Above-Ground Biomass and Nutrient Accumulation in Ten Eucalyptus Clones in Leizhou Peninsula, Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Description
2.2. Tree Growth and Biomass of Living Plants
2.3. Chemical Sample Analyses
2.4. Nutrient Use Efficiency (NUE)
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Biomass Accumulation and Distribution
3.3. Nutrient Concentration and Content
3.4. Nutrient Use Efficiency
4. Discussion
4.1. Growth Performance and Biomass Production of Ten Eucalyptus Clones
4.2. The Allocation Pattern of Biomass and Nutrients in Tree Components
4.3. The Nutrient Use Efficiency in Eucalyptus Clones
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Ferraz, S.F. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For. Ecol. Manag. 2013, 301, 43–50. [Google Scholar] [CrossRef]
- Kopp, R.F.; Smart, L.B.; Maynard, C.A.; Isebrands, J.G.; Tuskan, G.A.; Abrahamson, L.P. The development of improved willow clones for eastern North America. For. Chron. 2001, 77, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Xu, J.; Li, G.; Risto, V.; Du, Z.; Lu, Z.; Wang, W. Genotypic variation in wood properties and growth traits of Eucalyptus hybrid clones in southern China. New For. 2011, 42, 35–50. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Yu, Q.; Chauret, G.; Koubaa, A. Selection for both growth and wood properties in hybrid poplar clones. For. Sci. 2003, 49, 901–908. [Google Scholar]
- Hernandez, R.E.; Koubaa, A.; Beaudoin, M.; Fortin, Y. Selected mechanical properties of fast-growing poplar hybrid clones. Wood Fiber. Sci. 1998, 30, 138–147. [Google Scholar]
- Griffin, A.R. Clones or improved seedlings of Eucalyptus? Not a simple choice. Int. For. Rev. 2014, 16, 216–224. [Google Scholar] [CrossRef]
- Gallo, R.; Pantuza, I.B.; dos Santos, G.A.; de Resende, M.D.V.; Xavier, A.; Simiqueli, G.F.; Valente, B.M.D.R.T. Growth and wood quality traits in the genetic selection of potential Eucalyptus dunnii Maiden clones for pulp production. Ind. Crop Prod. 2018, 123, 434–441. [Google Scholar] [CrossRef]
- Villacorta, A.M.G.; Martin, T.A.; Jokela, E.J.; Cropper, W.P., Jr.; Gezan, S.A. Variation in biomass distribution and nutrient content in loblolly pine (Pinus taeda L.) clones having contrasting crown architecture and growth efficiency. For. Ecol. Manag. 2015, 342, 84–92. [Google Scholar] [CrossRef]
- Lindström, H.; Harris, P.; Sorensson, C.T.; Evans, R. Stiffness and wood variation of 3-year-old Pinus radiata clones. Wood Sci. Technol. 2004, 38, 579–597. [Google Scholar] [CrossRef]
- Bergmann, F.; Ruetz, W. Isozyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations. For. Ecol. Manag. 1991, 46, 39–47. [Google Scholar] [CrossRef]
- Ma, C.; Zhou, T.; Xu, J. A preliminary study on genetic control of growth traits and early selection of Chinese fir (Cunninghamia lanceolata Hook) clones. Sci. Silvae Sin. 2000, 36 (Suppl. 1), 62–69. [Google Scholar]
