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Abstract: Aboveground vegetation water storage (AVWS) is a fundamental ecological parameter
of terrestrial ecosystems which participates in plant metabolism, nutrient and sugar transport,
and maintains the integrity of the hydraulic system of the plant. The Jiuzhaigou National Nature
Reserve (JNNR) is located in the Eastern Tibet Plateau and it is very sensitive to climate change.
However, a regional estimate of the AVWS based on observations is still lacking in the JNNR and
improving the model accuracy in such mountainous areas is challenging. Therefore, in this study,
we combined the Landsat 8 and Sentinel-2 data to estimate AVWS using multivariate adaptive
regression splines (MARS), random forest (RF) and extreme gradient boosting (XGBoost) with the
linkage of 54 field observations in the JNNR. The results showed that AVWS varied among different
forest types. The coniferous forests had the highest AVWS (212.29 ± 84.43 Mg ha−1), followed by
mixed forests (166.29 ± 72.73 Mg ha−1) and broadleaf forests (142.60 ± 46.36 Mg ha−1). The average
AVWS was 171.2 Mg ha−1. Regardless of the modelling approaches, both Sentinel-2 and Landsat 8
successfully estimated AVWS separately. Prediction accuracy of AVWS was improved by combining
Landsat 8 and Sentinel-2 images. Among the three machine learning approaches, the XGBoost
model performed best with a model efficiency of 0.57 and root mean square error of 48 Mg ha−1.
Predicted AVWS using XGBoost showed a strong spatial pattern of across the study area. The total
AVWS was 5.24 × 106 Mg with 67.2% coming from conifer forests. The results highlight the potential
of improving the accuracy of AVWS estimation by integrating different optical images and using
machine learning approaches in mountainous areas.

Keywords: machine learning; aboveground vegetation water storage; Sentinel-2; natural forests; China

1. Introduction

Forest ecosystem accounts for about 33% of the Earth’s land surface area. It is an
important gene, carbon and energy pool, and water reservoir [1]. It is also a key factor
to regulate the water cycle of terrestrial ecosystems [2,3]. Aboveground vegetation water
storage (AVWS) is defined as the water storage of the vegetation leaves, stems and branches,
which is the composition of the eco-water proposed by Wan and Yang [4]. Vegetation water
storage impacts the plant metabolism, nutrient and sugar transport, and maintains the
integrity of the hydraulic system of the plant [5]. Using remote sensing to estimate the
AVWS at different scales is very important for estimating the water conservation function
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of forest vegetation, the change of river runoff and frequent extreme weather events caused
by global climate change [6–9].

Previous studies on vegetation water content mainly focused on several main indica-
tors, such as the relative water content (RWC), relative drought index (RDI), fuel moisture
content (FMC) and equivalent water thickness (EWT) [5]. Among these studies, remote
sensing was commonly used for estimating the vegetation water content [8,10]. For exam-
ple, Neinavaz and Skidmore [10] used thermal hyperspectral (TIR, 8–14 µm) measurements
to retrieve FMC and EWT at canopy level, obtaining a good model performance. However,
as an important indicator of the vegetation water content, there are few studies on the forest
water storage capacity measurement due to the lack of stem water storage capacity [11].

In the last decades, remote sensing was proved to be a useful tool to estimate the vege-
tation water content across different scales [12,13]. Among the different sensors, Landsat
8 (Operational Land Imager), as a medium-resolution sensor (30 m), was widely used in
land use classification and for the direct estimation of some surface parameters [14,15].
Compared with Landsat 8, Sentinel-2 has been shown to have unique advantages for mea-
suring forest canopy cover, leaf area index (LAI) and aboveground biomass (AGB), due to
its higher resolution (10 m) and more spectral bands (red-edge bands) [16–18]. However,
whether the combination of different optical images can estimate AVWS accurately has
not been studied. Thus, the potential of optical images in AVWS estimation is still to be
explored, particularly in mountainous regions.

