Modelling Aboveground Biomass of Miombo Woodlands in Niassa Special Reserve, Northern Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Data Acquisition
2.2.1. Field Data
2.2.2. Remotely Sensed Data
2.3. Data Processing
2.3.1. Aboveground Biomass from Field Data
2.3.2. Vegetation Indices from Optical Data
2.3.3. Backscatter from SAR Data
2.3.4. Extraction of Remotely Sensed Data for Field Plots
2.3.5. Modelling of Aboveground Biomass
Model Building
Model Performance Assessment
3. Results
3.1. Field Estimations of Aboveground Biomass
3.2. Aboveground Biomass and Remote Sensing Data
3.3. Aboveground Biomass Models
3.4. Mapping Aboveground Biomass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Plot 1 ha | Plot Cod | Biomass (Mg/ha) | Variables from Remote Sensing Data | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Landsat 8/OLI | Sentinel 2/MSI | Alos/Palsar 2 | Sentinel 1B | |||||||||
NDVI1 | SAVI1 | SR1 | NDVI2 | SAVI2 | SR2 | σoHH | σoHV | σoVH | σoVV | |||
1 | AS | 81.3 | 0.35 | 0.33 | 5.0 | 0.30 | 0.31 | 3.5 | −7.64 | −11.2 | −26.16 | −27.0 |
2 | AP | 24.8 | 0.20 | 0.30 | 3.0 | 0.20 | 0.30 | 2.2 | −13.1 | −16.1 | −27.62 | −28.9 |
3 | DR | 21.7 | 0.15 | 0.10 | 4.0 | 0.12 | 0.11 | 3.2 | −7.04 | −15.3 | −23.29 | −21.4 |
4 | CP | 27.6 | 0.12 | 0.40 | 3.5 | 0.10 | 0.40 | 2.3 | −10.6 | −16.9 | −28.67 | −27.0 |
5 | CR | 21.7 | 0.35 | 0.30 | 2.0 | 0.10 | 0.30 | 2.0 | −13.6 | −14.3 | −28.06 | −28.1 |
6 | CS | 69.4 | 0.20 | 0.32 | 3.8 | 0.20 | 0.30 | 3.4 | −10.6 | −14.3 | −24.94 | −25.7 |
7 | ER | 69.4 | 0.45 | 0.37 | 5.0 | 0.40 | 0.40 | 4.5 | −8.99 | −11.6 | −23.62 | −21.4 |
8 | EP | 58.8 | 0.20 | 0.15 | 4.0 | 0.17 | 0.13 | 4.0 | −11.5 | −14.3 | −23.27 | −22.3 |
9 | CQ | 63.5 | 0.18 | 0.15 | 2.8 | 0.16 | 0.11 | 2.0 | −8.32 | −12.8 | −25.65 | −28.1 |
10 | ES | 63.8 | 0.25 | 0.20 | 6.0 | 0.21 | 0.18 | 5.5 | −4.28 | −10.2 | −22.43 | −18.7 |
11 | DP | 78.7 | 0.50 | 0.32 | 7.5 | 0.35 | 0.30 | 5.0 | −3.30 | −9.89 | −22.13 | −18.4 |
12 | FP | 41.9 | 0.30 | 0.24 | 4.5 | 0.23 | 0.20 | 4.0 | −10.8 | −12.2 | −22.86 | −19.3 |
13 | FR | 95.2 | 0.40 | 0.30 | 4.0 | 0.40 | 0.28 | 3.3 | −6.48 | −10.5 | −25.00 | −23.4 |
14 | FQ | 73.9 | 0.33 | 0.27 | 3.6 | 0.31 | 0.25 | 3.1 | −6.75 | −14.5 | −24.87 | −19.0 |
15 | FS | 56.2 | 0.27 | 0.20 | 3.0 | 0.28 | 0.15 | 3.0 | −9.47 | −16.8 | −22.60 | −20.4 |
16 | AR | 67.6 | 0.20 | 0.18 | 2.5 | 0.25 | 0.15 | 2.4 | −5.56 | −13.2 | −23.68 | −20.8 |
17 | AQ | 11.1 | 0.15 | 0.12 | 2.0 | 0.14 | 0.10 | 1.2 | −13.8 | −18.7 | −26.14 | −24.5 |
18 | BP | 80.3 | 0.12 | 0.10 | 2.0 | 0.12 | 0.08 | 1.8 | −6.90 | −10.8 | −25.73 | −25.4 |
19 | DQ | 63.9 | 0.25 | 0.21 | 3.8 | 0.23 | 0.20 | 3.5 | −7.33 | −11.8 | −23.88 | −22.3 |
20 | BS | 38.1 | 0.20 | 0.18 | 3.0 | 0.22 | 0.14 | 2.5 | −9.37 | −14.2 | −25.46 | −27.0 |