- Shukla, S.R.; Rao, R.V.; Shashikala, S.; Kumar, P.; Sharma, S.K. Wood quality variation in Tectona grandis (teak) clones from CSO raised at Maredumilli (Rajahmundry), Andhra Pradesh. J. Indian Acad. Wood Sci. 2011, 8, 116–119. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, N.B.; Choudhary, P.; Sharma, J.P.; Sankhayan, H.P. Estimation of genetic variability, heritability and genetic gain for wood density and fibre length in 36 clones of white willow (Salix alba L.). Int. Agric. Biol. 2014, 7, 299. [Google Scholar] [CrossRef]
- Dos Santos, K.F.; Schumacher, M.V.; Ludvichak, A.A.; de Araújo, E.F. Biomass and stock of nutrients in different genotypes of eucalypts in Southern Brazil. J. Exp. Agric. Int. 2019, 15, 1–12. [Google Scholar] [CrossRef]
- Swamy, S.L.; Mishra, A.; Puri, S. Comparison of growth, biomass and nutrient distribution in five promising clones of Populus deltoides under an agrisilviculture system. Bioresour. Technol. 2006, 97, 57–68. [Google Scholar] [CrossRef]
- Guo, L.B.; Sims, R.E.H.; Horne, D.J. Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand: I: Biomass and nutrient accumulation. Bioresour. Technol. 2002, 85, 273–283. [Google Scholar] [CrossRef]
- Do Couto Guimarães, C.; Momolli, D.R.; de Souza, H.P.; Schumacher, M.V.; Ludvichak, A.A.; Malheiros, A.C. Biomass Production and Nutritional Characterization of Eucalyptus benthamii in the Pampa Biome, Brazil. J. Exp. Agric. Int. 2019, 15, 1–9. [Google Scholar]
- Medeiros, P.L.; Silva, G.G.C.; Oliveira, E.M.M.; Ribeiro, C.O.; Silva, J.M.S.; Pimenta, A.S. Efficiency of nutrient use for biomass production of a Eucalyptus clone as a function of planting density in short-rotation cropping. Aust. For. 2020, 83, 66–74. [Google Scholar] [CrossRef]
- Xie, Y.; Arnold, R.J.; Wu, Z.; Chen, S.; Du, A.; Luo, J. Advances in eucalypt research in China. Front. Agric. Sci. Eng. 2017, 4, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhu, Y.; Xu, J.; Lu, Z.; Chen, G.; Song, P.; Guo, W. Genetic variation and genetic gain for energy production, growth traits and wood properties in Eucalyptus hybrid clones in China. Aust. For. 2017, 80, 57–65. [Google Scholar] [CrossRef]
- De Dieu Nzila, J.; Bouillet, J.P.; Laclau, J.P.; Ranger, J. The effects of slash management on nutrient cycling and tree growth in Eucalyptus plantations in the Congo. For. Ecol. Manag. 2002, 171, 209–221. [Google Scholar] [CrossRef]
- Varghese, M.; Harwood, C.E.; Bush, D.J.; Baltunis, B.; Kamalakannan, R.; Suraj, P.G.; Meder, R. Growth and wood properties of natural provenances, local seed sources and clones of Eucalyptus camaldulensis in southern India: Implications for breeding and deployment. New For. 2017, 48, 67–82. [Google Scholar] [CrossRef]
- Safou-Matondo, R.; Deleporte, P.; Laclau, J.P.; Bouillet, J.P. Hybrid and clonal variability of nutrient content and nutrient use efficiency in Eucalyptus stands in Congo. For. Ecol. Manag. 2005, 210, 193–204. [Google Scholar] [CrossRef]
