Mangrove Forests in Ecuador: A Two-Decade Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Defining the Potential Area Occupied by Mangrove Forests
2.2. Data Sources and Preprocessing
2.2.1. Official Cartography
2.2.2. Medium-Resolution Imagery
2.2.3. High-Resolution Imagery
2.3. Classification of Images
2.4. Accuracy Assessment
2.5. Detection of Changes
3. Results and Discussion
3.1. Accuracy Assesment
3.2. Changes in Mangrove-Covered Area
3.3. Interactions between Anthropogenic Activities and Mangroves
4. Conclusions
- The highest mangrove destruction rate in the country was reached during the 1998–2010 period, resulting in a loss of 194.57 km2, which amount to 4.56% of the total mangrove area. The most affected provinces were El Oro and Guayas, and shrimp farming activity was the main cause of mangrove loss.
- Since the 2010–2018 period, a gradual recovery of occupied areas has been observed, especially in the northern province of Esmeraldas and in the southern province of El Oro. This recovery is probably related to the regulation of deforestation, mangrove conservation and restoration initiatives implemented in the Cayapas Mataje ecological reserve, and the implementation of areas under sustainable use and conservation agreements (Áreas de Uso Sustentable y Custodia de Manglar, AUSCM), mainly in the province of El Oro.
- Infrastructure building, agricultural land use, and construction and maintenance of shrimp farming infrastructure are currently the main causes related to the destruction and loss of new mangrove areas; this process is widespread among all the provinces in the country but has been especially evident in the province of El Oro.
- The remaining mangrove-covered areas are still subjected to deforestation processes; however, the rate at which these processes occur has been shown to have slowed down compared to two decades ago.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alongi, D. Present state and future of the world’s mangrove. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.; Primavera, J.; Pettorelli, N.; Thompson, J.; Loma, R.; Koldewey, H. Rehabilitating mangrove ecosystem services: A case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Mar. Pollut. Bull. 2016, 109, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Giri, C.; Ochieng, E.; Tieszen, L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Otero, X.; Macías, F. Biogeochemistry and Pedogenetic Proccess in Saltmarsh and Mangrove Systems; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 36–65. [Google Scholar]
- Aburto-Oropeza, O.; Ezcurra, E.; Danemann, G.; Valdez, V.; Murray, J.; Sala, E. Mangroves in the Gulf of California increase fishery yields. Proc. Natl. Acad. Sci. USA 2008, 105, 10456–10459. [Google Scholar] [CrossRef] [Green Version]
- Chmura, G.; Anisfeld, S.; Cahoon, D.; Lynch, J. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earhtscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- Cam-Hong, H.; Avtar, R.; Fujii, M. Monitoring changes in land use and distribution of mangroves in the southeastern part of the Mekong River Delta, Vietnam. Trop. Ecol. 2020, 60, 552–565. [Google Scholar] [CrossRef]
- Aye, W.; Yali, W.; Marin, K.; Thapa, S.; Tun, A. Contribution of Mangrove Forest to the Livelihood of Local Communities in Ayeyarwaddy Region, Myanmar. Forests 2019, 10, 414. [Google Scholar] [CrossRef] [Green Version]
