Distributions and Influencing Factors of Soil Organic Carbon Fractions under Different Vegetation Restoration Conditions in a Subtropical Mountainous Area, SW China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Laboratory Analysis
2.4. Calculations of Soil Carbon Indices
2.5. Statistical Analyses
3. Results
3.1. Basic Soil Characteristics
3.2. Distributions of Soil Carbon Variables
3.3. Multivariate Analysis between SOCs and Soil Properties
3.4. Sensitivity of Soil Carbon Variables to Vegetation Restoration Types
4. Discussion
4.1. Effects of Different Vegetation Types on the Soil Organic Carbon Variables
4.2. Influencing Factors of Soil Carbon Distributions
4.3. Indices for Assessing the Vegetation Restoration Effect on the Soil Carbon Pool
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Plant Community | Disturbance History | Restoration Process and Management |
---|---|---|
Shrub-Grass Land (SG) | 1950s: the aboveground parts of all big trees were felled in the zonal forest; 1960s: all aboveground biomass of big shrub plants was progressively harvested for fuel; 1970s: most of the underground biomass of shrub plants was harvested for fuel; 1980s and 1990s: degraded ecosystem was used for grazing. | Intense disturbance; Restoration by natural succession; Stands have been closed for afforestation and felling prohibited since 1999. |
Coniferous Pinus Forest (PF) | 1950s: the aboveground parts of all big trees were felled in the zonal forest; 1960s and 1970s: aboveground and belowground parts of trees and shrub plants were all harvested for fuel. | Human-assisted restoration plus natural succession; Stands were seeded with P. yunnanensis in 1980, and have been closed ever since for afforestation, felling is prohibited. |
Coniferous And Broad-Leaved Mixed Forest (MF) | 1950s: the aboveground parts of all big trees were felled in the zonal forest; 1960s: aboveground parts of big shrub plants were harvested for fuel; 1970s: belowground parts of big shrub plants were harvested for fuel and intermediate and small shrub plants were left. | Human-assisted restoration plus natural succession; Stands were seeded with P. yunnanensis in 1980, and have been closed ever since for afforestation, felling is prohibited |
Natural Secondary Forest (NSF) | 1950s: the aboveground parts of big trees were felled; 1960s and 1970s: all of the aboveground parts of big and small trees were harvested at intervals but the underground parts were left intact. | Weak disturbance; Restoration by natural succession; Stands have been closed for afforestation and felling prohibited since 1980. |
Mature Natural Forest (NF) | Original natural vegetation, No human disturbance | In 1982, it was designated as a state-level nature reserve. |
Vegetation | Soil Depth | BD (g cm−3) | SWC | Clay (%) | pH | TN (mg kg−1) | TP (mg kg−1) | Fep (g kg−1) | Feo (g kg−1) | Fed (g kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