- Pima, N.E.; Chamshama, S.A.O.; Iddi, S.; Maguzu, J. Growth performance of Eucalypt Clones in Tanzania. Environ. Ecol. Res. 2016, 4, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Q.; Yun, G.; Zuo, S.; Yan, J.; Hua, L.; Ren, Y.; Chen, Q. Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China. J. For. Res. 2018, 29, 1263–1276. [Google Scholar] [CrossRef]
- Arnold, R.J.; Xie, Y.J.; Luo, J.Z.; Wang, H.R.; Midgley, S.J. A tale of two genera: Exotic Eucalyptus and Acacia species in China. 1. Domestication and research. Int. For. Rev. 2020, 22, 1–18. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Chełpiński, P.; Mikiciuk, M.; Możdżer, E.; Telesiński, A. The Effect of Methyl Anthranilate-Based Repellent on Chemical Composition and Selected Physiological Parameters of Sweet Cherry (Prunus avium L.). Agronomy 2021, 11, 256. [Google Scholar] [CrossRef]
- Qian, P.; Schoenaru, J.J.; Karamanos, R.E. Simultaneous extraction of available phosphorus and potassium with a new soil test: A modification of Kelowna extraction. Commun. Soil Sci. Plan. 1994, 25, 627–635. [Google Scholar] [CrossRef]
- Laclau, J.P.; Bouillet, J.P.; Ranger, J. Dynamics of biomass and nutrient accumulation in a clonal plantation of Eucalyptus in Congo. For. Ecol. Manag. 2000, 128, 181–196. [Google Scholar] [CrossRef]
- Hernández, O.M.; Fraga, J.M.G.; Jiménez, A.I.; Jimenez, F.; Arias, J.J. Characterization of honey from the Canary Islands: Determination of the mineral content by atomic absorption spectrophotometry. Food. Chem. 2005, 93, 449–458. [Google Scholar] [CrossRef]
- Dlamini, L.N.; Pipatwattanakul, D.; Maelim, S. Growth variation and heritability in a second-generation Eucalyptus urophylla progeny test at Lad Krating Plantation, Chachoengsao province, Thailand. Agric. Nat. Resour. 2017, 51, 158–162. [Google Scholar] [CrossRef]
- Guzmán, P.; Gil, L.; Tadesse, W. Variation in growth traits and survival of landraces of Eucalyptus globulus Labill. in the Ethiopian highlands. For. Syst. 2013, 22, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.M.; Lu, Z.H.; Bai, J.Y. Selected on Eucalyptus clone in North-western region of Hainan Island. Eucalypt Sci. Technol. 2004, 21, 1–6. (In Chinese) [Google Scholar]
- Cao, J.G.; Luo, J.Z.; Lu, W.H. Cluster Analysis on Growth Trait of 6-year-old Eucalypt Clone Stands. Eucalypt Sci. Technol. 2012, 29, 37–40. (In Chinese) [Google Scholar]
- Muñoz, F.; Rubilar, R.; Espinosa, M.; Cancino, J.; Toro, J.; Herrera, M. The effect of pruning and thinning on above ground aerial biomass of Eucalyptus nitens (Deane & Maiden) Maiden. For. Ecol. Manag. 2008, 255, 365–373. [Google Scholar]
- Zewdie, M.; Olsson, M.; Verwijst, T. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass Bioenergy 2009, 33, 421–428. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J.; Cowie, A.L. On the success and failure of mixed-species tree plantations: Lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For. Ecol. Manag. 2005, 209, 147–155. [Google Scholar] [CrossRef]