21 | BQ | 28.7 | 0.20 | 0.15 | 2.5 | 0.10 | 0.15 | 2.0 | −9.47 | −11.4 | −26.00 | −28.4 |
22 | BR | 29.5 | 0.23 | 0.20 | 3.5 | 0.20 | 0.20 | 3.0 | −10.6 | −16.0 | −25.77 | −24.4 |
23 | EQ | 68.1 | 0.30 | 0.26 | 4.0 | 0.25 | 0.23 | 4.0 | −8.66 | −13.2 | −23.48 | −21.8 |
24 | DS | 75.0 | 0.76 | 0.40 | 6.5 | 0.40 | 0.35 | 6.0 | −3.73 | −9.42 | −22.00 | −16.8 |
References
- Eastman, J.R.; Idrisi, A. Guide to GIS and Image Processing; Clark Laboratory Clark University: Worcester, MA, USA, 2006. [Google Scholar]
- Fehrmann, L.; Kleinn, C. Nearest Neighbour Approach for Estimation of single–Tree Biomass. In Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2005. [Google Scholar]
- PCC. Good Practice Guidance for Land Use, Land-Use Change and forestry. National Inventory Reports. 2003. Available online: https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf (accessed on 10 December 2021).
- World Wide Fund for Nature (WWF). Miombo Eco-region Report “Home of the Zambezi”. In Conservation Strategy: 2011–2020; World Wide Fund for Nature (WWF): Harare, Zimbabwe, 2012. [Google Scholar]
- Dziba, L.; Ramoelo, A.; Ryan, C.; Harrison, S.; Pritchard, R.; Tripathi, H.; Sitas, N.; Selomane, O.; Engel, B.F.; Pereira, L.; et al. Scenarios for Just and Sustainable Futures in the Miombo Woodlands. In Miombo Woodlands in a Changing Environment: Securing the Resilience and Sustainability of People and Woodlands; Ribeiro, N., Katerere, Y., Chirwa, P.W., Grundy, I.M., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 191–234. [Google Scholar]
- Campbell, B.M.; Cunliffe, R.N.; Gambiza, J. Vegetation structure and small-scale pattern in Miombo woodland, Marondera. Bothalia 1995, 25, a721. [Google Scholar] [CrossRef]
- Chidumayo, E.N. Estimating tree biomass and changes in root biomass following clear-cutting of Brachystegia-Julbernardia (Miombo) woodland in central Zambia. Environ. Conserv. 2013, 41, 54–63. [Google Scholar] [CrossRef]
- Ryan, C.M.; Pritchard, R.; McNicol, I.; Owen, M.; Fisher, J.A.; Lehmann, C. Ecosystem services from Southern African woodlands and their future under global change. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150312. [Google Scholar] [CrossRef] [PubMed]
- Community (GIZ/SADC). Field Inventory Results: Transboundary Test Area Malawi-Zambia. In Consortium GAF AG and DFS Deutsche Forstservice GmbH; Department of Forestry: Lilongwe, Malawi; Kalomo, Zambia, 2014. [Google Scholar]
- FAO. The State of Food Insecurity in the World. In Addressing Food and Insecurity in Protracted Crises; FAO: Rome, Italy, 2010. [Google Scholar]
- Skutsch, M.M.; McCall, M.K. The role of community forest management in REDD+. Unasylva 2012, 63, 51–56. [Google Scholar]
- MITADER. Inventário Florestal Nacional; MITADER: Maputo, Mozambique, 2018.