Previous studies commonly used statistical and physical models to estimate the veg-
etation water content based on remote sensing [19]. The traditional empirical model is
represented by linear and nonlinear models, which establishes the relationships between
vegetation water content indicators and vegetation indices (VIs) conducted by the bands
focused on the visible, near-infrared and shortwave-infrared regions [10,20–22]. However,
it is difficult to solve the saturation problem that occurs when estimating vegetation-related
indicators [23]. Additionally, it has the disadvantage of creating models that may be highly
dependent on location, sampling conditions and time [24,25]. Radiative transfer mod-
els (RTM) are also widely used in the estimation of vegetation water content, including
PROSAIL, GeoSAIL and 4SAIL2 [26]. Many studies have accurately estimated the water
storage on leaf and canopy level using RTMs [27–29]. For example, Wang and Hunt [27]
using PROSPECT and SAIL model to estimate the Fuel moisture content (FMC) for sin-
gle leaves and leaf stacks of Quercus alba, Acer rubrum and Zea mays, which obtained a
good result (for the PROSPECT model simulations, the relationship between FMC and
NDII/NDMI had an R2 of 0.853, while for the SAIL model simulations, the relationship
between NDII/NDMI and FMC at the canopy scale had an R2 of 0.900). However, ill-posed
model inversion complicates the use of RTMs. In addition, the influence of dry matter
content on the model cannot be eliminated [30–32].

As nonparametric methods, the machine learning algorithms, such as random forest
(RF), extreme gradient boosting (XGBoost) and multivariate adaptive regression splines
(MARS), have been widely used for the estimation of surface parameters, e.g., AGB and
LAI [33,34]. Compared with the traditional empirical model, machine learning approaches
can handle a larger number of variables and describe the relationships between AVWS
and variables more accurately, and it can overcome the overfitting and autocorrelation
problem [35]. In addition, the machine learning algorithms required no initial assumptions
about functional relationships and can function with nonlinear dependencies, which are
completely data adaptive [36]. While compared with radiative transfer models, the advan-
tage of machine learning algorithm is not reflected in accuracy, but in overcoming some
defects of radiative transfer models (e.g., negative influences of dry mater content (Cm) on
radiative transfer models cannot be eliminated and a few variables in radiative transfer
model are difficult to measure) [30–32].

In this study, the performance of the AVWS estimation combining Sentinel-2 and
Landsat 8 using machine learning approaches in the Jiuzhaigou National Nature Reserve
(JNNR) was validated. The JNNR located in the Eastern Tibet Plateau, and it is a world-
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famous tourist attraction, which is sensitive to global climate change [37]. The JNNR
has rich primary or second forest sources, which cover more than 70% of the area [38].
An accurate estimation of AVWS in subalpine forests in the JNNR is a challenge due to the
complex terrain conditions, e.g., steep slopes and varying soil depths with an elevation
ranging from 1996 to 4764 m above sea level [37]. Currently, the existing studies in the JNNR
mainly focused on earthquake landslide hazard assessments, post-earthquake vegetation
restoration and wildlife protection [39–41]. However, to our best knowledge, a regional
estimation of AVWS in the JNNR has not been carried out.

To fill the knowledge gaps, we combined the Landsat 8 and Sentinel-2 data to estimate
AVWS using MARS, RF and XGBoost with the linkage of 54 field observations in the JNNR.
The specific objectives of the study were to: (1) compare the AVWS among different forest
types; (2) optimize the methodology to model AVWS with Landsat 8 and Sentinel-2 images
using three approaches.

2. Materials and Methods
2.1. Study Area

The study area is located at the Jiuzhaigou National Nature Reserve (JNNR, 33◦02′−33◦21′ N,
108◦38′−104◦03′ E), at the southern region of the Jiuzhaigou County (Figure 1), which
has an area of 65042.56 ha. The elevation of the study area is generally high in the south
and low in the north. The landform is dominated by high mountains, with the altitude
ranging from 1600 to 4800 m. This area has a plateau humid climate, with annual average
temperature of 6–14 ◦C and annual precipitation of 600–840 mm. The JNNR is the second
largest forest area in the Sichuan province, with a forest coverage of about 70% and a variety
of protected plants such as Larix mastersiana Rehd. et Wils., Taxus chinensis (Pilger) Rehd.,
Tetracentron sinense Oliv., Picea brachytyla (Franch.) Pritz., Cupressus chengiana S. Y. Hu,
Magnolia officinalis Rehd. et Wils., Pteroceltis tatarinowii Maxim. and Picea aurantiaca Mast.