NF | 0–10 cm | 1.13 ± 0.02 | 0.15 ± 0.01 | 34.37 ± 0.61 | 4.18 ± 0.10 | 0.43 ± 0.07 | 0.28 ± 0.03 | 0.49 ± 0.02 | 1.77 ± 0.30 | 7.16 ± 0.25 |
10–30 cm | 1.19 ± 0.01 | 0.17 ± 0.01 | 32.65 ± 0.42 | 4.17 ± 0.03 | 0.36 ± 0.04 | 0.25 ± 0.02 | 0.42 ± 0.13 | 1.55 ± 0.54 | 5.95 ± 0.01 | |
30–60 cm | 1.22 ± 0.00 | 0.16 ± 0.01 | 33.08 ± 0.48 | 4.06 ± 0.04 | 0.24 ± 0.01 | 0.23 ± 0.02 | 0.37 ± 0.07 | 1.12 ± 0.16 | 6.34 ± 0.43 | |
60–90 cm | 1.29 ± 0.01 | 0.14 ± 0.01 | 32.05 ± 1.70 | 4.06 ± 0.01 | 0.25 ± 0.03 | 0.19 ± 0.00 | 0.27 ± 0.04 | 0.88 ± 0.27 | 6.62 ± 0.09 | |
SG | 0–10 cm | 1.32 ± 0.02 | 0.18 ± 0.01 | 27.44 ± 0.60 | 4.67 ± 0.12 | 0.18 ± 0.07 | 0.39 ± 0.06 | 0.08 ± 0.00 | 0.54 ± 0.05 | 6.94 ± 0.95 |
10–30 cm | 1.39 ± 0.01 | 0.19 ± 0.00 | 27.40 ± 1.07 | 4.68 ± 0.08 | 0.15 ± 0.06 | 0.47 ± 0.07 | 0.09 ± 0.02 | 0.72 ± 0.11 | 6.96 ± 0.82 | |
30–60 cm | 1.44 ± 0.01 | 0.18 ± 0.01 | 27.09 ± 2.31 | 4.71 ± 0.13 | 0.17 ± 0.09 | 0.47 ± 0.07 | 0.10 ± 0.01 | 0.72 ± 0.09 | 7.00 ± 0.30 | |
60–90 cm | 1.55 ± 0.01 | 0.19 ± 0.01 | 28.06 ± 4.93 | 4.63 ± 0.02 | 0.17 ± 0.10 | 0.47 ± 0.06 | 0.13 ± 0.04 | 0.60 ± 0.04 | 7.16 ± 0.78 | |
YF | 0–10 cm | 1.34 ± 0.02 | 0.18 ± 0.00 | 31.42 ± 1.70 | 4.58 ± 0.07 | 0.18 ± 0.08 | 0.19 ± 0.05 | 0.17 ± 0.01 | 0.87 ± 0.12 | 8.43 ± 0.83 |
10–30 cm | 1.41 ± 0.01 | 0.17 ± 0.01 | 31.68 ± 1.88 | 4.53 ± 0.11 | 0.08 ± 0.02 | 0.19 ± 0.06 | 0.10 ± 0.02 | 0.75 ± 0.14 | 9.49 ± 0.75 | |
30–60 cm | 1.48 ± 0.01 | 0.24 ± 0.07 | 33.31 ± 2.64 | 4.50 ± 0.11 | 0.13 ± 0.09 | 0.19 ± 0.05 | 0.11 ± 0.02 | 0.73 ± 0.21 | 9.73 ± 0.82 | |
60–90 cm | 1.53 ± 0.04 | 0.19 ± 0.01 | 28.03 ± 6.18 | 4.44 ± 0.06 | 0.06 ± 0.02 | 0.20 ± 0.08 | 0.16 ± 0.04 | 0.78 ± 0.31 | 9.23 ± 0.78 | |
MF | 0–10 cm | 1.22 ± 0.03 | 0.19 ± 0.02 | 26.43 ± 1.57 | 4.50 ± 0.17 | 0.14 ± 0.05 | 0.30 ± 0.03 | 0.10 ± 0.03 | 0.70 ± 0.09 | 6.42 ± 1.14 |
10–30 cm | 1.26 ± 0.03 | 0.17 ± 0.01 | 27.85 ± 1.38 | 4.51 ± 0.19 | 0.17 ± 0.07 | 0.30 ± 0.04 | 0.10 ± 0.02 | 0.73 ± 0.10 | 6.76 ± 0.33 | |
30–60 cm | 1.28 ± 0.02 | 0.18 ± 0.00 | 30.57 ± 0.87 | 4.56 ± 0.18 | 0.16 ± 0.05 | 0.31 ± 0.02 | 0.06 ± 0.01 | 0.73 ± 0.12 | 7.77 ± 0.37 | |
60–90 cm | 1.33 ± 0.07 | 0.17 ± 0.01 | 31.43 ± 1.86 | 4.45 ± 0.11 | 0.16 ± 0.10 | 0.28 ± 0.03 | 0.05 ± 0.02 | 0.77 ± 0.12 | 8.21 ± 0.49 | |
NSF | 0–10 cm | 1.14 ± 0.02 | 0.23 ± 0.02 | 28.78 ± 1.71 | 4.38 ± 0.12 | 0.22 ± 0.10 | 0.29 ± 0.04 | 0.20 ± 0.05 | 0.91 ± 0.13 | 8.32 ± 1.15 |
10–30 cm | 1.20 ± 0.03 | 0.16 ± 0.01 | 31.65 ± 1.22 | 4.32 ± 0.03 | 0.19 ± 0.06 | 0.28 ± 0.03 | 0.20 ± 0.02 | 0.74 ± 0.04 | 8.39 ± 0.87 | |
30–60 cm | 1.27 ± 0.03 | 0.18 ± 0.00 | 34.02 ± 1.33 | 4.30 ± 0.04 | 0.19 ± 0.05 | 0.28 ± 0.04 | 0.17 ± 0.00 | 1.06 ± 0.14 | 8.44 ± 0.73 | |
60–90 cm | 1.32 ± 0.03 | 0.18 ± 0.01 | 36.80 ± 3.61 | 4.29 ± 0.06 | 0.16 ± 0.07 | 0.27 ± 0.04 | 0.14 ± 0.03 | 1.01 ± 0.16 | 9.18 ± 0.60 | |
Two-way ANOVA | ||||||||||
Community | 65.25 *** | 1.63 | 3.39 * | 12.90 *** | 3.91 * | 15.50 *** | 43.86 *** | 8.57 *** | 8.58 *** | |
Depth | 36.94 *** | 0.77 | 0.59 | 0.61 | 0.81 | 0.10 | 2.88 * | 0.68 | 0.75 | |