- Centro de Estudos de Agricultura e Gestão de Recursos Naturais (CEAGRE)/Winrock. Identificação e análise dos agentes e causas directas e indirectas de desmatamento e degradação florestal em Moçambique. In Final Report; UEM: Maputo, Mozambique, 2016. [Google Scholar]
- Herold, M.; Skutsch, M. Monitoring, reporting and verification for national REDD + programmes: Two proposals. Res. Lett. 2011, 6, 014002. [Google Scholar] [CrossRef]
- Ribeiro, N.S.; Matos, C.N.; Moura, I.; Washington-Allen, R.A.; Ribeiro, A.I. Monitoring vegetation dynamics and carbon stock density in miombo woodlands. Carbon Balance Manag. 2013, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.H.; Gobakken, T.; Bollandsås, Z.; Næsset, E. Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data. Remote Sens. 2015, 7, 788–807. [Google Scholar] [CrossRef] [Green Version]
- IPCC (Intergoveramental Panel on Climate Change). Good Practice Guidance for Land Use, Land-Use Change and forestry. In National Inventory Reports; 2003; Available online: https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html (accessed on 10 December 2021).
- Næsset, E.; Ørka, H.O.; Solberg, S.; Bollandsås, O.M.; Hansen, E.H.; Mauya, E.; Zahabu, E.; Malimbwi, R.; Chamuya, N.; Olsson, H.; et al. Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps as auxiliary information: A comparison of estimated precision. Remote Sens. Environ. 2016, 175, 282–306. [Google Scholar] [CrossRef]
- Sitoe, A.; Guedes, B.S.; Nhantumbo, I. Linha de referência, Monitoria, Relatório e Verificação para REDD+ em Moçambique. In Relatório do Pais; IIED: Londres, UK, 2013. [Google Scholar]
- Houghton, R.A.; Hall, F.G.; Goetz, S.J. The importance of biomass in the global carbon cycle. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef]
- Tchaúque, F.J. Biomassa florestal acima do solo na região do Corredor da Beira. In Tese de Licenciatura em Engenharia Florestal; Faculdade de Agronomia e Engenharia Florestal, Universidade Eduardo Mondlane: Maputo, Moçambique, 2004. [Google Scholar]
- Ribeiro, N.S.; Saatchi, S.S.; Shugart, H.H.; Washington-Allen, R. Aboveground biomass and leaf area index (LAI) mapping for niassa reserve, Northern Mozambique. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Saatchi, S.S.; Harris, N.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Nat. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mate, R.; Johansson, T.; Sitoe, A. Biomass equations for tropical forest tree species in Mozambique. Forests 2014, 5, 535–555. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, T.M. Live above- and belowground biomass of a Mozambican evergreen forest: A comparison of estimates based on regression equations and biomass expansion factors. For. Ecosyst. 2015, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Guedes, B.S.; Sitoe, A.A.; Olsson, B. Allometric models for managing lowland miombo woodlands of the Beira corridor in Mozambique. Glob. Ecol. Conserv. 2018, 13, e00374. [Google Scholar] [CrossRef]
- Lisboa, S.N.; Guedes, B.S.; Ribeiro, N.; Sitoe, A. Biomass allometric equation and expansion factor for a mountain moist evergreen forest in Mozambique. Carbon Balance Manag. 2018, 13, 23. [Google Scholar] [CrossRef]
- McRoberts, R.; Næsset, E.; Gobakken, T. Estimation for inaccessible and non-sampled forest areas using model-based inference and remotely sensed auxiliary information. Remote Sens. Environ. 2014, 154, 226–233. [Google Scholar] [CrossRef]