Forests 2022, 13, x FOR PEER REVIEW 3 of 15 
 

 

In this study, the performance of the AVWS estimation combining Sentinel-2 and 
Landsat 8 using machine learning approaches in the Jiuzhaigou National Nature Reserve 
(JNNR) was validated. The JNNR located in the Eastern Tibet Plateau, and it is a world-
famous tourist attraction, which is sensitive to global climate change [37]. The JNNR has 
rich primary or second forest sources, which cover more than 70% of the area [38]. An 
accurate estimation of AVWS in subalpine forests in the JNNR is a challenge due to the 
complex terrain conditions, e.g., steep slopes and varying soil depths with an elevation 
ranging from 1996 to 4764 m above sea level [37]. Currently, the existing studies in the 
JNNR mainly focused on earthquake landslide hazard assessments, post-earthquake veg-
etation restoration and wildlife protection [39–41]. However, to our best knowledge, a re-
gional estimation of AVWS in the JNNR has not been carried out. 

To fill the knowledge gaps, we combined the Landsat 8 and Sentinel-2 data to esti-
mate AVWS using MARS, RF and XGBoost with the linkage of 54 field observations in the 
JNNR. The specific objectives of the study were to: (1) compare the AVWS among differ-
ent forest types; (2) optimize the methodology to model AVWS with Landsat 8 and Senti-
nel-2 images using three approaches. 

2. Materials and Methods 
2.1. Study Area 

The study area is located at the Jiuzhaigou National Nature Reserve (JNNR, 
33°02′−33°21′ N, 108°38′−104°03′ E), at the southern region of the Jiuzhaigou County (Fig-
ure 1), which has an area of 0.56 ha. The elevation of the study area is generally high in 
the south and low in the north. The landform is dominated by high mountains, with the 
altitude ranging from 1600 to 4800 m. This area has a plateau humid climate, with annual 
average temperature of 6–14 °C and annual precipitation of 600–840 mm. The JNNR is the 
second largest forest area in the Sichuan province, with a forest coverage of about 70% 
and a variety of protected plants such as Larix mastersiana Rehd. et Wils., Taxus chinensis 
(Pilger) Rehd., Tetracentron sinense Oliv., Picea brachytyla (Franch.) Pritz., Cupressus chengi-
ana S. Y. Hu, Magnolia officinalis Rehd. et Wils., Pteroceltis tatarinowii Maxim. and Picea 
aurantiaca Mast. 

 
Figure 1. Location of the study area (Jiuzhaigou National Nature Reserve) and field data. 

  

Figure 1. Location of the study area (Jiuzhaigou National Nature Reserve) and field data.

2.2. Field Data
2.2.1. Data Acquisition

Circular plots with a radius of 10 m were established from 19 June 2019 to 7 July 2019.
All the sample plots were selected to be at least 100 m away from the road to reduce
the edge effect [42,43]. Within each plot, all trees with a diameter greater than 5 cm at
breast height (DBH) of 1.3 m were measured by a diameter tape, and the tree species
was identified. Longitude, latitude, altitude and other geographic information were also
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recorded. A total of 54 forest plots were collected, with an elevation from 2199 m to 3522 m,
including 14 coniferous forests plots, 16 broad-leaved forests plots and 24 mixed forests
plots. The total number of samples was 2938 trees, and the average stand density was
1720 trees per ha. Samples were collected for different tree species, and the fresh weight
(FW) was weighted in the field. Then the samples were dried at 70 ◦C until a constant
weight was achieved in order to calculate the water content (ω) of each tree organ.

2.2.2. Aboveground Vegetation Water Storage Calculation

Initially, the aboveground biomass, which are expressed as the dry weight (DW) and
the fresh weight (FW), was calculated using the allometric equation for each organ (Table S1).
Then, the AVWS of branch, leaf and stem was calculated according to Equation (1):

ω =
FW − DW

FW
× 100% (1)

where ω is the water content (%). According to the relationship between water content and
biomass (BM), which is calculated according to the allometric growth equation of trees,
the AVWS of branches, stems and leaves of trees can be calculated by Equation (2):

AVWS =
ω

1−ω
× BM (2)

One-way analysis of variance (ANOVA) and Tukey-HSD (honestly significant differ-
ence) test were used to compare the differences of AVWS among different forest types.

