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Abstract: Many people spend the majority of their time indoors and there is emerging evidence
that interior greenery contributes to human wellbeing. Accurately capturing the amount of interior
greenery is an important first step in studying its contribution to human well-being. In this study,
we evaluated the accuracy of interior greenery captured using 360◦ panoramic images taken within
a range of different interior spaces. We developed an Interior Green View Index (iGVI) based on
a K-means clustering algorithm to estimate interior greenery from 360◦ panoramic images taken
within 66 interior spaces and compared these estimates with interior greenery measured manually
from the same panoramic images. Interior greenery estimated using the automated method ranged
from 0% to 34.19% of image pixels within the sampled interior spaces. Interior greenery estimated
using the automated method was highly correlated (r = 0.99) with interior greenery measured
manually, although we found the accuracy of the automated method compared with the manual
method declined with the volume and illuminance of interior spaces. The results suggested that our
automated method for extracting interior greenery from 360◦ panoramic images is a useful tool for
rapidly estimating interior greenery in all but very large and highly illuminated interior spaces.

Keywords: 360◦ panoramic images; interior greenery; interior green view index (iGVI); interior
green space

1. Introduction

Contact with green space has positive effects on physical and mental health [1–3].
Some people (e.g., with limited mobility, living in densely-populated cities, and living
in extreme climates) spend the majority of their time indoors [4–8]. For these people,
a large proportion of their contact with green space may occur indoors [9,10]. Interior
green space (Figure 1) can provide some of the environmental and psychological benefits
provided by outdoor green space [11]. For example, interior green space is associated with
greater parasympathetic activity (i.e., rest) [12], attention span [13,14], and improved air
quality [15,16]. Thus, interior green space has potential to fulfil some of the functions of
outdoor green space for those with limited opportunities to access the latter. However, the
benefits of interior green space have received relatively little attention compared with the
benefits of outdoor green space [17,18].

Vegetation (or greenery) is typically measured using some form of remote sensing.
With continual improvement in spatial resolution, airborne remote sensing is the most
common method used to capture greenery in outdoor spaces [19]. Airborne remote sensing
technology allows large areas to be sampled rapidly in contrast to on-site observation.
However, airborne remote sensing instruments are not suitable for capturing indoor green-
ery. Alternatively, there are a number of hand-held sensors that can potentially be used
to capture interior greenery. Terrestrial LiDAR scanners can be used to obtain Leaf Area
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Density and Leaf Area Index at a high level of accuracy [20]. Previous studies have demon-
strated that terrestrial LiDAR can accurately calculate forest structure at the branch level,
individual tree level, and plot level [20–22]. However, LiDAR instruments are expen-
sive [23] and the processing of large amounts of point cloud data that LiDAR produces
can be challenging [24,25]. Using conventional RGB images for capturing greenery is a
cost-effective method in some circumstances [26]. Yang et al. [27] used RGB images taken in
cardinal directions to evaluate the visibility of greenery at the street level and Yu et al. [28]
used RGB images to evaluate greenery in urban parks.
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Figure 1. Views of interior green spaces: (a) a vertical garden in an atrium and (b) an indoor garden
in corridors.

Several methods have been developed to extract indoor greenery from RGB imagery
captured using conventional RGB cameras. These are based on calculating the area of
greenery [29,30] or the ratio of greenery relative to other features [31]. Choi et al. [11]
developed an index of greenness based on the percentage of plant leaf area within the total
area captured in RGB images. Salamone et al. [32] introduced an index that indicates the
fraction of green area on the surface of a hemisphere centered on the point of analysis using
RGB imagery captured with a fisheye lens. However, past methods for capturing interior
greenery have involved processing multiple images [33,34].

The use of 360◦ panoramic images may represent an alternative for capturing the way
that humans experience interior greenery. As the name suggests, 360◦ panoramic images
can capture plants in all cardinal, horizontal, and vertical directions in one continuous
image from a single, ground-based point, and thus have the potential to be an effective
method for measuring interior greenery in a cost-effective way. The aims of this study
are therefore to: (a) develop an automated method to extract interior greenery from 360◦

panoramic RGB images; (b) evaluate the accuracy of this method within interior spaces
with different dimensions.

