Reconstruction of the Expansion of Siberian Larch into the Mountain Tundra in the Polar Urals in the 20th—Early 21st Centuries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Measurements
2.3. Aerial Photography, Image Processing, and Tree Recognition
2.4. Statistical Data Analysis
3. Results
3.1. Recognition of Undergrowth and Trees of Siberian Larch
3.2. Assessment of the Probability of Three Generations of Siberian Larch Recognition
3.3. Mapping of Siberian Larch Trees and Tree Remnants
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kullman, L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J. Ecol. 2002, 90, 68–77. [Google Scholar] [CrossRef]
- Shiyatov, S.G.; Terent’ev, M.M.; Fomin, V.V. Spatiotemporal dynamics of forest-tundra communities in the Polar Urals. Russ. J. Ecol. 2005, 36, 69–75. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gutiérrez, E.; Fortin, M.-J. Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Glob. Ecol. Biogeogr. 2006, 15, 182–191. [Google Scholar] [CrossRef]
- Bakker, J.; Olivera, M.M.; Hooghiemstra, H. Holocene environmental change at the upper forest line in northern Ecuador. Holocene 2008, 18, 877–893. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Dvinskaya, M.L. Forest–tundra ecotone response to climate change in the Western Sayan Mountains, Siberia. Scand. J. For. Res. 2010, 25, 224–233. [Google Scholar] [CrossRef]
- Dufour-Tremblay, G.; Lévesque, E.; Boudreau, S. Dynamics at the treeline: Differential responses of Picea mariana and Larix laricina to climate change in eastern subarctic Québec. Environ. Res. Lett. 2012, 7, 044038. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.-A.; Lee, M.-F.; Tzeng, H.-Y.; Liao, M.-C. A concise scheme of vegetation boundary terms in subtropical high mountains. Afr. J. Agr. Res. 2014, 9, 1560–1570. [Google Scholar] [CrossRef] [Green Version]
- Hagedorn, F.; Shiyatov, S.G.; Mazepa, V.S.; Devi, N.M.; Grigor’ev, A.A.; Bartish, A.A.; Fomin, V.V.; Kapralov, D.S.; Terent’ev, M.; Bugman, H.; et al. Treeline advances along the Urals mountain range—Driven by improved winter conditions? Glob. Chang. Biol. 2014, 20, 3530–3543. [Google Scholar] [CrossRef]
- Lenoir, J.; Svenning, J.C. Climate-related range shifts—A global multidimensional synthesis and new research directions. Ecography 2015, 38, 15–28. [Google Scholar] [CrossRef]
- Bryn, A.; Potthoff, K. Elevational treeline and forest line dynamics in Norwegian mountain areas—A review. Landsc. Ecol. 2018, 33, 1225–1245. [Google Scholar] [CrossRef] [Green Version]
- Chhetri, P.K. Predicting upslope expansion of sub-alpine forest in the Makalu Barun National Park, Eastern Nepal, with a hybrid cartographic model. J. For. Res. 2018, 29, 129–137. [Google Scholar] [CrossRef]
- Mamet, S.D.; Brown, C.D.; Trant, A.J.; Laroque, C.P. Shifting global Larix distributions: Northern expansion and southern retraction as species respond to changing climate. J. Biogeogr. 2019, 46, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Grigor’ev, A.A.; Devi, N.M.; Kukarskikh, V.V.; V’yukhin, S.O.; Galimova, A.A.; Moiseev, P.A.; Fomin, V.V. Structure and Dynamics of Tree Stands at the Upper Timberline in the Western Part of the Putorana Plateau. Russ. J. Ecol. 2019, 50, 311–322. [Google Scholar] [CrossRef]
- Moiseev, P.A.; Galimova, A.A.; Bubnov, M.O.; Devi, N.M.; Fomin, V.V. Tree Stands and Their Productivity Dynamics at the Upper Growing Limit in Khibiny on the Background of Modern Climate Changes. Russ. J. Ecol. 2019, 50, 431–444. [Google Scholar] [CrossRef]
- Shiyatov, S.G.; Terent’ev, M.M.; Fomin, V.V.; Zimmermann, N.E. Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century. Russ. J. Ecol. 2007, 38, 223–227. [Google Scholar] [CrossRef]
- Kapralov, D.S.; Shiyatov, S.G.; Moiseev, P.A.; Fomin, V.V. Changes in the composition, structure, and altitudinal distribution of low forests at the upper limit of their growth in the Northern Ural Mountains. Russ. J. Ecol. 2006, 37, 367–372. [Google Scholar] [CrossRef]
- Fomin, V.V.; Mikhailovich, A.P.; Shiyatov, S.G. Trees in the Upper Treeline Ecotone in the Polar Urals: Centuries-Old Change and Spatial Patterns. Mt. Res. Dev. 2020, 40, R32. [Google Scholar] [CrossRef]
- Corney, D.; Haynes, J.D.; Rees, G.; Lotto, R.B. The brightness of colour. PLoS ONE 2009, 4, e5091. [Google Scholar] [CrossRef]
- Lotto, R.B.; Purves, D. An empirical explanation of the Chubb illusion. J. Cogn. Neurosci. 2001, 13, 547–555. [Google Scholar] [CrossRef]
- Svendsen, J.I.; Krüger, L.C.; Mangerud, J.; Astakhov, V.I.; Paus, A.; Nazarov, D.; Murray, A. Glacial and vegetation history of the Polar Ural Mountains in northern Russia during the Last Ice Age, Marine Isotope Stages 5–2. Quat. Sci. Rev. 2014, 92, 409–428. [Google Scholar] [CrossRef]
- Firsova, V.P.; Dedkov, V.S. Soils of High Latutudes of the Mountain Urals; SEC AS USSR: Sverdlovsk, Russia, 1983. [Google Scholar]
- Panova, N.K.; Jankovska, V.; Korona, O.M.; Zinov’ev, E.V. Holocene Dynamics of Vegetation and Ecological Conditions in the Polar Urals. Russ. J. Ecol. 2003, 34, 19–230. [Google Scholar] [CrossRef]
- Wong, C.M.; Lertzman, K.P. Errors in estimating tree age: Implications for studies of stand dynamics. Can. J. For. Res 2001, 31, 1262–1271. [Google Scholar] [CrossRef]
- Elliott, G.P.; Kipfmueller, K.F. Multi-scale Influences of Slope Aspect and Spatial Pattern on Ecotonal Dynamics at Upper Treeline in the Southern Rocky Mountains, U.S.A. Arct. Antarct. Alp. Res. 2018, 42, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Agisoft LLC. Agisoft Metashape User Manual Professional Edition, Version 1.5; Agisoft LLC: St. Petersburg, Russia, 2019. [Google Scholar]
- ISO 5725-2, Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method. 2019.