2.3. Satellite Data and Preprocessing

The Sentinel-2 satellite (Table S2) carries a multispectral instrument (MSI) at a height of
786 km, covering 13 spectral bands ranged from 0.4 to 2.4 µm, at three spatial resolutions
(10, 20 and 60 m), with a temporal resolution of 10 days and a width of 290 km. Among the
optical data, Sentinel-2 data is the only one that contains three bands in the red edge range,
which is very effective for monitoring vegetation health information. The Sentinel-2 image
on 31 December 2019 was used in this study (https://scihub.copernicus.eu/dhus/odata/v1
/Products(’59961b5d-603c-4416-b9f5-b3e2207350b0’)/value, accessed on 20 February 2022).

Landsat 8 (Table S3) was launched in 2013 by NASA, America’s space agency. The satel-
lite is equipped with two sensors, the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS). OLI was used to collect image data of nine short-wave spectral
bands with a width of 185 km, ranged from 0.43 to 2.3 µm, at a spatial resolution of 30 m,
except for band 8 (15 m). The Landsat 8 image on 22 November 2019 was used in this
study (https://dds.cr.usgs.gov/download-staging/eyJpZCI6MTQ1MDU3ODczLCJjb250
YWN0SWQiOjIxMTY0NjF9, accessed on 20 February 2022).

The preprocessing of the Sentinel-2 and Landsat 8 data was carried out in the Sen2Cor
and ENVI 5.3 software, respectively. The main preprocessing processes include radiometric
calibration, atmospheric correction, terrain correction, geometric correction and resampling.
Radiometric calibration converts image DN value into TOA reflectance, and atmospheric
calibration converts TOA reflectance into surface reflectance. Terrain correction and geomet-
ric correction eliminated the errors caused by the terrain fluctuation and image distortion.
Finally, the Sentinel-2 image resolution was resampled to the same spatial resolution of
Landsat 8 of 30 m by the bilinear approach. After the preprocessing, bands 1 to 7 and 9 of
Landsat 8 and bands 1 to 13, except 10, of Sentinel-2 image were extracted as the potential
predictors of AVWS. The workflow is shown in Figure 2.

https://scihub.copernicus.eu/dhus/odata/v1/Products('59961b5d-603c-4416-b9f5-b3e2207350b0')/value
https://scihub.copernicus.eu/dhus/odata/v1/Products('59961b5d-603c-4416-b9f5-b3e2207350b0')/value
https://dds.cr.usgs.gov/download-staging/eyJpZCI6MTQ1MDU3ODczLCJjb250YWN0SWQiOjIxMTY0NjF9
https://dds.cr.usgs.gov/download-staging/eyJpZCI6MTQ1MDU3ODczLCJjb250YWN0SWQiOjIxMTY0NjF9
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Figure 2. Workflow of the AVWS (aboveground vegetation water storage) estimation model.

There were many clouds in the study area, so it was difficult to obtain available multi-
issue images at the same time. Therefore, like many previous studies [17,44], we used
single-issue images to predict AVWS, and applied ten-fold cross-validation to evaluate
model performance.

2.4. Classification Method

We used Sentinel-2 images and field observations for classification, with an image
resolution of 10 m. The support vector machine (SVM) was applied for supervised classifi-
cation using the original bands of Sentinel-2. Specifically, a total of 256 polygons (including
577 points) were used for training samples and field observations were used for test sam-
ples for an accuracy assessment. Through visual interpretation combined with the recorded
vegetation types and corresponding longitude and latitude coordinates during field in-
ventory, it was determined that the main types were forest and non-forest, in which the
forest types were divided into coniferous forests, broad-leaved forests and mixed forests.
After the supervised classification of the images, some small patches inevitably appeared in
the results. Whether from the perspective of thematic mapping or from the perspective of
practical application, it was necessary to eliminate or reclassify these small patches, so they
needed to be processed by major/minority analysis, cluster and sieve.

In the major/minor analysis, the false pixels in the larger category were classified into
this category by a method similar to convolution filtering, and a transform kernel size was
defined. Clump processing was used to cluster and merge adjacent similar classification
regions by using mathematical morphology operators (corrosion and expansion). Sieve
processing solved the island problem in classified images. The filtering process used the
speckle grouping method to eliminate these isolated classified pixels. The post classification
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image processing was conducted through analysis tools such as “majority/minority”,
“clump classes” and “sieve classes” in ENVI software, and set parameters to obtain the
final vegetation classification, which included “kernel size” (3*3 by default), “center pixel
weight” (1 by default), “operator size rows” (3 by default), “cols” (3 by default), “group
min threshold” (5 by default) and “number of neighbors” (8 by default). After the above
processing, the problems of spots, holes and drum islands in the classified image were
solved, and the spatial continuity and smoothness of the image were enhanced (Figure S1,
Table S4).