Community × Depth | 0.69 | 1.02 | 0.73 | 0.10 | 0.33 | 0.28 | 1.58 | 1.30 | 0.41 |
Depth | Vegetation | CPI | CMI | SCS |
---|---|---|---|---|
0–10 cm | SG | 0.49 ± 0.10b | 59.45 ± 9.99b | 0.41 ± 0.11b |
YF | 0.64 ± 0.09b | 95.54 ± 2.07a | 0.44 ± 0.12b | |
MF | 0.66 ± 0.15b | 83.03 ± 17.04a | 0.55 ± 0.06b | |
NSF | 0.66 ± 0.06b | 84.14 ± 6.63a | 0.52 ± 0.06b | |
NF | 1.00a | 100a | 1.00a | |
10–30 cm | SG | 0.57 ± 0.14b | 64.89 ± 13.53a | 0.51 ± 0.14b |
YF | 0.60 ± 0.04b | 76.25 ± 15.01a | 0.53 ± 0.16b | |
MF | 0.54 ± 0.10b | 60.65 ± 13.98a | 0.49 ± 0.07b | |
NSF | 0.61 ± 0.07b | 72.24 ± 1.62a | 0.53 ± 0.14b | |
NF | 1.00a | 100a | 1.00a | |
30–60 cm | SG | 0.64 ± 0.10b | 56.68 ± 10.65b | 0.82 ± 0.32a |
YF | 0.54 ± 0.14b | 72.58 ± 13.54ab | 0.46 ± 0.19a | |
MF | 0.56 ± 0.10b | 62.24 ± 9.85b | 0.51 ± 0.11a | |
NSF | 0.70 ± 0.10ab | 105.00 ± 12.45a | 0.52 ± 0.19a | |
NF | 1.00a | 100a | 1.00a | |
60–90 cm | SG | 0.83 ± 0.24a | 78.97 ± 7.53ab | 0.96 ± 0.45a |
YF | 0.70 ± 0.26a | 66.89 ± 19.09b | 0.75 ± 0.47a | |
MF | 0.66 ± 0.11a | 51.69 ± 11.40b | 0.86 ± 0.14a | |
NSF | 0.86 ± 0.20a | 84.23 ± 4.99ab | 0.99 ± 0.43a | |
NF | 1.00a | 100a | 1.00a | |
Two-way ANOVA | ||||
Community | 7.07 *** | 6.94 *** | 2.79 * | |
Depth | 1.43 | 0.69 | 2.44 | |
Community × Depth | 0.33 | 1.00 | 0.33 |
References
- Lehmann, J.; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bongiorno, G.; Bünemann, E.K.; Oguejiofor, C.U.; Meier, J.; Gort, G.; Comans, R.; Mäder, P.; Brussaard, L.; de Goede, R. Sensitivity of Labile Carbon Fractions to Tillage and Organic Matter Management and Their Potential as Comprehensive Soil Quality Indicators across Pedoclimatic Conditions in Europe. Ecol. Indic. 2019, 99, 38–50. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N. Soil Organic Carbon Storage as a Key Function of Soils-A Review of Drivers and Indicators at Various Scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Kollmann, J.; Meyer, S.T.; Bateman, R.; Conradi, T.; Gossner, M.M.; de Souza Mendonça Jr., M.; Fernandes, G.W.; Hermann, J.-M.; Koch, C.; Müller, S.C.; et al. Integrating Ecosystem Functions into Restoration Ecology—Recent Advances and Future Directions. Restor. Ecol. 2016, 24, 722–730. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Q.; Wang, M.; Li, P.; Li, Y.; Xue, S.; Liu, G. Soil Organic Carbon Sequestration and Its Stability after Vegetation Restoration in the Loess Hilly Region, China. Land Degrad. Dev. 2020, 31, 568–580. [Google Scholar] [CrossRef]
- Liu, M.; Li, P.; Liu, M.; Wang, J.; Chang, Q. The Trend of Soil Organic Carbon Fractions Related to the Successions of Different Vegetation Types on the Tableland of the Loess Plateau of China. J. Soil. Sediment. 2021, 21, 203–214. [Google Scholar] [CrossRef]
- Haynes, R.J. Labile Organic Matter Fractions as Centralcomponents of the Quality of Agricultural Soils: An Overview. Adv. Agron. 2005, 5, 221–268. [Google Scholar]