2. Materials and Methods
2.1. Selection of Interior Spaces

In this study, we focused on sampling interior spaces within public buildings used
primarily for work or study (i.e., university buildings, offices, and libraries) and shopping,
leisure, or accommodation (i.e., museums, shopping centers, and hotels). In order to sample
interior spaces with a range of dimensions, we stratified interior spaces into 3 types (i.e.,
atriums, corridors, and meeting rooms) and sampled an approximately even number of
each type of interior spaces. Only interior spaces that contained at least some greenery
were sampled (i.e., planted flowers, trees, flower beds, green walls, and indoor gardens).
In total, we sampled 66 interior spaces from 33 public buildings. All sampling occurred
in June and July 2021 and all buildings were located in the city of Canberra, Australia
(35.2809◦ S, 149.1300◦ E).
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2.2. Panoramic Imagery Captured within Interior Spaces

One 360◦ panoramic image was captured in the center of each of the 66 sampled
interior spaces using an Insta360 One R camera. The dual lens of the camera can capture
360-degrees simultaneously with 5.7 K resolution (Figure 2). Each image was captured with
the camera positioned 1.7 m above the ground. 360◦ panoramic images were generated
from Insta360 Studio 2021 software, which is the photo-stitching software provided with
the Insta360 One R camera (Figure 2a). Distortions in the upper and lower part of 360◦

panoramic images can affect the quality of the image [35]. Tsai et al. [36] indicated that
only the center section of panoramic images has relatively low distortion. Yin et al. [37]
and Ki et al. [38] overcame this by cropping the top and bottom of the image to match a
viewer’s perspective. We used the same method (i.e., we cropped the central part of each
360◦ panoramic image) to simulate the viewer’s perspective (Figure 2b).
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2.3. Automated Greenery Extraction from Panoramic Images

Green vegetation extraction from remote sensing images has been studied for almost
four decades [39]. Green vegetation can be easily detected using remote sensing because of
its high reflectance and high absorption characteristics at the near-infrared and red parts of
the electromagnetic spectrum. 360◦ panoramic images contain no near-infrared bands but
red, green, and blue bands. We chose a K-means clustering algorithm to extract greenery
from the 360◦ panoramic images. Images were uploaded to an image processing script tool
(Image Color Summarizer) [40], which is an open-source online tool developed by Michael
Smith Genome Sciences Centre. The processing time for the K-means clustering algorithm
to evaluate 360◦ panoramic images is under 30 s with very high level of precision (200 px).
Finally descriptive color statistics were computed using every pixel in panoramic image.

A K-means clustering algorithm was utilized for the partitioning of images into
clusters. Key steps are followed:

1. Assign the pixels to each cluster that restrict the partition between the pixel and the
cluster center;

2. Calculate the color border of the cluster by the average value of its pixels.

The K-means clustering algorithm segments areas of interest from the background
using an unsupervised pixel-based classification method [41,42] with high computational
efficiency [43].

Calculating the Amount of Interior Greenery from 360◦ Panoramic Images

Previous approaches for calculating greenery from RGB imagery are based on com-
bining data from multiple images. Yang et al. [27] proposed a Green View Index (GVI) to
extract greenery from RGB imagery in urban forests. Their GVI was defined as the ratio of
green pixels to the total pixels captured in photos taken in four cardinal directions using
the following equation:

GVI =
∑4

i=1 Areag

∑4
i=1 Areat

× 100 (1)
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where Areag is the green pixels of the photo taken in the ith cardinal direction, and Areat is
all pixels of the photo taken in the ith cardinal direction. Dong et al. [44] proposed a GVI to
estimate greenery using different horizontal and vertical directions at each sample site as:

GVI =
∑n

j=1 ∑m
i=1 Areag_ij

∑n
j=1 ∑m

i=1 Areat_ij
× 100 (2)

where Areag_ij is the green pixels of the photo taken in the horizontal direction i and the
vertical direction j for each sample site, and Areat_ij is the whole pixels of the photo in
the horizontal direction i and the vertical direction j. Parameters m and n represent the
numbers of horizontal and vertical directions, respectively.