In this study, the classification results were evaluated by overall accuracy (OA) and
kappa coefficient. Overall accuracy (OA) refers to the ratio of the number of correctly
classified category pixels to the total number of categories [45]:

OA =
n
N

(3)

where n is the number of all correctly classified units, and N is the number of all classi-
fied units.

Kappa coefficient (Kappa) is a proportion, which represents the proportion of error
reduction between classification and completely random classification [45], calculated by
Equation (4):

K =
p0−pe

1− pe
(4)

where p0 is the overall accuracy, and pe can be calculated by Equation (5):

pe =
a1 × b1 + a2 × b2 + · · ·+ ac × bc

n× n
(5)

where a1, a2 . . . ac is the number of real samples of each class, and b1, b2 . . . bc is the number
of samples of each class predicted, and n is the total number of samples.

2.5. Variables for the Prediction of Aboveground Vegetation Water Storage

According to typical spectral characteristics of vegetation, such as reflectance peaks,
absorption bands and red edges, we also extracted the following indices (Table S5): Per-
pendicular Vegetation Index (PVI) [46], Triangle Vegetation Index (TVI) [47], Difference
Vegetation Index (DVI) [48], Normalized Green–Blue Difference Index (NGBDI) [49], Green–
Blue Ratio Index (GBRI) [50], Atmospherically Resistant Vegetation Index (ARVI) [51],
Green–Red Ratio Index (GRRI) [52], Specific Leaf Area Vegetation Index (SLAVI) [53],
Normalized Different Moisture Index (NDMI) [54] and Normalized Difference Infrared
Index (NDII) [55].

Texture is a feature representing the correlation between pixels in a region, which
can be used for the classification of images and to provide information related to the
structure and geometric properties of forests [56,57]. In this study, we used the gray level
co-occurrence matrix texture analysis method proposed by Haralick [58] to calculate eight
common texture features derived from Sentinel-2 and Landsat 8 with a 5 × 5 window
size, which included mean, variance, homogeneity, contrast, dissimilarity, entropy, second
moment and correlation (Table S6).

2.6. Feature Selection

We used Pearson’s correlation to analyze the relationships between field AVWS and
the above variables listed based on the image after resampling the Sentinel-2 image to 30 m
resolution and Landsat 8 images. The variables with significant correlations (p < 0.05) were
selected. Finally, a total of 60 variables were retained, including: (1) 26 Sentinel-2 variables;
(2) 34 Landsat 8 variables; and (3) their combination (60 predictors) (Figure S2).

Then, we used the recursive feature elimination (RFE) to select the most important
variables from the 60 variables to build the model. The RFE algorithm was used to evaluate
the impact of the number of input features on the performance of the model. The feature
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selection process started from all the indicators of each data set and ranked the predictor
indicators according to the importance criteria of each regression method. Then, the less
important variables were removed, until there were two predictors left. Finally, the optimal
feature subset size was obtained, which was defined as the minimum prediction number
within the 95% confidence interval of the minimum RMSE. In this study, the remaining
number of variables is shown in Table S7 and the rank of the variables′ importance is shown
in Figure S3.

2.7. Models
2.7.1. XGBoost

The XGBoost algorithm is proposed by Chen and Guestrin [59]. It is a flexible and
highly scalable tree structure enhancement model. It can deal with sparse data, greatly
improve the speed of the algorithm and reduce the computational memory in very large-
scale data training. Compared with the general gradient boost method, XGBoost performs
the second-order Taylor expansion of the objective function, and uses the second-order
derivative in the training process to accelerate the convergence speed of the model [60].
A regularization term is added to the objective function to control the complexity of the tree,
which could obtain a simpler model and avoid over fitting [61]. Currently, it is widely used
by data scientists and provides the most advanced screening results for many problems.

