Monitoring the Severity of Pantana phyllostachysae Chao Infestation in Moso Bamboo Forests Based on UAV Multi-Spectral Remote Sensing Feature Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data and Pre-Processing
2.2. UAV Remote Sensing Feature Selection
2.3. Construction and Optimisation of Pest Detection Models
2.3.1. Support Vector Machine (SVM)
2.3.2. Random Forest (RF)
2.3.3. Extreme Gradient Boosting Tree (XGBoost)
2.4. Test Effect Evaluation
3. Results
3.1. UAV Multispectral Characterisation of PPC Damage in Moso Bamboo Forests
3.2. Feature Optimisation and Analysis Based on RF-RFE
3.3. Damage Detection Model and Effect Evaluation of PPC in Moso Bamboo Forest
3.3.1. Establishment of a Damage Detection Model for PPC Infestation in Moso Bamboo Forests
3.3.2. Evaluation of the Detection Effect of PPC in Moso Bamboo Forest
4. Discussion
5. Conclusions
- The spectra of G, RE, and NIR bands of the Moso bamboo canopy differed significantly according to the degree of damage, and their values showed a decreasing trend with the increase in damage class.
- The ten features selected using the RF-RFE algorithm, including nine vegetation indices and one texture feature, were ranked in descending order of importance as RedGreen, CSI, NDVI, MSR, TNDVI, RVI, correlation, MCARI, GNDVI, and CIrededge. Each of the selected features showed relatively clear pest response patterns, and large differences were observed between the different damage classes of Moso bamboo canopies. The selected texture feature was also shown to play an important role in the detection of damage classes at the UAV scale.
- All three models were able to detect the damage level of PPC, and XGBoost showed the best detection performance; its OA and Kappa coefficient were 86.47%, 0.811, respectively. The RF model, with an OA and Kappa coefficient value of 85.71%, 0.805, respectively, was ranked second, and SVM, with an OA and Kappa coefficient of 81.95%, 0.733, respectively, was ranked third.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, R.J.; Castilla, G.; White, J.C.; Cooke, B.J.; Skakun, R.S. Remote sensing of forest pest damage: A review and lessons learned from a Canadian perspective. Can. Entomol. 2016, 148, S296–S356. [Google Scholar] [CrossRef]
- Park, J.; Sim, W.; Lee, J. Detection of trees with pine wilt disease using object-based classification method. J. For. Environ. Sci. 2016, 32, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Havašová, M.; Ferenčík, J.; Jakuš, R. Interactions between windthrow, bark beetles and forest management in the Tatra national parks. For. Ecol. Manag. 2017, 391, 349–361. [Google Scholar] [CrossRef]
- Royle, D.D.; Lathrop, R.G. Monitoring hemlock forest health in New Jersey using landsat TM data and change detection techniques. For. Sci. 1997, 43, 327–335. [Google Scholar]
- Xu, Z.H.; Huang, X.Y.; Lin, L.; Wang, Q.F.; Liu, J.; Chen, C.C.; Yu, K.Y.; Zhou, H.K.; Zhang, H.F. Dendrolimus Punctatus Walker Damage Detection Based on Fisher Discriminant Analysis and Random Forest. Spectrosc. Spect. Anal. 2018, 38, 2888–2896. [Google Scholar]
- Xi, G.L. Early Hyperspectral Identification of Erannis Jacobsoni Djak Disaster; Inner Mongolia Normal University: Hohhot, China, 2020. [Google Scholar]
- Huang, X.Y.; Xu, Z.H.; Lin, L.; Shi, W.C.; Yu, K.Y.; Liu, J.; Chen, C.C.; Zhou, H.K. Pantana Phyllostachysae Chao Damage Detection Based on Physical and Chemical Parameters of Moso Bamboo Leaves. Spectrosc. Spect. Anal. 2019, 39, 857–864. [Google Scholar]