Because a 360◦ panoramic image represents all cardinal, horizontal and vertical direc-
tions in one continuous image, we calculated interior greenery using a simplified Interior
Green View Index (iGVI) from 360◦ panoramic images as:

iGVI =
Areag

Areat
× 100 (3)

where Areag is the number of pixels representing greenery in each 360◦ panoramic image,
and Areat is the total pixels of the 360◦ panoramic image.

2.4. Evaluation of the Interior Green View Index

To evaluate the accuracy of our automated method for extracting interior greenery
from 360◦ panoramic images, we compared our estimates of greenery for each interior space
derived from the K-means clustering algorithm and iGVI with reference data extracted
manually from the same 360◦ panoramic images. Adobe Photoshop CC 2020 software was
used to extract greenery from the 360◦ panoramic images manually. We used the quick
selection tool from Adobe Photoshop to select the area of greenery in each image. Although
we were unable to validate the accuracy of this method, greenery within the imagery is
clearly visible and can be captured at a high spatial accuracy given the images are captured
at 5.7 K resolution. The number of selected pixels representing the greenery of an image
can be read directly from the histogram toolbox in the Adobe Photoshop package. The
selected pixels were divided by the total pixels of an image to calculate the iGVI for each
360◦ panoramic image. This process took up to 4 min for each image. The discrepancy in
the percent of greenery estimated for each interior space between the K-means methods,
and the manual method was used to evaluate the accuracy of the former.

To examine which variables affect differences between observed values of interior
greenery (using the manual extraction method) and predicted values of interior greenery
(using the automated extraction method), we measured seven variables (covariates) for
each interior space where 360◦ panoramic images were captured (Table 1). We collected
illuminance (lux) at each camera position using the ambient light sensor on a smartphone
and Light Meter application [45] and the dimensions (length, width, height, area, and
volume) of each sampled interior space using a laser rangefinder. Differences between
observed and predicted iGVI values were used as the response variable in 14 linear regres-
sion models in which we fit different combinations of the seven covariates (Table 2). We
used Akaike’s Information Criterion (AICc) adjusted for small sample sizes to rank the
14 models in Table 2 [46]. We calculated Variance Inflation Factors (VIF) for each variable in
the top-ranked model as a check for collinearity. All statistical analyses were undertaken
using R software [47].
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Table 1. Variables measured for each interior space where 360◦ panoramic images were captured.

Variable Definition

length length of interior space
width width of interior space
height height of interior space
area total floor area of interior space calculated from its interior surfaces

volume measurement of a three-dimensional shape that is enclosed by a closed area
illuminance total luminous flux incident on a surface

type several specific areas or design settings related to social behavior

Table 2. Variables included in the 14 linear regression models that we compared to evaluate the
automated method we developed to extract interior greenery.

Model Variable

1 illuminance
2 width
3 length
4 Area
5 volume
6 Type
7 Illuminance + width
8 Illuminance + width + length
9 Illuminance + width + length + height
10 Illuminance + area
11 illuminance + volume
12 Illuminance + type
13 Illuminance + type + width
14 Illuminance + type + width + length

3. Results

We sampled 66 interior spaces from 33 public buildings. We sampled 23 atriums,
21 corridors, and 21 meeting rooms. Interior spaces had lengths, widths, and heights (to
the ceiling) that ranged from 5.5 to 92.1 m, 1.7 to 55.4 m, and 2.0 to 20.3 m, respectively.
Interior areas ranged from 19 to 3933 m2 and interior volumes ranged from 58 to 78,275 m3.
Illuminances ranged from 1 to 1632 lux.

3.1. Interior Greenery Estimates

Interior greenery was estimated for each of the 66 interior spaces using the manual
and automated methods. Figure 3 illustrates a 360◦ panoramic image for one interior space
(Figure 3a), greenery extracted using the automated method (Figure 3b), and greenery
extracted using the manual method (Figure 3c). The estimated percent greenery for the
66 interior spaces extracted using the automated method ranged from 0% to 34.19% cover
(mean = 2.3%).