2.7.2. MARS

MARS is a data analysis method proposed by Friedman [62]. The method takes the
tensor product of the spline function as the basis function, which is divided into three steps:
forward process, backward pruning and model selection. MARS uses a series of linear
regressions to continuously learn different segments within the range of the transformed
new variables, which could obtain the fitting of the whole set of data. In other words,
MARS describes the nonlinear response relationship between species and environmental
variables by using a series of linear segments with different slopes. It has the advantage
that it can process large amounts of data with high dimensions within a short time and at
high accuracy [63,64].

2.7.3. Random Forest

RF is an algorithm that integrates multiple decision trees through the idea of ensemble
learning, which is proposed by Breiman [65]. Its basic unit is the decision tree, which can
be regarded as the integration of several decision trees. Its working principle is to generate
multiple classifiers or models to learn and predict independently [66]. For the classification
problem, the output of RF adopts the majority voting method, while for the regression
problem, the average value of the output of a single tree is calculated. It can monitor the
internal estimation error, classification ability and correlation and determine the number of
selected features [67].

2.7.4. Model Assessment

In this study, a 10-fold cross validation (CV) was used to evaluate the model per-
formance. The 10-fold CV divided the data set into 10 subsets which contained almost
the same number of samples and took one of the 10 subsets in each turn as the test set.
The remaining nine subsets were used as training sets to predict the targeted value. Such
process was conducted ten times for each part of the observations. Root mean square
(RMSE) and r-squared (R2), calculated by Equations (6) and (7), were used as the criteria to
evaluate the model performance.

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(6)
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R2 =
∑n

i=1 (ŷi − y)2

∑n
i=1(yi − y)2 (7)

where ŷi and yi are the predicted AVWS and observed AVWS for the i th plot, respectively;
n represents the total plots number of validations and y is the observed mean value.

3. Results
3.1. Classification

Regarding to forest and non-forest, the kappa coefficient was 0.89 and overall accu-
racy was 93.2%, showing a good classification. Similarly, regarding all land cover types,
the overall accuracy was 84.48% and the kappa coefficient was 0.80 (Figure S1). Coniferous
forests occupied the largest area (1.87 × 104 ha, 28.70%), followed by snow (1.76 × 104 ha,
27.12%), bare land (1.17 × 104 ha, 18.01%) and broadleaved forests (1.04 × 104 ha, 15.93%).
Grassland, shrubland, mixed forests and waterbodies accounted for a small proportion of
all land areas.

3.2. Field AVWS

The AVWS ranged from 64.06 to 443.51 Mg ha−1 with an average of 171.2 Mg ha−1

(Table 1). ANOVA analysis showed that the forest type had a significant impact on AVWS
(p = 0.03). The highest AVWS was observed in coniferous forests (212.29 ± 84.43 Mg ha−1),
followed by mixed forests (166.29 ± 72.73 Mg ha−1) and broad-leaved forests
(142.60 ± 46.36 Mg ha−1). From the results of the Tukey-HSD test, the difference between
coniferous forests and broad-leaved forests was significant (p = 0.02), while the AVWS
of coniferous forests (p = 0.13) and broad-leaved forests (p = 0.55) were not significantly
different from mixed forests.

Table 1. Statistics of aboveground vegetation water storage (AVWS) of different forest types in
54 sample plots.

Vegetation Type Average Value
(Mg ha−1)

Standard Deviation
(Mg ha−1)

Maximum Value
(Mg ha−1)

Minimum Value
(Mg ha−1)

Coniferous forest 212.29 a 84.43 443.51 89.58
Broad-leaved forest 142.6 b 46.36 245.31 82.74

Mixed forests 166.29 ab 72.73 353.21 64.06
All forests 171.2 73.19 443.51 64.06

Note: Different lowercase letters (a and b) indicate statistical significance at p < 0.05 using one-way analysis of
variance (ANOVA) and Tukey-HSD test for multiple comparisons.

3.3. Model Comparison

After feature selection, we obtained nine models of RF, MARS and XGBoost using
different data sources (Figure 3).

Regarding satellite images, the models using Sentinel-2 images generally performed
better than Landsat 8 (Figure 3d–i). Additionally, the model performances were significantly
improved when integrating Sentinel-2 and Landsat 8 variables (Figure 3a–c).