- Huang, X.Y.; Xu, Z.H.; Wang, X.P.; Yang, X.; Ju, W.M.; Hu, X.Y.; Li, K.; Chen, Y.Z. Spectral Characteristics of Moso Bamboo Leaves Damaged by Pantana Phyllostachysae Chao and Monitoring of Pest Rating. Spectrosc. Spect. Anal. 2021, 41, 1253–1259. [Google Scholar]
- Huang, X.Y. Remote Sensing Response Mechanism of Phyllostachys pubescena Forests Damaged by Pantana phyllostchysae Chao; Fuzhou University: Fuzhou, China, 2018. [Google Scholar]
- Hao, D.L.; Xiao, Q.; Wen, J.G.; You, D.Q.; Wu, X.D.; Lin, X.W.; Wu, S.B. Advances in upscaling methods of quantitative remote sensing. Natl. Remote Sens. Bull. 2018, 22, 408–423. [Google Scholar]
- Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Roujean, J.; Breon, F. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Fu, Y.Z.; Wang, X.Q.; Jiang, H. The Correlation between LAI and Vegetation Index of Masson Pine. Remote Sens. Land Resour. 2010, 3, 41–46. [Google Scholar]
- Jiang, Z.Y.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; Colstoun, E.B.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Abdulridha, J.; Ampatzidis, Y.; Roberts, P.; Kakarla, S.C. Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence. Biosyst. Eng. 2020, 197, 135–148. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubuhler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Steven, M.D. The Sensitivity of the OSAVI Vegetation Index to Observational Parameters. Remote Sens. Environ. 1998, 63, 49–60. [Google Scholar] [CrossRef]
- Tanaka, S.; Kawamura, K.; Maki, M.; Muramoto, Y.; Yoshida, K.; Akiyama, T. Spectral Index for Quantifying Leaf Area Index of Winter Wheat by Field Hyperspectral Measurements: A Case Study in Gifu Prefecture, Central Japan. Remote Sens. 2015, 7, 5329–5346. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Wu, C.Y.; Niu, Z.; Tang, Q.; Huang, W.J. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Raymond, H.E.; Daughtry, C.S.T.; Eitel, J.U.H.; Dan, S.L. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J. 2011, 103, 1090–1099. [Google Scholar]
- Penuelas, J.; Frederic, B.; Filella, I. Semiempirical indexes to assess carotenoids chlorophyll A ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Lin, Q.N.; Huang, H.G.; Wang, J.X.; Huang, K.; Liu, Y.Y. Detection of Pine Shoot Beetle (PSB) Stress on Pine Forests at Individual Tree Level using UAV-Based Hyperspectral Imagery and Lidar. Remote Sens. 2019, 11, 2540–2560. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Y.; Zhang, Z.H.; Liu, X.L.; Yao, J.; Du, T.; Ma, Y.Q.; Shi, L. Discriminant Analysis of the Damage Degree Caused by Pine Shoot Beetle to Yunnan Pine Using UAV-Based Hyperspectral Images. Forests 2020, 11, 1258–1280. [Google Scholar] [CrossRef]
- Iordache, M.D.; Mantas, V.; Baltazar, E.; Pauly, K.; Lewyckyj, N. A Machine Learning Approach to Detecting Pine Wilt Disease Using Airborne Spectral Imagery. Remote Sens. 2020, 12, 2280–2303. [Google Scholar] [CrossRef]
- Lei, S.H.; Luo, J.B.; Tao, X.J.; Qiu, Z.X. Remote Sensing Detecting of Yellow Leaf Disease of Arecanut Based on UAV Multisource Sensors. Remote Sens. 2021, 13, 4562–4584. [Google Scholar] [CrossRef]
- Deng, X.L.; Zeng, G.L.; Zhu, Z.H.; Huang, Z.X.; Yang, J.C.; Tong, Z.J.; Yin, X.B.; Wang, T.W.; Lan, Y.B. Classification and feature band extraction of diseased citrus plants based on UAV hyperspectral remote sensing. J. South. China Agric. Univ. 2020, 41, 100–108. [Google Scholar]