- Christensen, B.T. Physical Fractionation of Soil and Structural and Functional Complexity in Organic Matter Turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Ma, W.; Li, G.; Wu, J.; Xu, G.; Wu, J. Response of Soil Labile Organic Carbon Fractions and Carbon-Cycle Enzyme Activities to Vegetation Degradation in a Wet Meadow on the Qinghai–Tibet Plateau. Geoderma 2020, 377, 114565. [Google Scholar] [CrossRef]
- Zhong, Y.; Yan, W.; Shangguan, Z. Soil Carbon and Nitrogen Fractions in the Soil Profile and Their Response to Long-Term Nitrogen Fertilization in a Wheat Field. Catena 2015, 135, 38–46. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, K.; Toor, A.S.; Singh, P. Total and Labile Pools of Soil Organic Carbon in Cultivated and Undisturbed Soils in Northern India. Geoderma 2015, 237, 149–158. [Google Scholar] [CrossRef]
- de Moraes Sá, J.C.; Gonçalves, D.R.P.; Ferreira, L.A.; Mishra, U.; Inagaki, T.M.; Furlan, F.J.F.; Moro, R.S.; Floriani, N.; Briedis, C.; de Oliveira Ferreira, A. Soil Carbon Fractions and Biological Activity Based Indices Can Be Used to Study the Impact of Land Management and Ecological Successions. Ecol. Indic. 2018, 84, 96–105. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, Q.; Hui, D.; Wu, J.; Xiong, X.; Zhao, J.; Zhao, M.; Chu, G.; Zhou, G.; Zhang, D. Recovery in Soil Carbon Stock but Reduction in Carbon Stabilization after 56-Year Forest Restoration in Degraded Tropical Lands. Forest Ecol. Manag. 2019, 441, 1–8. [Google Scholar] [CrossRef]
- Singh, A.K.; Rai, A.; Singh, N. Effect of Long Term Land Use Systems on Fractions of Glomalin and Soil Organic Carbon in the Indo-Gangetic Plain. Geoderma 2016, 277, 41–50. [Google Scholar] [CrossRef]
- Castellano, M.J.; Mueller, K.E.; Olk, D.C.; Sawyer, J.E.; Six, J. Integrating Plant Litter Quality, Soil Organic Matter Stabilization, and the Carbon Saturation Concept. Glob. Chang. Biol. 2015, 21, 3200–3209. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.K.; Ghosh, P. Distribution of Soil Organic Carbon and Glomalin Related Soil Protein in Reclaimed Coal Mine-Land Chronosequence under Tropical Condition. Sci. Total Environ. 2018, 625, 1341–1350. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Hill, B.H.; Shah, J.J.F. Ecoenzymatic Stoichiometry of Microbial Organic Nutrient Acquisition in Soil and Sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ramsey, P.W.; Morris, S.; Paul, E.A. Glomalin, an Arbuscular-Mycorrhizal Fungal Soil Protein, Responds to Land-Use Change. Plant Soil 2003, 253, 293–299. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, X.; Zhong, S.; Yin, G.; Gao, Y.; He, X. Recalcitrant Carbon Components in Glomalin-Related Soil Protein Facilitate Soil Organic Carbon Preservation in Tropical Forests. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sher, Y.; Baker, N.R.; Herman, D.; Fossum, C.; Hale, L.; Zhang, X.; Nuccio, E.; Saha, M.; Zhou, J.; Pett-Ridge, J. Microbial Extracellular Polysaccharide Production and Aggregate Stability Controlled by Switchgrass (Panicum Virgatum) Root Biomass and Soil Water Potential. Soil Biol. Biochem. 2020, 143, 107742. [Google Scholar] [CrossRef]