Among the three different modeling approaches, XGBoost performed best, followed
by RF and MARS. Therefore, the XGBoost model combining Landsat 8 and Sentinel-2
images was selected for the spatial modeling of AVWS (R2 = 0.57, RMSE = 48 Mg ha−1,
Figure 3c).

3.4. Spatial Distribution Characteristics of AVWS

The predicted AVWS showed a strong spatial variability (Figure 4), varying from 52 to
363 Mg ha−1. The total AVWS was 5.2× 106 Mg across the study area (Table 2). Forest types
had a great impact on AVWS. AVWS mainly focused on coniferous forests, followed by
broad-leaved forests, shrubland and mixed forests. Spatially, high AVWS was mainly found
in the North and central areas, while the AVWS in the Southern region was relatively low.
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Figure 3. The correlation between predicted and observed aboveground vegetation water storage
(AVWS) using different modelling approaches (XGBoost, RF and MARS) and satellite images (Landsat
8 and Sentinel-2).

Table 2. Statistics of the aboveground vegetation water storage (AVWS) in the study area.

Vegetation Types AVWS (105 Mg) Percentage

Coniferous forests 35.2 67.2%
Broad-leaved forests 13.3 25.4%

Mixed forests 1.4 2.7%
Shrubland 2.5 4.7%

Total 52.4 100%
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4. Discussion

Based on ANOVA, our results showed that differences of AVWS among forest types
were significant across the study area (p = 0.03). As the JNNR belongs to a mountainous
region with elevation ranging from 1600 to 4800 m, the climate is more suitable for the
growth of coniferous forests, which are often taller than broad-leaved forests. The water
stocked in the stem is positively correlated with wood volume and tree height [11,68]. Thus,
this results in a significant difference between coniferous and broad-leaved forests.

In this study, results showed that models using Sentinel-2 outperformed those of
Landsat 8 for AVWS estimation (Figure 3). This may be attributed to the higher resolution
(10 m) and more spectral bands (red-edge bands) of Sentinel-2 compared with Landsat 8 [69].
Additionally, due to the saturation problem which occurs in the high vegetation cover area,
using medium-resolution data such as Landsat 8 to estimate AVWS has lower accuracy,
especially in complex and dense forest areas [70]. Previous studies have shown that high
resolution optical remote sensing data such as Sentinel-2 and its strategic positioning band
(red-edge band) may be an effective way to overcome this problem [69]. Our results also
showed that integrating Landsat 8 and Sentinel-2 data greatly improved the estimation of
AVWS. Different optical images have different parameters, e.g., zenith angles, azimuths
and imaging times, that complement the forest information acquisition and address the
problems caused by shadows, especially in mountainous regions.

Currently, statistical and physical models were commonly used to estimate AVWS [19].
However, the traditional empirical model cannot solve the saturation problem and it has
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the disadvantage of creating models that may be highly dependent on location, sampling
conditions and time [23–25]. In contrast, the use of RTMs is faced with the problem of
ill-posed model inversion, and the influence of dry matter content on the model cannot be
eliminated [30–32]. Riano and Vaughan [32] have used the PROSPECT model to estimate
the fuel moisture content (FMC), which can be calculated by dividing equivalent water
thickness (EWT) by dry matter content (DM), and obtained a poor result for FMC estimation
when the leaf samples were fresh (R2 = 0.33), which could be attributed to that water
absorption masks the effects of DM on the spectral response. Compared with the traditional
empirical model and RTMs, machine learning algorithms could overcome these defects,
because they require no initial assumptions about functional relationships and can function
with nonlinear dependencies, which are completely data adaptive [36]. In this study, we
used three machine learning approaches to establish the models for AVWS estimation,
which showed good performance. The XGBoost performed best with the highest R2 and
the lowest RMSE, followed by RF and MARS. The XGBoost model is a flexible algorithm,
which belongs to the advanced Gradient Boosting (GB) system, and it can correct residual
errors on the basis of the previous tree to generate a new tree. In contrast, the trees are
independent in the RF model [59,71].

With regard to the variables selected in this study, the original bands and texture index
were the most important to the AVWS model. For the original bands, the NIR and SWIR
bands were more effective than the others, which may be attributed to strong reflection of
vegetation in the NIR region and strong absorption caused by water in the SWIR region.
It is also noted that the texture variables have an important effect on AVWS prediction,
which may partially compensate some of the band saturation problem especially in forests
with complex structure [72,73].