- Zheng, B.J.; Chen, Y.Z.; Li, K.; Wang, X.Q.; Xu, Z.H.; Huang, X.Y.; Hu, X.Y. Detection of Pest Degree of Phyllostachys Chinese With Hyperspectral Data. Spectrosc. Spect. Anal. 2021, 41, 3200–3207. [Google Scholar]
- MAO, Y.; Pi, D.Y.; Liu, Y.M.; Sun, Y.X. Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification. Chin. J. Chem. Eng. 2006, 14, 65–72. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.M.; Lu, L.Q.; Jia, P.; Yang, H.B.; Lan, Y.B. Weed Identification in Maize Field Based on Multi-Spectral Remote Sensing of Unmanned Aerial Vehicle. Sci. Agric. Sin. 2020, 53, 1545–1555. [Google Scholar]
- Liu, X.X.; Wang, L.; Xu, S.H.; Liang, Y. A remote sensing feature selection method of forest biomass estimation based on RF-RFE. Sci. Surv. Mapp. 2017, 42, 100–105. [Google Scholar]
- Attarzadeh, R.; Amini, J. Towards an object-based multi-scale soil moisture product using coupled Sentinel-1 and Sentinel-2 data. Remote Sens. Lett. 2019, 10, 619–628. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Zhang, Y.; Wang, H.Y.; Du, X.; Li, Q.Z.; Zhu, J. Intraday Variation Mapping of Population Age Structure via Urban-Functional-Region-Based Scaling. Remote Sens. 2021, 13, 805. [Google Scholar] [CrossRef]
- Granitto, P.M.; Furlanello, C.; Biasioli, F.; Gasperi, F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemometr. Intell. Lab. Syst. 2006, 83, 83–90. [Google Scholar] [CrossRef]
- Zhou, X.C.; Zheng, L.; Huang, H.Y. Classification of Forest Stand Based on Multi-Feature Optimization of UAV Visible Light Remote Sensing. Sci. Silv. Sin. 2021, 57, 24–36. [Google Scholar]
- Xie, Z.L.; Chen, Y.L.; Lu, D.S.; Li, G.Y.; Chen, E.X. Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164–191. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gong, Z.N.; Wang, Q.W.; Jin, D.D.; Wang, X. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. Natl. Remote Sens. Bull. 2019, 23, 313–326. [Google Scholar]
- Xu, Y.; Zhen, J.N.; Jiang, X.P.; Wang, J.J. Mangrove species classification with UAV-based remote sensing data and XGBoost. Natl. Remote Sens. Bull. 2021, 25, 737–752. [Google Scholar]
- Rullan-Silva, C.D.; Olthoff, A.E.; Mata, D.; Pajares-Alonso, J.A. Remote monitoring of forest insect defoliation. A Review. For. Syst. 2013, 22, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Senf, C.; Seidl, R.; Hostert, P. Remote sensing of forest insect disturbances: Current state and future directions. Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beurs, K.M.; Townsend, P.A. Estimating the effect of gypsy moth defoliation using MODIS. Remote Sens. Environ. 2008, 112, 3983–3990. [Google Scholar]
- Bhattarai, R.; Rahimzadeh-Bajgiran, P.; Weiskittel, A.; Meneghini, A.; MacLean, D.A. Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery. ISPRS J. Photogramm. Remote Sens. 2021, 172, 28–40. [Google Scholar] [CrossRef]
- Huang, H.S.; Deng, J.Z.; Lan, Y.B.; Yang, A.; Deng, X.L.; Zhang, L.; Wen, S.; Jiang, Y.; Suo, G.Y.; Chen, P.C. A two-stage classification approach for the detection of spider mite- infested cotton using UAV multispectral imagery. Remote Sens. Lett. 2018, 9, 933–941. [Google Scholar] [CrossRef]