- Mafi-Gholami, D.; Jaafari, A.; Zenner, E.; Nouri Kamari, A.; Tien Bui, D. Spatial modeling of exposure of mangrove ecosystems to multiple environmental hazards. Sci. Total Environ. 2020, 740, 140167. [Google Scholar] [CrossRef]
- Spalding, M.; Leal, M. The state of the world’s mangroves 2021. Glob. Mangrove Alliance 2021, 41. [Google Scholar]
- Hamilton, S.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Duke, N.; Nagelkerken, I.; Agardy, T.; Wells, S.; Van Lavieren, H. The Importance of Mangroves to People: A Call to Action; United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC): Cambridge, UK, 2014; p. 128. [Google Scholar]
- DasGupta, R.; Shaw, R. Cumulative Impacts of Human Interventions and Climate Change on Mangrove Ecosystems of South and Southeast Asia: An Overview. J. Ecosyst. 2013, 2013, 15. [Google Scholar] [CrossRef]
- Gorman, D. Historical Losses of Mangrove Systems in South America from Human-Induced and Natural Impacts. In Threats to Mangrove Forests. Coastal Research Library; Makowski, C., Finkl, C., Eds.; Springer: Cham, Switzerland, 2018; Volume 25, pp. 155–171. [Google Scholar]
- Chowdhury, R.; Uchida, E.; Chen, L.; Osorio, V.; Yoder, L. Anthropogenic Drivers of Mangrove Loss: Geographic Patterns and Implications for Livelihoods. In Mangrove Ecosystems: A Global Biogeographic Perspective. Structure, Function, and Services; Rivera-Monroy, V., Lee, S., Kristensen, E., Twilley, R., Eds.; Springer: Cham, Switzerland, 2017; p. 407. [Google Scholar]
- Spalding, M.; Blasco, F.; Field, C. World Mangrove Atlas; The International Society for Mangrove Ecosystems: Okinawa, Japan, 1997; p. 178. [Google Scholar]
- Bodero, A.; Robadue, D. Estrategia para el Manejo del Ecosistema de Manglar, Ecuador. In Manejo Costero lntegrado en Ecuador; Ochoa, M., Ed.; Fundación Pedro Vicente Maldonado: Guayaquil, Ecuador, 1995; p. 60. [Google Scholar]
- Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos—CLIRSEN. Actualización del estudio multitemporal de manglares, camaroneras y áreas salinas en la costa continental ecuatoriana al año 2006. CLIRSEN Quito Ecuador. 2007, 77. [Google Scholar]
- Ministerio del Ambiente del Ecuador—MAE. Sistema de Clasificación de Ecosistemas del Ecuador Continental; Subsecretaría de Patrimonio Cultural, Ministerio del Ambiente del Ecuador: Quito, Ecuador, 2013; p. 235. [Google Scholar]
- Rivas-Martínez, S. Global Bioclimatics (Clasificación Bioclimática de la Tierra); Versión 27/08/2004; Phytosociological Research Center. Departamento de Biología Vegetal II (Botánica). Facultad de Farmacia. Universidad Complutense de Madrid: Madrid, Spain, 2004; Available online: https://webs.ucm.es/info/cif/book/bioc/global_bioclimatics_2.htm (accessed on 12 December 2021).
- Ministerio del Ambiente del Ecuador—MAE; Organización de las Naciones Unidas para la Alimentación y la Agricultura, IT—FAO. Árboles y Arbustos de los Manglares del Ecuador; MAE-FAO: Quito, Ecuador, 2014; 48p. [Google Scholar]
- Cornejo, X. (Ed.) Plants of the South American Pacific Mangrove Swamps (Colombia, Ecuador, Perú); Universidad de Guayaquil, Facultad de Ciencias Naturales: Guayaquil, Ecuador, 2014; 310p. [Google Scholar]
- Hamilton, S. Mangroves and Aquaculture. A five Decades Remote Sensing Analysis of Ecuador´s Estuarine Environments; Coastal Research Library: Cham, Switzerland, 2020. [Google Scholar]
- Bravo, M. Alianza Público-Privada Para la Gestión de los Manglares del Ecuador: Los Acuerdos Para el Uso Sustentable y Custodia; USAID Costas y Bosques Sostenibles: Ecuador, 2013; 85p, Available online: https://docplayer.es (accessed on 20 February 2022).