AVWS showed strong spatial patterns in the JNNR, which may be influenced by
the ecosystem and elevation. Generally, vegetation growth is restricted with elevation,
and AVWS in forest ecosystem are more abundant than the other ecosystem [10]. In this
study, AVWS showed higher values in mountains with low altitude, which were covered
with a large number of coniferous forests, broadleaf forests and mixed forests, while AVWS
showed lower values in mountains with high altitude which were covered with shrubland,
snow and bare soil. Meanwhile, with regards to the overall spatial distribution pattern,
high AVWS was mainly found in the north and central areas, while it was relatively low
in the southern region. This was contrary to the variation in elevations in the study area
where the terrain was high in the south and low in the north.

Although this study obtained good results predicting AVWS, there were still some
limitations. First, the inventory plots could not fully describe the characteristics of the
vegetation in the JNNR. Therefore, these should be increased considering different types
(coniferous forests, broad-leaved forests, mixed forests and shrubs) and a wider range of
vertical distribution, especially above 3000 m. Second, due to the influence of cloud cover
and satellite imaging period, the acquisition time of Landsat 8 and Sentinel-2 images was
inconsistent. Third, the spatial uncertainty of AVWS in the study area was not obtained
because of the uneven distribution of the forest inventory plots. However, to overcome
this limitation, we set the forest inventory plots along an elevation from 2199 m to 3522 m,
which could represent the majority of forest conditions across the study area. This can bias
the prediction results through spectral variability. Fourth, when separating observations of
different forest types to test the models, it was found that the model could only accurately
predict the AVWS of coniferous forests (Figure S4) and mixed forests (Figure S5), while the
prediction of broad-leaved forests AGB was poor (Figure S6). This may be attributed to the
different spectral characteristics and the significantly different AVWS values of coniferous
forest and broadleaved forest.

5. Conclusions

In this study, based on 54 inventory plots, we used three kinds of machine learning
algorithms (XGBoost, MARS and RF) to model AVWS across the JNNR using Sentinel-2 and
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Landsat 8. Robust conclusions included: (1) The AVWS varied from 64.06 to 443.51 Mg ha−1,
and had an average of 171.2 Mg ha−1, which showed a strong spatial variability. (2) The
XGBoost model performed better than MARS and RF, with an efficiency of 0.57 and root
mean squared error of 48 Mg ha−1. (3) Regardless of the modelling approaches, integrat-
ing Sentinel-2 and Landsat 8 improved the performance of the estimation of AVWS. This
result highlighted a potential approach to improve the accuracy of AVWS estimation by
integrating different optical images in mountainous areas. The outcomes of this study
could provide an important scientific basis for the estimation of regional AVWS in sub-
alpine forests, which could be used to monitor AVWS under complex terrain conditions,
e.g., deep slopes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f13040507/s1, Figure S1: Classification of land cover in the study area, Figure S2: The
correlations between AVWS and the variables of Sentinel-2B and Landsat 8 OLI. The 15 variables
most correlated with AVWS were showed at a significance of p < 0.05, Figure S3: The Importance of
variables from three dataset (Landsat 8, Sentinel-2 and their combination) using RF, XGB, and MARS
algorithms, Figure S4: The correlation between predicted and observed aboveground vegetation water
storage (AVWS) of coniferous forest using different modelling approaches (XGBoost, RF and MARS)
and satellite images (Landsat 8 and Sentinel-2), Figure S5: The correlation between predicted and
observed aboveground vegetation water storage (AVWS) of mixed forest using different modelling
approaches (XGBoost, RF and MARS) and satellite images (Landsat 8 and Sentinel-2)., Figure S6:
The correlation between predicted and observed aboveground vegetation water storage (AVWS)
of broadleaved forest using different modelling approaches (XGBoost, RF and MARS) and satellite
images (Landsat 8 and Sentinel-2), Table S1: The allometric equation of trees for estimating field
AVWS [74–78], Table S2: Sentinel-2 Satellite sensor parameters, Table S3: Landsat 8 Satellite sensor
parameters, Table S4: The statistics of the land cover in Jiuzhaigou National Nature Reserve, Table S5:
Vegetation indices to estimate AVWS [46–55]. Table S6: Texture indices to estimate AVWS, Table S7:
The number of the variables input to the model.
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