- Esteban, J.; McRoberts, R.E.; Fernández, A.; Tomé, J.L.; Marchamalo, M. A model-based volume estimator that accounts for both land cover misclassification and model prediction uncertainty. Remote Sens. 2020, 12, 3360. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; Lewis, S.L.; Feldpausch, T.R.; Woodhouse, I.H.; Sonké, B.; Meir, P. Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest–savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sens. Environ. 2011, 115, 2861–2873. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Harris, N.L.; Brown, S.; Hagen, S.C.; Saatchi, S.S.; Petrova, S. Baseline map of carbon emissions from deforestation in tropical regions. Science 2012, 336, 1573–1575. [Google Scholar] [CrossRef]
- Vibrans, A.C.; McRoberts, R.E.; Moser, P.; Nicoletti, A.L. Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina. Remote Sens. Environ. 2012, 130, 87–95. [Google Scholar] [CrossRef]
- Watzlawick, L.F. Estimativa de Biomassa e Carbono em Floresta Ombrófila Mista e Plantações Florestais a Partir de Dados de Imagens do Satélite Ikonos II; UFPR: Curitiba, PR, Brasil, 2009. [Google Scholar]
- Urbazaev, M.; Thiel, C.; Cremer, F.; Dubayah, R.; Migliavacca, M.; Reichstein, M.; Schmullius, M. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance Manag. 2018, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Ryan, C.; Williams, M.; Grace, J. Above- and Belowground Carbon Stocks in a Miombo Woodland Landscape of Mozambique. Biotropica 2012, 43, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Carreiras, J.M.B.; Melo, J.B.; Vasconcelos, M.J. Estimating the above-ground biomass in Miombo savanna woodlands (Mozambique, East Africa) using L-band synthetic aperture radar data. Remote Sens. 2013, 5, 1524–1548. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.R.; Grossmann, F.; Craig, R.; Nelson, A.; Maina, J.; Flower, K.; Bampton, J.; Deffontaines, J.B.; Miguel, C.; Araquechande, B.; et al. Patterns of forest loss in one of Africa’s last remaining wilderness areas: Niassa National Reserve (northern Mozambique). Parks 2017, 23, 39–50. [Google Scholar] [CrossRef]
- MITADER (Ministério da Terra, Ambiente e Desenvolvimento Rural). Estratégia e Plano de Acção para a Conservação da Diversidade Biológica em Moçambique; MITADER: Maputo, Mozambique, 2005.
- Cunliffe, R.; Mandondo, A.; Games, I.; Ngarivhume, J.; Doré, D. Reconciling conservation goals with agriculturally based livelihoods. In A Proposal for Future Development of the Niassa National Reserve and Surrounding Areas; Imperial Tobacco Project: Harare, Zimbabwe, 2009. [Google Scholar]
- Ribeiro, N.S.; Cangela, A.; Chauque, A.A.; Bandeira, R.R. Characterisation of spatial and temporal distribution of the fire regime in Niassa National Reserve, northern Mozambique. Int. J. Wildland Fire 2017, 26, 1021–1029. [Google Scholar] [CrossRef]
- SGDRN (Sociedade para a Gestão e Desenvolvimento da Reserva do Niassa). Plano de Maneio da Reserva Nacional de Niassa 2007–2012; SGDRN (Sociedade para a Gestão e Desenvolvimento da Reserva do Niassa): Maputo, Mozambique, 2007. [Google Scholar]
- Timberlake, J. Botanical Survey of the Niassa Reserve, Mozambique. In Prepared for Sociedade para a Gestão e Desenvolvimento da Reserva do Niassa Moçambique; 2004; Available online: http://biodiversityfoundation.org/documents/BFA%20No.12_Niassa%20Botany.pdf (accessed on 10 December 2021).
- Booth, V.R.; Dunham, K.M. Elephant poaching in Niassa Reserve, Mozambique: Population impact revealed by combined survey trends for live elephants and carcasses. Oryx 2016, 50, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Marzoli, A. Avaliação Integrada das Florestas em Moçambique (AIFM): Inventário Florestal Nacional; MINAG/DNTF: Maputo, Mozambique, 2007. [Google Scholar]
- Craig, G.C. Aerial Survey of Wildlife in the Niassa Reserve and Adjacent Areas; Sociedade para a Gestão e Desenvolvimento da Reserva do Niassa: Maputo, Mozambique, 2009. [Google Scholar]
- Available online: https://mozambique.wcs.org (accessed on 11 October 2020).