- Alesheick, A.; Ghorbanali, A.; Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Tech. 2007, 4, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Haro-Carrión, X.; Southworth, J. Understanding Land Cover Change in a Fragmented Forest Landscape in a Biodiversity Hotspot of Coastal Ecuador. Remote Sens. 2018, 10, 1980. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Vo Quoc, T.; Dech, S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef] [Green Version]
- Valderrama, L.; Troche, C.; Rodriguez, M.; Marquez, D.; Vázquez, B.; Velázquez, S.; Vázquez, A.; Cruz, M.; Ressl, R. Evaluation of Mangrove Cover Changes in Mexico During the 1970–2005 Period. Wetlands 2014, 34, 747–758. [Google Scholar] [CrossRef]
- Mayaux, P.; Richards, T.; Janodet, E. A vegetation map of Central Africa derived from satellite imagery. J. Biogeogr. 1999, 25, 353–366. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Chen, D.; Duan, Y.; Ji, H.; Zhang, L.; Chai, Q.; Hu, X. Understanding Land use/Land cover dynamics and impacts of human activities in the Mekong Delta over the last 40 years. Glob. Ecol. Conserv. 2020, 22, e00991. [Google Scholar] [CrossRef]
- Luo, S.; Chui, T.F.M. Annual variations in regional mangrove cover in southern China and potential macro-climatic and hydrological indicators. Ecol. Indic. 2020, 110, 105927. [Google Scholar] [CrossRef]
- Devi, K.; Sheikhi, A.; Cracknell, A.; Ching, H.; Pan, K.; Siong, C.; Nabilla, F. Satellite Images for Monitoring Mangrove Cover Changes in a Fast Growing Economic Region in Southern Peninsular Malaysia. Remote Sens. 2015, 7, 14360–14385. [Google Scholar]
- Massod, H.; Afsar, S.; Bin, U.; Hassan, J. Application of Comparative Remote Sensing Techniques for Monitoring Mangroves in Indus Delta, Sindh, Pakistan. Biol. Forum–Int. J. 2015, 7, 783–792. [Google Scholar]
- Purwanto, A.; Asriningrum, W. Identification of mangrove forest using multispectral satellite imageries. Int. J. Remote Sens. Earth Sci. 2019, 16, 63–86. [Google Scholar] [CrossRef]
- Food and Agriculture Organization—FAO. Forest Resources Assessment. Survey of Tropical Forest Cover and Study of Change Processes; FAO forestry papers: Rome, Italy, 1996; p. 152. [Google Scholar]
- Mas, J.; Lemoine-Rodríguez, R.; González-López, R.; López-Sánchez, J. Piña-Garduño, A.; Herrera-Flores, E. Land use/land cover change detection combining automatic processing and visual interpretation. Eur. J. Remote Sens. 2017, 50, 626–635. [Google Scholar] [CrossRef]
- Ramírez, M.; Zubieta, R. Análisis Regional y Comparación Metodológica del Cambio en la Cubierta Forestal en la Región Mariposa Monarca. Reporte Técnico Preparado Para el Fondo Para la Conservación de la Mariposa Monarca; Mexico, D.F. Instituto de Geografía, UNAM: México D.F., México, 2005; p. 521. [Google Scholar]
- Pulighe, G.; Baiocchi, V.; Lupia, F. Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome, Italy. Int. J. Digit. Earth 2015, 9, 342–362. [Google Scholar] [CrossRef]
- Congalton, R.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; Taylor & Francis: Boca Raton, FL, USA, 2019; p. 347. [Google Scholar]
- Tilahun, A.; Teferie, B. Accuracy Assessment of Land Use Land Cover Classification using Google Earth. Am. J. Envi-Ronmental Prot. 2015, 4, 193–198. [Google Scholar] [CrossRef]
- Aldwaik, S.; Pontius, R. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Rwanga, S.; Ndambuki, J. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Kraff, N.; Wurm, M.; Taubenböck, H. Uncertainties of Human Perception in Visual Image Interpretation in Complex Urban Environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4229–4241. [Google Scholar] [CrossRef]
- Alava, J.; Saavedra, M.; Arosemena, X.; Calle, M.; Vinueza, C.; Jiménez, P.; Carvajal, R.; Vargas, H. Distributional records and potential threats to the Common (Mangrove) Black Hawk (Buteogallus anthracinus subtilis) in southwestern Ecuador. Boletín SAO 2011, 20, 18–28. [Google Scholar]
- Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos—CLIRSEN. Estudio Multitemporal de Manglares, Camaroneras y Áreas Salinas de la Costa Ecuatoriana, Mediante Información de Sensores Remotos; Programa de Manejo de Recursos Costeros, CLIRSEN: Quito, Ecuador, 1990; p. 40. [Google Scholar]
- Romero, N. Neoliberalism and shrimp industry in Ecuador. In Letras Verdes. Revista Latinoamericana de Estudios Socioambientales, FLACSO; Facultad Latinoamericana de Ciencias Sociales FLACSO Ecuador: Quito, Ecuador, 2014; pp. 55–78. [Google Scholar]
- Sonnenholzner, S.; Massaut, L.; Saldías, C.; Calderón, J.; Boyd, C. Case studies of Ecuadorian shrimp farming. In Report Prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment; Network of Aquaculture Centres: Bangkok, Thailand, 2002; p. 21. [Google Scholar]
- Hamilton, S.; Lovette, J. Ecuador’s Mangrove Forest Carbon Stocks: A Spatiotemporal Analysis of Living Carbon Holdings and Their Depletion since the Advent of Commercial Aquaculture. PLoS ONE 2015, 10, e0118880. [Google Scholar] [CrossRef] [PubMed]
- López, F. Mangrove Concessions: An Innovative Strategy for Community Mangrove Conservation in Ecuador. In Threats to Mangrove Forests. Coastal Research Library; Makowski, C., Finkl, C., Eds.; Springer: Cham, Switzerland, 2018; Volume 25, pp. 557–578. [Google Scholar]
- Cámara Nacional de Acuacultura. Estadísticas. Available online: https://www.cna-ecuador.com/estadisticas/ (accessed on 28 September 2021).
- Krauss, K.; McKee, K.; Lovelock, C.; Cahoon, D.; Saintilan, N.; Reef, R.; Chen, L. How mangrove forests adjust to rising sea level. New Phytol. 2014, 202, 19–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNally, C.; Uchida, E.; Gold, A. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems. Proc. Natl. Acad. Sci. USA 2011, 108, 13945–13950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, M.; Liu, M.; Wang, Z.; Zhang, Y.; Mao, D.; Ren, C.; Cui, H. Evaluating the Effectiveness of Conservation on Mangroves: A Remote Sensing-Based Comparison for Two Adjacent Protected Areas in Shenzhen and Hong Kong, China. Remote Sens. 2016, 8, 627. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- De Lacerda, L.; Ward, R.; Pinto, M.; De Andrade, A.; Borges, R.; Ferreira, A. 20-Years Cumulative Impact from Shrimp Farming on Mangroves of Northeast Brazil. Front. For. Glob. Chang. 2021, 4. [Google Scholar] [CrossRef]
- Kamali, B.; Hashim, R. Mangrove restoration without planting. Ecol. Eng. 2011, 37, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.; Heck, N.; Narayan, S.; Menéndez, P.; Torres-Ortega, S.; Losada, J.; Way, M.; Rogers, M.; McFarlane-Connelly, L. Reducing Caribbean Risk: Opportunities for Cost-Efective Mangrove Restoration and Insurance; Nature Conservancy: Arlington, VA, USA, 2020. [Google Scholar]
- World Wildlife Fund—WWF. Northern South America: Coastal Ecuador. Available online: https://www.worldwildlife.org/ecoregions/nt1418 (accessed on 1 October 2021).
- Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad—CONABIO. Los Manglares de México: Estado Actual y Establecimiento de un Programa de Monitoreo a Largo Plazo: 1ra. Etapa.; Informe Final del Proyecto DQ056: Mexico City, Mexico, 2007; p. 47. [Google Scholar]
- Spalding, M.; Mclvor, A.; Tonneijck, F.; Tol, S.; Van Eijk, P. Mangroves for coastal defense. Guidelines fos coastal managers & policy makers. Wetl. Int. Nat. Conserv. 2014, 42. [Google Scholar]
- Arifanti, V.; Novita, N.; Subarno; Tosiani, A. Mangrove deforestation and CO2 emissions in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 874, 012006. [Google Scholar] [CrossRef]
- Ministerio del Ambiente, Agua y Transición Ecologíca—MAATE. Plan Nacional Para la Conservación del Manglar se Desarrolló en Machala. Available online: https://www.ambiente.gob.ec/plan-nacional-para-la-conservacion-del-manglar-se-desarrollo-en-machala/ (accessed on 30 September 2021).