- Garrett, L.G.; Smith, C.T.; Beets, P.N.; Kimberley, M.O. Early rotation biomass and nutrient accumulation of Pinus radiata forests after harvest residue management and fertiliser treatment on contrasting types of soil. For. Ecol. Manag. 2021, 496, 119426. [Google Scholar] [CrossRef]
- Cannon, C.; Gonzalez-Benecke, C.; Wightman, M. Plant derived tissue and soil nutrient concentration for plantations of four conifer species growing under different site and vegetation management conditions. For. Ecol. Manag. 2021, 494, 119300. [Google Scholar] [CrossRef]
- Alifragis, D.; Smiris, P.; Maris, F.; Kavvadias, V.; Konstantinidou, E.; Stamou, N. The effect of stand age on the accumulation of nutrients in the aboveground components of an Aleppo pine ecosystem. For. Ecol. Manag. 2001, 141, 259–269. [Google Scholar] [CrossRef]
- Hopmans, P.; Stewart, H.T.L.; Flinn, D.W. Impacts of harvesting on nutrients in a eucalypt ecosystem in southeastern Australia. For. Ecol. Manag. 1993, 59, 29–51. [Google Scholar] [CrossRef]
- Santana, R.C.; Barros, N.F.; Comerford, N.B. Above-ground biomass, nutrient content, and nutrient use efficiency of eucalypt plantations growing in different sites in Brazil. N. Z. J. For. Sci. 2000, 30, 225–236. [Google Scholar]
- Wang, D.; Bormann, F.H.; Lugo, A.E.; Bowden, R.D. Comparison of nutrient-use efficiency and biomass production in five tropical tree taxa. For. Ecol. Manag. 1991, 46, 1–21. [Google Scholar] [CrossRef]
- Vance, E.D.; Maguire, D.A.; Zalesny, R.S., Jr. Research strategies for increasing productivity of intensively managed forest plantations. J. For. 2010, 108, 183–192. [Google Scholar]
Site Characteristics | Sites | ||
---|---|---|---|
Wuchuan | Tangjia | Suixi | |
Latitude | 21°18′37′′ N | 20°50′01′′ N | 21°21′81′′ N |
Longitude | 110°31′13′′ E | 109°51′76′′ E | 110°01′66′′ E |
Altitude (m) | 34 | 31 | 40 |
Mean annual rainfall (mm) | 1597.8 | 1787.5 | 1759.4 |
Mean temperature (°C) | 22.5 | 23.7 | 23.5 |
Soil texture | Haplic acrisols | Haplic acrisols | Haplic acrisols |
Soil pH | 6.14 | 5.84 | 5.31 |
Soil Organic matter (g/kg) | 4.22 | 3.14 | 5.67 |
Available N (mg/kg) | 26.68 | 29.47 | 34.26 |
Available P (mg/kg) | 1.27 | 1.85 | 1.9 |
Available K (mg/kg) | 14.13 | 11.79 | 23.2 |
Clone | Species | Origin |
---|---|---|
DH201-2 | E. urophylla × E. camaldulensis | Dongmen Forestry Farm, China |
DH32-13 | E. urophylla × E. grandis | Dongmen Forestry Farm, China |
DH32-22 | E. urophylla × E. grandis | Dongmen Forestry Farm, China |
DH32-26 | E. urophylla × E. grandis | Dongmen Forestry Farm, China |
DH33-27 | E. urophylla × E. grandis | Dongmen Forestry Farm, China |
LH1-9211 | E. urophylla × E. Tereticornis | RITF/CAF |
M1 | E. urophylla × E. Tereticornis | Leizhou Forestry Bureau, China |
SH1 | E. leizhou No. 1 | Leizhou Forestry Bureau, China |
TH9224 | E. urophylla × E. Tereticornis | RITF/CAF |
U6 | Nature hybrid | Zhangjiang Forestry Bureau, China |
Clone | Organs | N | P | K | Ca | Mg |
---|---|---|---|---|---|---|
DH201-2 | Stem wood | 0.91 ± 0.14 abD | 0.05 ± 0.01 cC | 0.80 ± 0.25 bD | 0.48 ± 0.06 abcB | 0.10 ± 0.02 bC |
