, L.; Sileshi, G.W.; Gripenberg, S.; Kaartinen, R.; Barrios, E.; Muchane, M.N.; Midega, C.; Jonsson, M. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 2015, 16, 73–82. [Google Scholar] [CrossRef]
- Swallow, B.; Boffa, J.M.; Sara, S. The potential for agroforestry to contribute to the conservation and enhancement of landscape biodiversity. In World Agroforestry into the Future; Garrity, D., Okono, A., Grayson, M., Parrot, S., Eds.; World Agroforestry Centre: Nairobi, Kenya, 2006; pp. 95–101. [Google Scholar]
- Mbene, F.; Weber, J.; Tougiani, A.; Moussa, B.; Mahamane, L.; Bationo, B.; Diallo, B.; Sigue, H.; Dakouo, J.M.; Samaké, O.; et al. Farmers’ preferences for tree functions and species in the west African Sahel. For. Trees Livelihoods 2011, 20, 113–136. [Google Scholar] [CrossRef]
- Dimobe, K.; Tondoh, J.E.; Weber, J.C.; Bayala, J.; Ouédraogo, K.; Greenough, K. Farmers’preferred tree species and their potential carbon stocks in southern Burkina Faso: Implications for biocarbon initiatives. PLoS ONE 2018, 13, e0199488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wartenberg, A.C.; Blaser, W.J.; Janudianto, K.N.; Roshetko, J.M.; Van Noordwijk, M.; Six, J. Farmer perceptions of plant–soil interactions can affect adoption of sustainable management practices in cocoa agroforests: A case study from southeast Sulawesi. Ecol. Soc. 2018, 23, 18. [Google Scholar] [CrossRef] [Green Version]
- Wulandari, C.; Bintoro, A.; Rusita, R.; Santoso, T.; Duryat; Kaskoyo, H.; Erwin; Budiono, P. Community forestry adoption based on multipurpose tree species diversity towards to sustainable forest management in ICEF of University of Lampung, Indonesia. Biodiversitas 2018, 19, 1102–1109. [Google Scholar] [CrossRef]
- Dhakal, A.; Rai, R.K. Who adopts agroforestry in a subsistence economy?—Lessons from the Terai of Nepal. Forests 2020, 11, 565. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Ong, C.; Black, C.R.; Wilson, J.; Muthuri, C.; Bayala, J.; Jackson, N.A. Agroforestry: Hydrological impacts. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Dollinger, J.; Jose, S. Agroforestry for soil health. Agrofor. Syst. 2018, 92, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Fifanou, V.G.; Ousmane, C.; Gauthier, B.; Brice, S. Traditional agroforestry systems and biodiversity conservation in Benin (West Africa). Agrofor. Syst. 2011, 82, 1–13. [Google Scholar] [CrossRef]
- Syofiandi, R.R.; Hilmanto, R.; Herwanti, S. Analisis pendapatan dan kesejahteraan petani agroforestri di kelurahan Sumber Agung kecamatan Kemiling kota Bandar Lampung. J. Sylva Lestari 2016, 4, 7–26. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for conserving and enhancing biodiversity. Agrofor. Syst. 2012, 85, 1–8. [Google Scholar] [CrossRef]
- Gockowski, J.; Asten, P.V. Agricultural intensification as a climate change and food security strategy for sub-Saharan Africa. In Climate Change Mitigation and Agriculture; Wollenberg, E., Nihart, A., Tapio-Bostro, M.L., Grieg-Gran, M., Eds.; Routledge: London, UK; New York, NY, USA, 2012; pp. 382–390. [Google Scholar]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Koohafkan, P.; Altieri, A.M.; Gimenez, H.E. Green agriculture: Foundations for biodiverse, resilient and productive agricultural systems. Int. J. Agric. Sustain. 2012, 10, 61–75. [Google Scholar] [CrossRef]
- Place, F.; Ajayi, O.C.; Torquebiau, E.; Detlefsen, G.; Gauthier, M.; Buttoud, G. Improved policies for facilitating the adoption of agroforestry. In Agroforestry for Biodiversity and Ecosystem Services—Science and Practice; Kaonga, M., Ed.; InTech: London, UK, 2012; pp. 113–128. [Google Scholar] [CrossRef] [Green Version]
- Widjayanto, N. Agroforestri: Masa Depan Pemanfaatan Lahan Hutan Produksi. Available online: https://www.forestdigest.com/detail/28/agroforestri-masa-depan-pemanfaatan-lahan-hutan-produksi (accessed on 6 November 2021).
- Saha, R.; Ghosh, P.K.; Mishra, V.K.; Majumdar, B.; Tomar, J. Can agroforestry be a resource conservation tool to maintain soil health in the fragile ecosystem of north-east India? Outlook Agric. 2010, 39, 191–196. [Google Scholar] [CrossRef]
- Murthy, I.K.; Gupta, M.; Tomar, S.; Munsi, M.; Tiwari, R.; Hedge, G.T.; Ravindranath, N.H. Carbon sequestration potential of agroforestry systems in India. J. Earth Sci. Clim. Chang. 2013, 131, 1–7. [Google Scholar] [CrossRef]
- Kholifah, U.N.; Wulandari, C.; Santoso, T.; Kaskoyo, H. Kontribusi agroforestri terhadap pendapatan petani di kelurahan Sumber Agung kecamatan Kemiling kota Bandar Lampung. J. Sylva Lestari 2017, 5, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Kiyani, P.; Andoh, J.; Lee, Y.; Lee, D.K. Benefits and challenges of agroforestry adoption: A case of Musebeya sector, Nyamagabe District in the southern province of Rwanda. For. Sci. Technol. 2017, 13, 174–180. [Google Scholar] [CrossRef]
- Chakraborty, M.; Haider, M.Z.; Rahaman, M.M. Socio-economic impact of cropland agroforestry: Evidence from Jessore district of Bangladesh. Int. J. Res. Agric. For. 2015, 2, 11–20. Available online: http://ijraf.org/pdf/v2-i1/3.pdf (accessed on 6 November 2021).
- Rahman, S. Agroforestry: Why Don’t Farmers Plant More Trees? Smallholder Tree Farming in Fragmented Tropical Landscapes Can Boost Crop Production and Protect the Landscape Too. Available online: https://forestsnews.cifor.org/55549/agroforestry-why-dont-farmers-plant-more-trees?fnl=en (accessed on 6 November 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murniati; Suharti, S.; Minarningsih; Nuroniah, H.S.; Rahayu, S.; Dewi, S. What Makes Agroforestry a Potential Restoration Measure in a Degraded Conservation Forest? Forests 2022, 13, 267. https://doi.org/10.3390/f13020267
Murniati, Suharti S, Minarningsih, Nuroniah HS, Rahayu S, Dewi S. What Makes Agroforestry a Potential Restoration Measure in a Degraded Conservation Forest? Forests. 2022; 13(2):267. https://doi.org/10.3390/f13020267
Chicago/Turabian StyleMurniati, Sri Suharti, Minarningsih, Hani Sitti Nuroniah, Subekti Rahayu, and Sonya Dewi. 2022. "What Makes Agroforestry a Potential Restoration Measure in a Degraded Conservation Forest?" Forests 13, no. 2: 267. https://doi.org/10.3390/f13020267
APA StyleMurniati, Suharti, S., Minarningsih, Nuroniah, H. S., Rahayu, S., & Dewi, S. (2022). What Makes Agroforestry a Potential Restoration Measure in a Degraded Conservation Forest? Forests, 13(2), 267. https://doi.org/10.3390/f13020267