- Daynes, C.N.; Zhang, N.; Saleeba, J.A.; McGee, P.A. Soil Aggregates Formed in Vitro by Saprotrophic Trichocomaceae Have Transient Water-Stability. Soil Biol. Biochem. 2012, 48, 151–161. [Google Scholar] [CrossRef]
- Ambriz, E.; Báez-Pérez, A.; Sánchez-Yáñez, J.M.; Moutoglis, P.; Villegas, J. Fraxinus–Glomus–Pisolithus Symbiosis: Plant Growth and Soil Aggregation Effects. Pedobiologia 2010, 53, 369–373. [Google Scholar] [CrossRef]
- Fu, D.; Wu, X.; Duan, C.; Chadwick, D.R.; Jones, D.L. Response of Soil Phosphorus Fractions and Fluxes to Different Vegetation Restoration Types in a Subtropical Mountain Ecosystem. Catena 2020, 193, 104663. [Google Scholar] [CrossRef]
- Fu, D.; Wu, X.; Duan, C.; Smith, A.R.; Jones, D.L. Traits of Dominant Species and Soil Properties Co-Regulate Soil Microbial Communities across Land Restoration Types in a Subtropical Plateau Region of Southwest China. Ecol. Eng. 2020, 153, 105897. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Carter, M.R. Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Jones, D.L.; Willett, V.B. Experimental Evaluation of Methods to Quantify Dissolved Organic Nitrogen (DON) and Dissolved Organic Carbon (DOC) in Soil. Soil Biol. Biochem. 2006, 38, 991–999. [Google Scholar] [CrossRef]
- Blair, G.J.; Lefroy, R.D.B.; Lisle, L. Soil Carbon Fractions Based on Their Degree of Oxidation, and the Development of a Carbon Management Index for Agricultural Systems. Aust. J. Agr. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Singh, A.K.; Rai, A.; Pandey, V.; Singh, N. Contribution of Glomalin to Dissolve Organic Carbon under Different Land Uses and Seasonality in Dry Tropics. J. Environ. Manag. 2017, 192, 142–149. [Google Scholar] [CrossRef]
- Brink Jr, R.H.; Dubach, P.; Lynch, D.L. Measurement of Carbohydrates in Soil Hydrolyzates with Anthrone. Soil Sci. 1960, 89, 157–166. [Google Scholar] [CrossRef]
- Oliveira, D.M.; da, S.; Paustian, K.; Cotrufo, M.F.; Fiallos, A.R.; Cerqueira, A.G.; Cerri, C.E.P. Assessing Labile Organic Carbon in Soils Undergoing Land Use Change in Brazil: A Comparison of Approaches. Ecol. Indic. 2017, 72, 411–419. [Google Scholar] [CrossRef]
- Sheng, H.; Zhou, P.; Zhang, Y.; Kuzyakov, Y.; Zhou, Q.; Ge, T.; Wang, C. Loss of Labile Organic Carbon from Subsoil Due to Land-Use Changes Insubtropical China. Soil Biol. Biochem. 2015, 88, 148–157. [Google Scholar] [CrossRef]
- Cavalcante, D.M.; de Castro, M.F.; Chaves, M.T.L.; da Silva, I.R.; de Oliveira, T.S. Effects of Rehabilitation Strategies on Soil Aggregation, C and N Distribution and Carbon Management Index in Coffee Cultivation in Mined Soil. Ecol. Indic. 2019, 107, 105668. [Google Scholar] [CrossRef]
- Fu, D.G.; Wu, X.N.; Qiu, Q.T.; Duan, C.Q.; Jones, D.L. Seasonal variations in soil microbial communities under different land restoration types in a subtropical mountains region, Southwest China. Appl. Soil Ecol. 2020, 153, 103634. [Google Scholar] [CrossRef]