- Sociedade de Gestão da Reserva Nacional de Niassa (SGDRN). Bolentim Informativo da Reserva Nacional de Niassa-Janeiro; Lugenda: Maputo, Mozambique, 2010. [Google Scholar]
- INE (Instituto Nacional de Estatistica). Resultados Preliminares, Censo 2017 e Definitivos de 2007 e 1997. 2018. Available online: http://www.ine.gov.mz. (accessed on 18 November 2018).
- Sanquetta, C.R.; Watzlawick, L.F.; Corte, A.P.D.; Fernandes, L.A.; Siqueira, J.D. Inventários Florestais: Planejamento e Execução; UFPR–Setor de Ciências Agrárias, Departamento de Ciências Florestais–DECIF: Curitiba, Brazil, 2009. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- FAO. State of the Worlds Forest; FAO: Rome, Italy, 2003. [Google Scholar]
- Falcão, M.P.; Noa, M. Definição de Florestas, Desmatamento e Degradação Florestal no âmbito do REDD+; Maputo, Mozambique, 2016; Available online: https://www.biofund.org.mz/wp-content/uploads/2018/06/1528267239-Relatorio%20definicao%20de%20floresta%20V5_19.10.2016.pdf (accessed on 10 December 2021).
- Sitoe, A.; Tchaúque, F. Medição da Biomassa Lenhosa Utilizando Informação do Inventario Florestal; Direcção Nacional de Terras e Florestas, Unidade de Inventario Florestal: Maputo, Mozambique, 2007. [Google Scholar]
- Kasischke, E.S.; Melack, J.M.; Dobson, C.M. The use of imaging radars for ecological applications—A review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Brown, S.; Gillespie, A.J.R.; Lugo, A.E. Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 1989, 35, 881–902. [Google Scholar]
- IPCC (Intergoveramental Panel on Climate Change). Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Colwell, R.N. Manual of Remote Sensing, 2nd ed.; American Society of Photogrammetry: Falls Church, VA, USA, 1983; Volume 1. [Google Scholar]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Meyers, J.; Mishra, N.; Helder, D. Landsat-8 Operational Land Imager radiometric calibration and stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Goddard Space Flight Center, Washington, DC, USA, 10–14 December 1973; Freden, S.C., Mercanti, E.P., Becker, M.A., Eds.; Scientific and Technical Information Office, National Aeronautics and Space Administration (NASA): Washington, DC, USA, 1974; Volume 351, pp. 3010–3017. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 259–309. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G. Measuring the color of growing turf with a reflectance spectrophotometer 1. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Viganó, H.A.; Borges, E.F.; Franca-Rocha, W.J.S. Análise do Desempenho dos Índices de Vegetação NDVI e SAVI a Partir de Imagens Aster. In Simpósio Brasileiro de Sensoriamento Remoto; Anais: Curitiba, Brazil, 2011. [Google Scholar]
- JAXA. The 2nd ALOS Research Announcement: Calibration and Validation, Utilization Research, and Scientific Research; Earth Observation Research Center, Japan Aerospace Exploration Agency, Japan. 2006. Available online: http://www.eorc.JAXA.jp/ALOS/en/ra/ra2_guide.html (accessed on 13 April 2018).
- Shimada, M.; Isoguchi, O.; Tadono, T.; Isono, K. “PALSAR Radiometric and Geometric Calibration. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3915–3932. [Google Scholar] [CrossRef]
- JAXA. ALOS User Handbook; Earth Observation Research Center, Japan Aerospace Exploration Agency. Japan. 2007. Available online: http://www.eorc.JAXA.jp/ALOS/en/doc/handbk.html (accessed on 13 April 2018).
- JAXA. Press Release. Advanced Land Observing Satellite. ALOS 2. 2014. Available online: https://global.jaxa.jp/press/alos2/ (accessed on 10 December 2021).
- Kennedy, P. A Guide to Econometrics. 2008. Available online: http://masonlec.org/site/rte_uploads/files/Econometrics%20Book%20-%20Intro,%20Ch%201%20and%202.pdf (accessed on 10 December 2021).