- Badola, R.; Barthwal, S.; Hussain, S. Attitudes of local communities towards conservation of mangrove forests: A case study from the east coast of India. Estuar. Coast. Shelf Sci. 2012, 96, 188–196. [Google Scholar] [CrossRef]
- Susilo, H.; Takahashi, Y.; Yabe, M. The opportunity cost of labor for valuing mangrove restoration in Mahakam Delta, Indonesia. Sustainability 2017, 9, 2169. [Google Scholar] [CrossRef] [Green Version]
- Sudtongkong, C.; Kong-oh, S.; Intacharoen, P. Geographical information system assessment of mangrove area changes under state versus community management in two communities in Trang province, southern Thailand. Maejo Int. J. Sci. Technol. 2013, 7, 85–95. [Google Scholar]
- Friess, D.; Rogers, K.; Lovelock, C.; Krauss, K.; Hamilton, S.; Yip, S.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The State of the World’s Mangrove Forests: Past, Present, and Future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef] [Green Version]
No. | Name | Province | Path-Row | Date | Resolution |
---|---|---|---|---|---|
1 | LANDSAT 5 | Esmeraldas | 010-059 | 8 March 1998 | 30 |
2 | LANDSAT 5 | 011-059 | 3 April 1999 | 30 | |
3 | LANDSAT 5 | 011-060 | 19 June 1998 | 30 | |
4 | LANDSAT 7 | 010-059 | 4 March 2017 | 30 | |
5 | LANDSAT 7 | 011-059 | 22 January 2017 | 30 | |
6 | LANDSAT 7 | 011-060 | 22 January 2017 | 30 | |
7 | LANDSAT 5 | Manabí | 011-060 | 19 June 1998 | 30 |
8 | LANDSAT 5 | 011-061 | 16 April 1998 | 30 | |
9 | LANDSAT 8 | 011-060 | 17 April 2016 | 30 | |
10 | LANDSAT 8 | 011-061 | 17 April 2016 | 30 | |
14 | LANDSAT 8 | Guayas | 010-062 | 27 February 2018 | 30 |
15 | LANDSAT 8 | 011-061 | 6 May 2017 | 30 | |
16 | LANDSAT 8 | 011-062 | 13 October 2017 | 30 | |
17 | LANDSAT 5 | El Oro | 010-062 | 20 February 1998 | 30 |
18 | LANDSAT 5 | 011-062 | 3 April 1999 | 30 | |
19 | LANDSAT 5 | 011-062 | 6 October 1997 | 30 | |
20 | SENTINEL 2 | T17MNS | 22 April 2018 | 20 | |
21 | SENTINEL 2 | T17MPS | 22 April 2018 | 20 |
MAATE Classification System | Adapted Category | Description |
---|---|---|
Forest | Mangrove | Trees and shrubs in the coastal intertidal zone |
Shrub and grass | Natural vegetation | Forests and shrubs in flooded zones |
Agricultural land | Cropland | Crops, pastures for livestock, arable areas, logging |
Anthropic areas | Built-up area | Artificial structures (buildings, roads, coastal infrastructure) |
Shrimp farming | Active and inactive shrimp ponds | |
Water bodies | Water | Rivers and estuaries |
Other lands | Bare land | Sandy and rocky areas |
Province | Year 1 (Y1) | Year 2 (Y2) | Year 3 (Y3) |
---|---|---|---|
Esmeraldas | 1998 | 2010 | 2017 |
Manabí | 1998 | 2010 | 2017 |
Guayas | 2000 | 2011 | 2016 |
El Oro | 1997 | 2011 | 2018 |