- Marston, Z.P.D.; Cira, T.M.; Hodgson, E.W.; Knight, J.F.; MacRae, I.V.; Koch, R.L. Detection of Stress Induced by Soybean Aphid (Hemiptera: Aphididae) Using Multispectral Imagery from Unmanned Aerial Vehicles. J. Econ. Entomol. 2019, 113, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Albetis, J.; Duthoit, S.; Guttler, F.; Jacquin, A.; Goulard, M.; Poilve, H.; Feret, J.B.; Dedieu, G. Detection of Flavescence. Remote Sens. 2017, 9, 308–328. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Ren, L.L.; Luo, Y.Q. Early detection of pine wilt disease in Pinus tabuliformis in North China using a field portable spectrometer and UAV-based hyperspectral imagery. For. Ecosyst. 2021, 8, 44–63. [Google Scholar] [CrossRef]
- Huang, X.Y.; Xu, Z.H.; Yang, X.; Shi, J.M.; Hu, X.Y.; Ju, W.M. Monitoring the Severity of Pantana phyllostachysae Chao on Bamboo Using Leaf Hyperspectral Data. Remote Sens. 2021, 13, 4146–4164. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.L.; Guijun, Y.; Zhu, C.H.; Huo, L.N.; Feng, H.K. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sens. Environ. 2018, 217, 323–339. [Google Scholar] [CrossRef]
Bands | Wavelength Range/nm | Centre Wavelength/nm | Band Width/nm |
---|---|---|---|
Blue band (B) | 434–466 | 450 | 32 |
Green band (G) | 544–576 | 560 | 32 |
Red band (R) | 634–666 | 650 | 32 |
Red-edge band (RE) | 714–746 | 730 | 32 |
Near-infrared band (NIR) | 814–866 | 840 | 52 |
Classifier | Parameters | Five-Fold Cross-Validation Accuracy (%) |
---|---|---|
Support Vector Machine, SVM | kernel = ‘poly’, C = 1, gamma = 5, degree = 2 | 82.34 |
Random Forests, RF | n_estimators = 50, random_state = 80, max_depth = 9 | 85.41 |
Extreme Gradient Boosting, XGBoost | n_estimators = 137, random_state = 100, max_depth = 2, gamma = 0.1, eta = 0.05 | 86.63 |
Damage Levels | SVM | RF | XGBoost | |||
---|---|---|---|---|---|---|
OA (%) | Kappa Coefficient | OA (%) | Kappa Coefficient | OA (%) | Kappa Coefficient | |
Healthy | 78.26 | 0.876 | 76.19 | 0.722 | 80.95 | 0.776 |
Mild damage | 75.00 | 0.565 | 83.87 | 0.788 | 79.17 | 0.746 |
Moderate damage | 83.33 | 0.712 | 86.49 | 0.809 | 85.00 | 0.788 |
Severe damage | 82.50 | 0.922 | 90.91 | 0.866 | 93.75 | 0.900 |
Total | 81.95 | 0.733 | 85.71 | 0.805 | 86.47 | 0.811 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zhang, Q.; Xiang, S.; Li, Y.; Huang, X.; Zhang, Y.; Zhou, X.; Li, Z.; Yao, X.; Li, Q.; et al. Monitoring the Severity of Pantana phyllostachysae Chao Infestation in Moso Bamboo Forests Based on UAV Multi-Spectral Remote Sensing Feature Selection. Forests 2022, 13, 418. https://doi.org/10.3390/f13030418
Xu Z, Zhang Q, Xiang S, Li Y, Huang X, Zhang Y, Zhou X, Li Z, Yao X, Li Q, et al. Monitoring the Severity of Pantana phyllostachysae Chao Infestation in Moso Bamboo Forests Based on UAV Multi-Spectral Remote Sensing Feature Selection. Forests. 2022; 13(3):418. https://doi.org/10.3390/f13030418
Chicago/Turabian StyleXu, Zhanghua, Qi Zhang, Songyang Xiang, Yifan Li, Xuying Huang, Yiwei Zhang, Xin Zhou, Zenglu Li, Xiong Yao, Qiaosi Li, and et al. 2022. "Monitoring the Severity of Pantana phyllostachysae Chao Infestation in Moso Bamboo Forests Based on UAV Multi-Spectral Remote Sensing Feature Selection" Forests 13, no. 3: 418. https://doi.org/10.3390/f13030418
APA StyleXu, Z., Zhang, Q., Xiang, S., Li, Y., Huang, X., Zhang, Y., Zhou, X., Li, Z., Yao, X., Li, Q., & Guo, X. (2022). Monitoring the Severity of Pantana phyllostachysae Chao Infestation in Moso Bamboo Forests Based on UAV Multi-Spectral Remote Sensing Feature Selection. Forests, 13(3), 418. https://doi.org/10.3390/f13030418