- Zanette, V.H. Equações Alométricas de Biomassa Aérea Mista no Paraná. Ph.D. Thesis, Universidade Federal do Parana, Curitiba, Brazil, 2017. [Google Scholar]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Machado, S.; Conceição, M.B.; Figueiredo, D.J. Modelagem do volume individual para diferentes idades e regimes de desbaste em plantações de Pinus oocarpa. RECEN-Rev. Ciênc. Exatas Nat. 2002, 4, 185–197. [Google Scholar]
- Pham, T.D.; Yoshino, K.; Bui, D.T. Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural network. GISci. Remote Sens. 2016, 54, 329–353. [Google Scholar] [CrossRef]
- Ferraz, A.S.; Soares, V.P.; Soares, C.P.; Ribeiro, C.A.; Gleriani, J.M. Uso de imagens do satélite IKONOS II para estimar biomassa aérea de um fragmento de floresta estacional semidecidual. In Proceedings of the Anais XVI Simpósio Brasileiro de Sensoriamento Remoto—SBSR, Foz do Iguaçu, PR, Brasil, 13–18 April 2013; INPE: São José dos Campos, Brasil, 2013. [Google Scholar]
- Halperin, J.; LeMay, V.; Chidumayo, E.; Verchot, L.; Marshall, P. Model-based estimation of above-ground biomass in the miombo ecoregion of Zambia. For. Ecosyst. 2016, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- McRoberts, R.E. A model-based approach to estimating forest area. Remote Sens. Environ. 2006, 103, 56–66. [Google Scholar] [CrossRef]
- Mugasha, A.G.; Chamshama, S.A.O. Tree biomass and volume estimation for Miombo woodlands at Kitulangalo, Morogoro, Tanzania, in Indicators and Tools for Restoration and Sustainable Management of Forests in East Africa, I-TOO Working. 2002. Available online: https://www.tandfonline.com/doi/abs/10.1080/20702620.2004.10431761 (accessed on 10 December 2021).
- Guy, P.R. Changes in the biomass and productivity of woodlands in the Sengwa. Wildlife Research Area, Zimbabwe. J. Appl. Ecol. 1981, 18, 507–519. [Google Scholar] [CrossRef]
- Desanker, P.V.; Frost, P.G.H.; Justice, C.O.; Scholes, R.J. The Miombo Network: Framework for a Terrestrial Transect Study of Land-Use and Land-Cover Change in the Miombo Ecosystems of Central Africa. In IGBP Report 41; The International Geosphere-Biosphere Programme (IGBP): Stockholm, Sweden, 1997. [Google Scholar]
- Salimon, C.I.; Putz, F.E.; Menezes-filho, L.; Anderson, A.; Silveira, M.; Brown, F.I.; Oliveira, L.C. Estimating state-wide biomass carbon stocks for a REDD plan in Acre, Brazil. For. Ecol. Manag. 2011, 262, 555–560. [Google Scholar] [CrossRef]
- Ribeiro, N.S.; Armstrong, H.A.; Fischer, F.; Kim, Y.S.; Shugart, H.H.; Ribeiro-Barros, A.I.; Chauque, A.; Tear, T.; Washington-Allen, R.; Bandeira, R.R. Prediction of forest parameters and carbon accounting under different fire regimes in Miombo woodlands, Niassa Special Reserve, Northern Mozambique. For. Policy Econ. 2021, 133, 102625. [Google Scholar] [CrossRef]
Canopy Cover (%) a | Area (Km2) | Plots | Trees/ha | dbh Range (cm) | Mean dbh (cm) |
---|---|---|---|---|---|
10–25 | 16,702 | 8 | 332 | 5–50 | 10.63 |
25–50 | 15,208 | 7 | 426 | 5–65 | 12.64 |
50–75 | 2748 | 5 | 564 | 5–83 | 12.13 |