- Fontaine, S.; Barot, S.; Barré, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of Organic Carbon in Deep Soil Layers Controlled by Fresh Carbon Supply. Nature 2007, 450, 277–280. [Google Scholar] [CrossRef]
- Trumbore, S.E.; Davidson, E.A.; Barbosa de Camargo, P.; Nepstad, D.C.; Martinelli, L.A. Belowground Cycling of Carbon in Forests and Pastures of Eastern Amazonia. Global Biogeochem. Cy. 1995, 9, 515–528. [Google Scholar] [CrossRef] [Green Version]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating Active Carbon for Soil Quality Assessment: A Simplified Method for Laboratory and Field Use. Am. J. Altern. Agr. 2003, 18, 3–17. [Google Scholar]
- Ren, A.T.; Mickan, B.S.; Li, J.Y.; Zhou, R.; Zhang, X.C.; Ma, M.S.; Wesly, K.; Xiong, Y.C. Soil Labile Organic Carbon Sequestration Is Tightly Correlated with the Abundance and Diversity of Arbuscular Mycorrhizal Fungi in Semiarid Maize Fields. Land Degrad. Dev. 2021, 32, 1224–1236. [Google Scholar] [CrossRef]
- Wu, Q.-S.; Xia, R.-X.; Zou, Y.-N. Improved Soil Structure and Citrus Growth after Inoculation with Three Arbuscular Mycorrhizal Fungi under Drought Stress. Eur. J. Soil Biol. 2008, 44, 122–128. [Google Scholar] [CrossRef]
- Malekzadeh, E.; Aliasgharzad, N.; Majidi, J.; Abdolalizadeh, J.; Aghebati-Maleki, L. Contribution of Glomalin to Pb Sequestration by Arbuscular Mycorrhizal Fungus in a Sand Culture System with Clover Plant. Eur. J. Soil Biol. 2016, 74, 45–51. [Google Scholar] [CrossRef]
- Rillig, M.C. Arbuscular Mycorrhizae, Glomalin, and Soil Aggregation. Can. J. Soil Sci. 2004, 84, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, C.E.; Wright, S.F.; Clark, D.A.; Ruess, R.W. Soil Stocks of Glomalin Produced by Arbuscular Mycorrhizal Fungi across a Tropical Rain Forest Landscape. J. Ecol. 2004, 92, 278–287. [Google Scholar] [CrossRef]
- Fokom, R.; Adamou, S.; Teugwa, M.C.; Boyogueno, A.D.B.; Nana, W.L.; Ngonkeu, M.E.L.; Tchameni, N.S.; Nwaga, D.; Ndzomo, G.T.; Zollo, P.H.A. Glomalin Related Soil Protein, Carbon, Nitrogen and Soil Aggregate Stability as Affected by Land Use Variation in the Humid Forest Zone of South Cameroon. Soil Till. Res. 2012, 120, 69–75. [Google Scholar] [CrossRef]
- Zong, M.; Lin, C.; Li, S.; Li, H.; Duan, C.; Peng, C.; Guo, Y.; An, R. Tillage Activates Iron to Prevent Soil Organic Carbon Loss Following Forest Conversion to Cornfields in Tropical Acidic Red Soils. Sci. Total Environ. 2021, 761, 143253. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Tang, H.; Kang, W.; Yu, G.; Ran, W.; Hong, J.; Shen, Q. Redox Interface-Associated Organo-Mineral Interactions: A Mechanism for C Sequestration under a Rice-Wheat Cropping System. Soil Biol. Biochem. 2018, 120, 12–23. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Püttmann, W. Soil Organic Carbon and Its Sorptive Preservation in Central Germany. Eur. J. Soil Sci. 2005, 56, 65–76. [Google Scholar] [CrossRef]