DH32-13 | 0.93 ± 0.17 abD | 0.05 ± 0.01 cC | 0.80 ± 0.26 bD | 0.46 ± 0.12 abcC | 0.10 ± 0.03 bD | |
DH32-22 | 0.98 ± 0.20 abD | 0.06 ± 0.02 bcD | 1.45 ± 0.73 aB | 0.66 ± 0.11 aB | 0.15 ± 0.02 aC | |
DH32-26 | 1.18 ± 0.60 aC | 0.07 ± 0.02 bcC | 0.99 ± 0.50 abC | 0.50 ± 0.08 abcC | 0.11 ± 0.02 abC | |
DH33-27 | 0.98 ± 0.28 abC | 0.07 ± 0.02 bcC | 0.93 ± 0.48 abC | 0.45 ± 0.17 bcB | 0.13 ± 0.05 abB | |
LH1-9211 | 0.78 ± 0.14 bD | 0.05 ± 0.02 cB | 0.48 ± 0.16 bC | 0.34 ± 0.09 cB | 0.09 ± 0.03 bB | |
M1 | 0.77 ± 0.11 bC | 0.06 ± 0.02 bcC | 0.49 ± 0.12 bC | 0.40 ± 0.10 cC | 0.10 ± 0.02 bC | |
SH1 | 0.83 ± 0.17 abB | 0.17 ± 0.06 aC | 0.67 ± 0.25 bC | 0.65 ± 0.19 abB | 0.09 ± 0.02 bB | |
TH9224 | 0.71 ± 0.13 bB | 0.11 ± 0.03 abC | 0.62 ± 0.11 bC | 0.50 ± 0.13 abcC | 0.10 ± 0.02 bB | |
U6 | 0.75 ± 0.14 bC | 0.15 ± 0.06 aC | 0.87 ± 0.22 bC | 0.43 ± 0.15 cB | 0.10 ± 0.03 bC | |
H201-2 | Stembark | 3.48 ± 0.42 abB | 0.54 ± 0.36 bB | 5.32 ± 1.66 cB | 19.32 ± 9.16 abA | 2.79 ± 0.61 aB |
DH32-13 | 3.66 ± 0.43 aB | 0.99 ± 0.43 abB | 7.03 ± 1.44 abcB | 21.42 ± 6.19 abA | 2.62 ± 0.45 abA | |
DH32-22 | 3.62 ± 0.43 aB | 0.41 ± 0.17 cB | 9.41 ± 4.82 abA | 31.65 ± 10.97 aA | 2.56 ± 0.52 abB | |
DH32-26 | 3.28 ± 0.66 abcB | 0.42 ± 0.17 cB | 8.91 ± 3.37 abB | 21.46 ± 6.66 abA | 2.51 ± 0.44 abA | |
DH33-27 | 2.92 ± 0.38 bcdB | 0.67 ± 0.20 abcB | 5.89 ± 1.03 abcB | 23.19 ± 20.04 abA | 1.96 ± 0.67 bcA | |
LH1-9211 | 3.05 ± 0.27 abcdB | 1.09 ± 0.58 abcA | 4.36 ± 0.80 cB | 6.96 ± 3.80 bA | 1.50 ± 0.31 cA | |
M1 | 2.78 ± 0.36 cdeB | 0.94 ± 0.37 abB | 4.30 ± 1.55 cB | 15.84 ± 9.12 abA | 1.42 ± 0.40 cB | |
SH1 | 2.74 ± 0.32 cdeB | 1.25 ± 0.61 aB | 6.47 ± 1.01 abcB | 26.42 ± 16.17 aA | 2.02 ± 0.21 abcA | |
TH9224 | 2.25 ± 0.23 eB | 1.16 ± 0.45 abB | 5.28 ± 1.53 cB | 19.47 ± 10.61 abA | 1.87 ± 0.67 bA | |
U6 | 2.52 ± 0.25 deB | 0.84 ± 0.43 abcB | 5.61 ± 0.86 bB | 20.63 ± 12.24 abA | 1.65 ± 0.44 cB | |
H201-2 | Branches | 2.14 ± 0.47 abC | 0.24 ± 0.08 cdeC | 2.18 ± 1.10 cdC | 1.59 ± 0.57 bcB | 0.28 ± 0.08 bC |
DH32-13 | 2.40 ± 0.36 aC | 0.30 ± 0.16 bcC | 1.99 ± 0.61 cdeC | 1.70 ± 0.51 abcBC | 0.49 ± 0.19 aC | |
DH32-22 | 2.03 ± 0.29 abcC | 0.25 ± 0.09 cdC | 2.54 ± 0.72 bcB | 2.10 ± 0.83 abB | 0.36 ± 0.12 abC | |
DH32-26 | 1.77 ± 0.38 bcC | 0.49 ± 0.21 abB | 3.84 ± 1.00 abC | 2.98 ± 2.10 abBC | 0.26 ± 0.10 bC | |
DH33-27 | 1.76 ± 0.36 bcC | 0.54 ± 0.21 aB | 4.91 ± 1.61 aB | 3.04 ± 1.02 aB | 0.38 ± 0.11 abB | |
LH1-9211 | 1.55 ± 0.34 cdC | 0.28 ± 0.15 cB | 2.54 ± 1.00 bcB | 1.68 ± 0.80 abcB | 0.27 ± 0.10 bB | |
M1 | 0.96 ± 0.10 eC | 0.05 ± 0.01 eC | 0.63 ± 0.12 efC | 0.39 ± 0.12 cC | 0.08 ± 0.02 cC | |
SH1 | 0.90 ± 0.14 eB | 0.05 ± 0.01 eC | 0.59 ± 0.12 fC | 0.38 ± 0.06 cB | 0.07 ± 0.01 cB | |
TH9224 | 0.94 ± 0.29 eB | 0.05 ± 0.01 deC | 0.70 ± 0.27 efC | 0.51 ± 0.14 cC | 0.09 ± 0.02 cB | |
U6 | 1.07 ± 0.32 deC | 0.07 ± 0.03 deC | 0.83 ± 0.57 defC | 0.38 ± 0.14 cB | 0.08 ± 0.03 cC | |
H201-2 | Foliage | 18.79 ± 1.95 bcA | 1.56 ± 0.21 bcdA | 8.64 ± 1.17 eA | 4.73 ± 1.16 cdB | 2.08 ± 0.31 abA |