75–100 | 85 | 4 | 633 | 5–64 | 12.22 |
All | 34,743 | 24 | 1955 | 5–83 | 11.93 |
Remote-Sensing Data | Wavelength | Spatial Resolution | Acquisition Date | Path/Row | Transformations |
---|---|---|---|---|---|
Landsat 8/OLI | Red (band 4) and near-infrared (Band 5) | 30 m | May 2017 | 166/68, 167/68, 166/69, 167/69 | NDVI1, SAVI1, SR1 |
Sentinel 2A/MSI | Red (Band 4) and near-infrared (Band 8) | 10 m | April 2017 | T36LZL, T36LZM, T36LZM, T36LZN, T37LBF, T37LBG, T37LCF, T37LCF, T37LCH, T37LDG, T37LDH | NDVI2, SAVI2, SR2 |
Sentinel 1B | C-Band (~5.7 cm) | 10 m | February 2017 | 155253/009606, 160043/009679, 160108/009679 | SAR backscatter: VV, VH |
ALOS/PALSAR-2 | L-Band (~23.6 cm) | 10 m | March 2016 | 11E035, 11E036, 11E037, 11E038, 12E035, 12E036, 12E037, 12E038, 13E035 | SAR backscatter: HH, HV |
Canopy Cover (%) | AGB at Plot Level (Mg ha−1) | ||
---|---|---|---|
Range | Mean | Std.dev e | |
10–25 | 11–58 | 30.0 a | 14.0 |
25–50 | 42–80 | 61.7 b | 11.7 |
50–75 | 64–74 | 67.8 c | 4.2 |
75–100 | 75–95 | 83.0 d | 7.5 |
Average | 11–95 | 56.0 | 22.6 |
Models | Fit Statistics | ||||||||
---|---|---|---|---|---|---|---|---|---|
Coefficients | r2 | AIC | BIC | RMSE | RMSE (%) | ||||
1 Model 1 | 20.19 | 156.1 | 46.66 | 136 | 58.56 | 17.24 | 30.78 | ||
2 Model 2 | 134.3 | 3.23 | 33.88 | 52.08 | 138 | 60.34 | 16.11 | 28.76 | |
3 Model 3 | 92.4 | 110.1 | 4.66 | 65.85 | 128 | 55.21 | 13.55 | 24.2 | |
4 Model 4 | 126.5 | 151.4 | 250.1 | 6.63 | 87.5 | 123 | 51.93 | 11.56 | 20.46 |
Parameters | Variables from Remote-Sensing Data | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
NDVI1 | SAVI1 | SR1 | NDVI2 | SAVI2 | SR2 | σHH | σHV | σVH | σVV | |
Pearson’s correlation | 0.60 | 0.30 | 0.47 | 0.63 | 0.20 | 0.50 | 0.63 | 0.63 | 0.50 | 0.42 |
R-squared (R2) | 0.40 | 0.08 | 0.22 | 0.50 | 0.04 | 0.30 | 0.49 | 0.49 | 0.23 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macave, O.A.; Ribeiro, N.S.; Ribeiro, A.I.; Chaúque, A.; Bandeira, R.; Branquinho, C.; Washington-Allen, R. Modelling Aboveground Biomass of Miombo Woodlands in Niassa Special Reserve, Northern Mozambique. Forests 2022, 13, 311. https://doi.org/10.3390/f13020311
Macave OA, Ribeiro NS, Ribeiro AI, Chaúque A, Bandeira R, Branquinho C, Washington-Allen R. Modelling Aboveground Biomass of Miombo Woodlands in Niassa Special Reserve, Northern Mozambique. Forests. 2022; 13(2):311. https://doi.org/10.3390/f13020311
Chicago/Turabian StyleMacave, Orlando A., Natasha S. Ribeiro, Ana I. Ribeiro, Aniceto Chaúque, Romana Bandeira, Cristina Branquinho, and Robert Washington-Allen. 2022. "Modelling Aboveground Biomass of Miombo Woodlands in Niassa Special Reserve, Northern Mozambique" Forests 13, no. 2: 311. https://doi.org/10.3390/f13020311
APA StyleMacave, O. A., Ribeiro, N. S., Ribeiro, A. I., Chaúque, A., Bandeira, R., Branquinho, C., & Washington-Allen, R. (2022). Modelling Aboveground Biomass of Miombo Woodlands in Niassa Special Reserve, Northern Mozambique. Forests, 13(2), 311. https://doi.org/10.3390/f13020311