- Berhe, A.A.; Suttle, K.B.; Burton, S.D.; Banfield, J.F. Contingency in the Direction and Mechanics of Soil Organic Matter Responses to Increased Rainfall. Plant Soil 2012, 358, 371–383. [Google Scholar] [CrossRef]
- Wang, H.; Jin, J.; Yu, P.; Fu, W.; Morrison, L.; Lin, H.; Meng, M.; Zhou, X.; Lv, Y.; Wu, J. Converting Evergreen Broad-Leaved Forests into Tea and Moso Bamboo Plantations Affects Labile Carbon Pools and the Chemical Composition of Soil Organic Carbon. Sci. Total Environ. 2020, 711, 135225. [Google Scholar] [CrossRef]
- Oliveira, S.P.; Candido, M.J.D.; Weber, O.B.; Xavier, F.A.S.; Escobar, M.E.O.; Oliveira, T.S. Conversion of Forest into Irrigated Pasture I. Changes in the Chemical and Biological Properties of the Soil. Catena 2016, 137, 508–516. [Google Scholar] [CrossRef]
- Skjemstad, J.O.; Swift, R.S.; McGowan, J.A. Comparison of the Particulate Organic Carbon and Permanganate Oxidation Methods for Estimating Labile Soil Organic Carbon. Aust. J. Soil Res. 2006, 44, 255–263. [Google Scholar] [CrossRef]
Factors | Community Type | Soil Depth | Community Type × Soil Depth |
---|---|---|---|
Soil organic carbon and carbon fraction (p value) | |||
TOC | <0.001 | <0.001 | 0.688 |
DOC | <0.001 | <0.001 | 0.210 |
POXC | <0.001 | <0.001 | 0.867 |
LFOC | <0.001 | <0.001 | 0.644 |
HFOC | <0.001 | <0.001 | 0.860 |
POC | <0.001 | <0.001 | 0.174 |
Sensitivity index of soil carbon indices (p value) | |||
TOC | <0.001 | 0.271 | 0.992 |
DOC | <0.001 | 0.175 | 0.845 |
POXC | <0.001 | 0.663 | 0.741 |
LFOC | <0.001 | 0.277 | 0.786 |
HFOC | <0.001 | 0.199 | 0.969 |
POC | <0.001 | <0.001 | 0.294 |
CPI | <0.001 | 0.248 | 0.979 |
CMI | <0.001 | 0.565 | 0.463 |
SCS | <0.05 | 0.079 | 0.979 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Fu, D.; Duan, C.; Huang, G.; Shang, H. Distributions and Influencing Factors of Soil Organic Carbon Fractions under Different Vegetation Restoration Conditions in a Subtropical Mountainous Area, SW China. Forests 2022, 13, 629. https://doi.org/10.3390/f13040629
Wu X, Fu D, Duan C, Huang G, Shang H. Distributions and Influencing Factors of Soil Organic Carbon Fractions under Different Vegetation Restoration Conditions in a Subtropical Mountainous Area, SW China. Forests. 2022; 13(4):629. https://doi.org/10.3390/f13040629
Chicago/Turabian StyleWu, Xiaoni, Denggao Fu, Changqun Duan, Gongning Huang, and Huaye Shang. 2022. "Distributions and Influencing Factors of Soil Organic Carbon Fractions under Different Vegetation Restoration Conditions in a Subtropical Mountainous Area, SW China" Forests 13, no. 4: 629. https://doi.org/10.3390/f13040629
APA StyleWu, X., Fu, D., Duan, C., Huang, G., & Shang, H. (2022). Distributions and Influencing Factors of Soil Organic Carbon Fractions under Different Vegetation Restoration Conditions in a Subtropical Mountainous Area, SW China. Forests, 13(4), 629. https://doi.org/10.3390/f13040629