DH32-13 | 19.12 ± 0.92 abcA | 1.40 ± 0.16 cdeA | 8.87 ± 1.34 eA | 4.18 ± 0.88 dB | 1.93 ± 0.17 bB | |
DH32-22 | 17.46 ± 2.02 cdA | 1.33 ± 0.11 cdeA | 13.98 ± 3.87 bcdA | 6.59 ± 1.63 abcB | 1.88 ± 0.49 bA | |
DH32-26 | 14.00 ± 1.78 dA | 1.09 ± 0.15 eA | 13.00 ± 1.78 cdeA | 8.64 ± 1.34 aB | 1.84 ± 0.53 bB | |
DH33-27 | 17.31 ± 1.04 cdA | 1.25 ± 0.24 deA | 9.88 ± 1.17 deA | 6.67 ± 1.66 abcB | 1.89 ± 0.59 bA | |
LH1-9211 | 18.17 ± 2.49 bcA | 1.38 ± 0.26 cdeA | 11.99 ± 2.05 cdeA | 5.99 ± 0.56 bcdA | 1.81 ± 0.26 bA | |
M1 | 20.84 ± 2.02 abcA | 1.63 ± 0.35 abcA | 10.96 ± 2.00 deA | 7.00 ± 1.46 abB | 2.01 ± 0.20 bA | |
SH1 | 22.61 ± 3.33 aA | 1.81 ± 0.34 abA | 18.57 ± 6.25 abA | 8.38 ± 1.57 aB | 2.24 ± 0.61 aA | |
TH9224 | 21.43 ± 3.40 abA | 1.67 ± 0.17 abcA | 19.49 ± 4.01 aA | 7.91 ± 0.87 abB | 2.11 ± 0.43 abA | |
U6 | 22.55 ± 2.26 aA | 1.98 ± 0.19 aA | 16.43 ± 1.92 abcA | 7.66 ± 1.44 abB | 2.50 ± 0.49 aA |
Clone | NUE | ||||
---|---|---|---|---|---|
N | P | K | Ca | Mg | |
DH201-2 | 405.90 ± 36.18 d | 4126.13 ± 1063.62 abc | 414.67 ± 68.15 abc | 196.79 ± 51.78 bc | 1143.61 ± 188.61 c |
DH32-13 | 522.62 ± 25.97 abc | 3903.66 ± 1381.95 abc | 432.17 ± 60.006 abc | 206.33 ± 46.05 bc | 1473.34 ± 238.47 bc |
DH32-22 | 418.05 ± 30.37 d | 4753.30 ± 965.93 a | 270.40 ± 85.69 d | 122.29 ± 37.90 d | 1178.22 ± 156.78 c |
DH32-26 | 474.70 ± 60.26 bcd | 4664.32 ± 1122.51 a | 290.72 ± 81.08 d | 170.51 ± 61.90 bc | 1262.36 ± 180.37 c |
DH33-27 | 583.47 ± 82.00 a | 4258.00 ± 1007.61 ab | 448.78 ± 124.77 ab | 353.80 ± 228.67 ab | 2047.84 ± 486.30 a |
LH1-9211 | 458.84 ± 27.85 cd | 2781.32 ± 1075.74 cd | 458.57 ± 63.86 ab | 445.67 ± 157.87 a | 1764.94 ± 313.63 ab |
M1 | 447.45 ± 33.52 d | 2968.38 ± 663.24 bcd | 536.92 ± 122.82 a | 290.36 ± 156.31 abc | 1975.79 ± 327.04 a |
SH1 | 530.47 ± 54.32 ab | 2320.25 ± 744.11 d | 371.52 ± 27.57 bcd | 186.62 ± 186.62 bc | 1501.40 ± 128.61 bc |
TH9224 | 577.89 ± 51.03 a | 2347.03 ± 718.94 d | 412.02 ± 84.99 abc | 216.95 ± 146.92 bc | 1606.64 ± 517.45 abc |
U6 | 421.73 ± 25.90 d | 2371.05 ± 729.27 d | 315.08 ± 39.43 cd | 184.24 ± 108.39 bc | 1394.10 ± 314.22 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Cui, Z.; Liu, X.; Xu, D. Above-Ground Biomass and Nutrient Accumulation in Ten Eucalyptus Clones in Leizhou Peninsula, Southern China. Forests 2022, 13, 530. https://doi.org/10.3390/f13040530
Zhang P, Cui Z, Liu X, Xu D. Above-Ground Biomass and Nutrient Accumulation in Ten Eucalyptus Clones in Leizhou Peninsula, Southern China. Forests. 2022; 13(4):530. https://doi.org/10.3390/f13040530
Chicago/Turabian StyleZhang, Peng, Zhiyi Cui, Xiaojin Liu, and Daping Xu. 2022. "Above-Ground Biomass and Nutrient Accumulation in Ten Eucalyptus Clones in Leizhou Peninsula, Southern China" Forests 13, no. 4: 530. https://doi.org/10.3390/f13040530
APA StyleZhang, P., Cui, Z., Liu, X., & Xu, D. (2022). Above-Ground Biomass and Nutrient Accumulation in Ten Eucalyptus Clones in Leizhou Peninsula, Southern China. Forests, 13(4), 530. https://doi.org/10.3390/f13040530