3.2. Differences between Observed and Predicted Greenery for Interior Spaces

All of the 66 360◦ panoramic images were used to analyze the automated extraction
results using K-means clustering algorithm. There was a strong correlation (r = 0.99,
Pearson correlation coefficient) between the amount of greenery estimated for the 66 interior
spaces manually and the amount of greenery estimated for these interior spaces using the
automated method (Figure 4). However, there were some differences between greenery
estimated using the manual and automated methods (Figure 5).
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From the fourteen linear regression models we fitted, Model 11, which contained
illuminance and interior volume, received the lowest AIC value, indicating the strongest
empirical support. This model had an AIC weight of 0.19, indicating there was a 19%
chance this was the strongest model selected. However, a further four models had empirical
support (i.e., ∆AICc ≤ 2) (Table 3). Predictions from Model 11 indicated that the automated
method was more likely to over-predict greenery within interior spaces with larger volume
and higher illuminance, although there is greater uncertainty in our predictions (i.e., wider
confidence limits) for interior spaces with very large volumes and very high illuminance
because of a small number of samples at extreme values for these variables (Figure 6).
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Table 3. Linear regression models with empirical support (i.e., ∆AICc ≤ 2) that were used to predict
differences in greenery for interior spaces estimated using manual and automated methods. A “+”
symbol indicates the variable was included in the model.

Model Width Length Area Volume Illuminance ∆AICc

11 + + 0
5 + 0.3976
4 + 0.7893

10 + + 1.0351
8 + + + 1.7755
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which is the linear regression model with the strongest empirical support (i.e., lowest ∆AICc value).



Forests 2022, 13, 602 8 of 11

4. Discussion

The aims of this study were to develop an automated method to extract interior
greenery from 360◦ panoramic images and evaluate the accuracy of this method. Our
results indicate that 360◦ panoramic images can be used to estimate greenery within
interior spaces spanning a range of dimensions with a high level of accuracy.

4.1. The Accuracy of Extraction Results

Our results indicated that there is a strong correlation (r = 0.99) between interior
greenery estimated manually and interior greener estimated using a K-means clustering
algorithm. However, our results indicated that the accuracy of the automated method
declines with the volume and illuminance of interior spaces. This could be because the
distance between the camera and greenery affects boundary pixels of greenery during
image processing [48], which suggests that the noise increases due to the color mixing of
the greenery boundary.

We found that interior spaces with higher illuminance cause greater differences be-
tween the two methods. Previous studies [49] have shown that high illuminance can change
the appearance of colors in the image-capturing stage. Such color constancy problems
in images might relate to shadows, indoor artificial lights, and direct sunlight. However,
K-means image segmentation, which is a simple automatically unsupervised classification,
tends to lack robustness to illuminance changes [50]. Therefore, when assessing interior
greenery with this method, researchers should choose a cloudy day and switch lights off
to capture the 360◦ panoramic images in order to reduce the influence caused by sharp
contrasts in illuminance.

4.2. Strengths and Limitations

There are several strengths of our research. First, we focus on the assessment of green-
ery in interior space from a pedestrian’s perspective, which is not the case for most studies
of urban green space [27,38,51]. We established a reliable interior green view index, which
could be a comparable parameter measured in future studies with similar aims. Second,
it is efficient and affordable to use 360◦ panoramic images to quantify interior greenery
compared with some other methods [52–54]. Other conventional electronic devices, such as
digital cameras, tablets, and smartphones, usually overlap multiple rectangle images into
one panoramic image. This easily produces visible seams due to changes in scene illumina-
tion of single rectangle images or spatial alignment errors [55]. The Insta360 One R camera
we used makes it less challenging to blend images with seamless edges. Moreover, the
K-means clustering algorithm we used to extract greenery from the images was relatively
simple and efficient. Considering that artificial green features are hard to distinguish, deep
learning algorithms based on a greater number of training datasets could be included as
part of the interior greenery segmentation process [56].