- Mazepa, V.S. Stand density in the last millennium at the upper tree-line ecotone in the Polar Ural Mountains. Can. J. For. Res. Can. Rech. For. 2005, 35, 2082–2091. [Google Scholar] [CrossRef]
- Mazepa, V.S. Climatic depended dynamics of the upper treeline ecotone in the Polar Urals for the last millennium. In Proceedings of the XIII World Forestry Congress, Buenos Aires, Argentina, 18–23 October 2009; pp. 1–9. [Google Scholar]
- Shiyatov, S.G.; Mazepa, V.S. Contemporary Expansion of Siberian Larch into the Mountain Tundra of the Polar Urals. Russ. J. Ecol. 2015, 46, 495–502. [Google Scholar] [CrossRef]
- Kullman, L. Long-term geobotanical observations of climate change impacts in the Scandes of West-Central Sweden. Nord. J. Bot. 2004, 24, 445–467. [Google Scholar] [CrossRef]
- Shiyatov, S.G. Rates of Change in the Upper Treeline Ecotone in the Polar Ural Mountains. Nature 2003, 394, 739–743. [Google Scholar] [CrossRef]
- Devi, N.; Hagedorn, F.; Moiseev, P.; Bugmann, H.; Shiyatov, S.; Mazepa, V.; Rigling, A. Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob. Chang. Biol. 2008, 14, 1581–1591. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Hagedorn, F.; Knorre, A.A.; Fedotova, E.V.; Vaganov, E.A.; Naurzbaev, M.M.; Moiseev, P.A.; Rigling, A. 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas 2012, 41, 56–67. [Google Scholar] [CrossRef]
- Fomin, V.V.; Shiyatov, S.G. Factors determining the phenomena in the upper tree line ecotone in the Polar Urals mountains. Russ. For. Manag. 2021, 77, 42–51. [Google Scholar] [CrossRef]
- Raptis, D.; Kazana, V.; Kazaklis, A.; Stamatiou, C. A Crown Width-Diameter Model for Natural Even-Aged Black Pine Forest Management. Forests 2018, 9, 610. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Mao, Q.; Ren, P.; Sigdel, S.R. Opposite Tree-Tree Interactions Jointly Drive the Natural Fir Treeline Population on the Southeastern Tibetan Plateau. Forests 2021, 12, 1417. [Google Scholar] [CrossRef]
- Kalliovirta, J.; Tokola, T. Functions for Estimating Stem Diameter and Tree Age Using Tree Height, Crown Width and Existing Stand Database Information. Silva Fenn. 2005, 39, 227–248. [Google Scholar] [CrossRef] [Green Version]
Age Interval, Years of Age | Model Parameter Relative Units | |||||
---|---|---|---|---|---|---|
41 and more | 11–40 | 1–10 | ||||
0.740 | 0.252 | 0.056 | p-Value | |||
0.242 | 1.462 | 0.112 | 1.123 | 0.083 | 0.791 | shape |
0.240 | 1.560 | 0.027 | 0.400 | 0.028 | 0.155 | scale |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fomin, V.; Mikhailovich, A.; Golikov, D.; Agapitov, E. Reconstruction of the Expansion of Siberian Larch into the Mountain Tundra in the Polar Urals in the 20th—Early 21st Centuries. Forests 2022, 13, 419. https://doi.org/10.3390/f13030419
Fomin V, Mikhailovich A, Golikov D, Agapitov E. Reconstruction of the Expansion of Siberian Larch into the Mountain Tundra in the Polar Urals in the 20th—Early 21st Centuries. Forests. 2022; 13(3):419. https://doi.org/10.3390/f13030419
Chicago/Turabian StyleFomin, Valery, Anna Mikhailovich, Dmitry Golikov, and Egor Agapitov. 2022. "Reconstruction of the Expansion of Siberian Larch into the Mountain Tundra in the Polar Urals in the 20th—Early 21st Centuries" Forests 13, no. 3: 419. https://doi.org/10.3390/f13030419
APA StyleFomin, V., Mikhailovich, A., Golikov, D., & Agapitov, E. (2022). Reconstruction of the Expansion of Siberian Larch into the Mountain Tundra in the Polar Urals in the 20th—Early 21st Centuries. Forests, 13(3), 419. https://doi.org/10.3390/f13030419