However, there are still several concerns that need to be addressed. A 360◦ panoramic
image does not capture greenery from all sites in an interior space. That is, greenery
captured by a 360◦ panoramic image is limited to the greenery that can be seen from a central
point. The second issue is the absence of near-infrared bands on RGB images [51]. Different
plant species, which can have different effects on wellbeing, cannot be distinguished using
RGB imagery. For example, the amount of volatile organic compounds removed by interior
greenery varies widely by plant species [57]. These issues could be overcome by capturing
interior greenery using near-infrared sensors [58], although these are more expensive than
a panoramic camera. Third, we captured 360◦ panoramic images at a specific time rather
than over a period of time. However, this may not be an issue when capturing interior
vegetation given its spectral properties are less variables than outdoor vegetation [32].

4.3. Future Directions

Our method for capturing interior greenery has applications for assessing and moni-
toring greenery within interior spaces. There is increasing interest in how the use of interior
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greenery may influence human wellbeing [52,59]. Many previous studies have focused
on counting the number of plants or leaf area, which does not consider the relationship
between the interior greenery and space [60]. Our approach can be used as a tool to help
researchers and others to quantify interior greenery accurately and cost-effectively, which
is an important first step for exploring associations between interior greenery and human
wellbeing.

5. Conclusions

In this study we used 360◦ panoramic images with a newly proposed iGVI, which are
closer to the viewer’s perspective, to assess greenery in interior spaces and compared an
automated method for estimating greenery with a manual method. The estimated percent
greenery for the 66 interior spaces extracted using the automated method ranged from
0% to 34.2% (mean = 2.3%). There was a high correlation (r = 0.99) between the amount
of greenery estimated manually and the amount of greenery estimated for these interior
spaces using the automated method. The results indicated that 360◦ panoramic images
classified using an automated method based on the K-means clustering algorithm, can
capture interior greenery efficiently and accurately which, in turn, could be employed to
monitor or research interior greenery and its association with human wellbeing.

Author Contributions: Conceptualization, J.J., P.G. and C.B.; methodology, J.J. and P.G; data acquisi-
tion, J.J.; formal analysis, J.J. and P.G.; writing—original draft preparation, J.J.; writing—review and
editing, J.J., P.G. and R.C.; supervision, C.B., P.G. and R.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the China Scholarship Council (CSC), grant number 201806510038.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the anonymous reviewers for their thoughtful comments
on this manuscript.

Conflicts of Interest: We declare that we have no conflict of interest.

References
1. Takano, T.; Nakamura, K.; Watanabe, M. Urban residential environments and senior citizens’ longevity in megacity areas: The

importance of walkable green spaces. J. Epidemiol. Community Health 2002, 56, 913–918. [CrossRef] [PubMed]
2. Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban

environments. J. Environ. Psychol. 1991, 11, 201–230. [CrossRef]
3. Van den Berg, A.E.; Maas, J.; Verheij, R.A.; Groenewegen, P.P. Green space as a buffer between stressful life events and health. Soc.

Sci. Med. 2010, 70, 1203–1210. [CrossRef] [PubMed]
4. Hayes, S. Estimating the effect of being indoors on total personal exposure to outdoor air pollution. JAPCA 1989, 39, 1453–1461.

[CrossRef]
5. Anand, A.; Phuleria, H.C. Assessment of indoor air quality and housing, household and health characteristics in densely populated

urban slums. Environ. Dev. Sustain. 2021. Available online: https://link.springer.com/article/10.1007/s10668-021-01923-x
(accessed on 10 February 2022).

6. Soga, M.; Evans, M.J.; Cox, D.T.; Gaston, K.J. Impacts of the COVID-19 pandemic on human–nature interactions: Pathways,
evidence and implications. People Nat. 2021, 3, 518–527. [CrossRef]

7. Nordin, S.; McKee, K.; Wallinder, M.; von Koch, L.; Wijk, H.; Elf, M. The physical environment, activity and interaction in
residential care facilities for older people: A comparative case study. Scand. J. Caring Sci. 2017, 31, 727–738. [CrossRef]

8. Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 2002, 34, 661–665. [CrossRef]
9. Wong, N.H.; Tan, A.Y.K.; Tan, P.Y.; Sia, A.; Wong, N.C. Perception studies of vertical greenery systems in Singapore. J. Urban Plan.

Dev. 2010, 136, 330–338. [CrossRef]
10. Moya, T.A.; van den Dobbelsteen, A.; Ottele, M.; Bluyssen, P.M. A review of green systems within the indoor environment. Indoor

Built Environ. 2019, 28, 298–309. [CrossRef]
11. Choi, J.-Y.; Park, S.-A.; Jung, S.-J.; Lee, J.-Y.; Son, K.-C.; An, Y.-J.; Lee, S.-W. Physiological and psychological responses of humans

to the index of greenness of an interior space. Complementary Ther. Med. 2016, 28, 37–43. [CrossRef]

http://doi.org/10.1136/jech.56.12.913
http://www.ncbi.nlm.nih.gov/pubmed/12461111
http://doi.org/10.1016/S0272-4944(05)80184-7
http://doi.org/10.1016/j.socscimed.2010.01.002
http://www.ncbi.nlm.nih.gov/pubmed/20163905
http://doi.org/10.1080/08940630.1989.10466640
https://link.springer.com/article/10.1007/s10668-021-01923-x
http://doi.org/10.1002/pan3.10201
http://doi.org/10.1111/scs.12391
http://doi.org/10.1016/S0378-7788(02)00017-8
http://doi.org/10.1061/(ASCE)UP.1943-5444.0000034
http://doi.org/10.1177/1420326X18783042
http://doi.org/10.1016/j.ctim.2016.08.002


Forests 2022, 13, 602 10 of 11

12. Ikei, H.; Song, C.; Igarashi, M.; Namekawa, T.; Miyazaki, Y. Physiological and psychological relaxing effects of visual stimulation
with foliage plants in high school students. In Advances in Horticultural Science; Torrossa Digital Library: Fiesole, Italy, 2014; pp.
111–116.

13. Shibata, S.; Suzuki, N. Effects of an indoor plant on creative task performance and mood. Scand. J. Psychol. 2004, 45, 373–381.
[CrossRef] [PubMed]

14. Raanaas, R.K.; Evensen, K.H.; Rich, D.; Sjøstrøm, G.; Patil, G. Benefits of indoor plants on attention capacity in an office setting.
J. Environ. Psychol. 2011, 31, 99–105. [CrossRef]

15. Pegas, P.N.; Alves, C.; Nunes, T.; Bate-Epey, E.; Evtyugina, M.; Pio, C.A. Could houseplants improve indoor air quality in schools?
J. Toxicol. Environ. Health Part A 2012, 75, 1371–1380. [CrossRef] [PubMed]

16. Torpy, F.; Zavattaro, M.; Irga, P. Green wall technology for the phytoremediation of indoor air: A system for the reduction of high
CO2 concentrations. Air Qual. Atmos. Health 2017, 10, 575–585. [CrossRef]

17. Yoo, M.; Lee, E.-H. The Impact of Modulized Interior Landscape on Office Workers’ Psychological Wellbeing-A Pilot Study of
Focused on the Office Wall. Korean Inst. Inter. Des. J. 2014, 23, 220–230. [CrossRef]

18. Smith, A.; Tucker, M.; Pitt, M. Healthy, productive workplaces: Towards a case for interior plantscaping. Facilities 2011, 29,
209–223. [CrossRef]

19. Qian, Y.; Zhou, W.; Yu, W.; Pickett, S.T. Quantifying spatiotemporal pattern of urban greenspace: New insights from high
resolution data. Landsc. Ecol. 2015, 30, 1165–1173. [CrossRef]

20. Li, S.; Dai, L.; Wang, H.; Wang, Y.; He, Z.; Lin, S. Estimating leaf area density of individual trees using the point cloud segmentation
of terrestrial LiDAR data and a voxel-based model. Remote Sens. 2017, 9, 1202. [CrossRef]

21. Béland, M.; Widlowski, J.-L.; Fournier, R.A. A model for deriving voxel-level tree leaf area density estimates from ground-based
LiDAR. Environ. Model. Softw. 2014, 51, 184–189. [CrossRef]

22. Béland, M.; Widlowski, J.-L.; Fournier, R.A.; Côté, J.-F.; Verstraete, M.M. Estimating leaf area distribution in savanna trees from
terrestrial LiDAR measurements. Agric. For. Meteorol. 2011, 151, 1252–1266. [CrossRef]
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