Province | Mangrove | Shrimp Farming | Built-Up Land | Cropland | Natural Vegetation | Water | Bare Land | Total |
---|---|---|---|---|---|---|---|---|
El Oro | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 350 |
Esmeraldas | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 350 |
Guayas | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 350 |
Manabi | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 350 |
Total | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 1400 * |
Province/Year | Overall Accuracy | Kappa Coefficient |
---|---|---|
El Oro Y1 | 83.82 | 0.76 |
El Oro Y2 | 89.77 | 0.85 |
El Oro Y3 | 87.87 | 0.82 |
Esmeraldas Y1 | 84.31 | 0.81 |
Esmeraldas Y2 | 85.98 | 0.82 |
Esmeraldas Y3 | 85.82 | 0.82 |
Guayas Y1 | 81.25 | 0.76 |
Guayas Y2 | 83.07 | 0.79 |
Guayas Y3 | 80.10 | 0.75 |
Manabí Y1 | 84.73 | 0.80 |
Manabí Y2 | 87.05 | 0.83 |
Manabí Y3 | 86.13 | 0.82 |
Land Cover/Use Type | 1998 | 2010 | 2018 | |||
---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | |
Water | 557.0 | 10.0 | 556.6 | 10.0 | 565.6 | 10.1 |
Shrimp farming | 1301.7 | 23.3 | 1662.5 | 29.8 | 1594.1 | 28.5 |
Built-up area | 172.2 | 3.1 | 237.5 | 4.3 | 250.4 | 4.5 |
Cropland | 1070.4 | 19.2 | 634.1 | 11.4 | 595.1 | 10.7 |
Mangrove | 1484.0 | 26.6 | 1580.9 | 28.3 | 1645.2 | 29.5 |
Natural vegetation | 864.6 | 15.5 | 853.6 | 15.3 | 821.5 | 14.7 |
Bare land | 136.3 | 2.4 | 61.0 | 1.1 | 114.0 | 2.0 |
Categories | Persistence P1 | Persistence P2 | Loss P1 | Loss P2 | Gain P1 | Gain P2 | Total Change P1 | Total Change P2 | Swap P1 | Swap P2 | Net Change P1 | Net Change P2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water | 9.01 | 7.08 | 2.26 | 3.55 | 1.62 | 3.74 | 3.89 | 7.29 | 3.24 | 7.10 | 0.64 | 0.19 |
Shrimp farming | 22.54 | 20.80 | 2.01 | 10.97 | 9.23 | 9.67 | 11.24 | 20.65 | 4.03 | 19.34 | 7.22 | 1.30 |
Built-up land | 3.03 | 3.94 | 0.22 | 0.53 | 1.44 | 0.78 | 1.66 | 1.31 | 0.44 | 1.06 | 1.22 | 0.25 |
Cropland | 9.05 | 8.91 | 11.61 | 3.17 | 3.02 | 2.40 | 14.64 | 5.57 | 6.05 | 4.80 | 8.59 | 0.77 |
Mangrove | 24.63 | 25.15 | 4.56 | 4.99 | 5.51 | 6.22 | 10.08 | 11.21 | 9.13 | 9.98 | 0.95 | 1.24 |
Natural vegetation | 5.98 | 7.42 | 2.47 | 2.34 | 3.77 | 1.76 | 6.24 | 4.09 | 4.94 | 3.51 | 1.31 | 0.58 |
Bare land | 0.31 | 0.29 | 2.31 | 0.88 | 0.85 | 1.85 | 3.16 | 2.73 | 1.70 | 1.76 | 1.46 | 0.97 |
Total | 74.54 | 73.58 | 25.46 | 26.42 | 25.46 | 26.42 | 50.91 | 52.84 | 29.52 | 47.54 | 21.39 | 5.30 |
Province | Year 1–Year 2 (P1) | Year 2–Year 3 (P2) | ||
---|---|---|---|---|
Loss | Gain | Loss | Gain | |
El Oro | 37.63 | 49.70 | 8.73 | 12.16 |
Esmeraldas | 25.69 | 95.63 | 6.22 | 13.48 |
Guayas | 119.65 | 120.67 | 72.23 | 120.20 |
Manabí | 11.60 | 17.27 | 6.34 | 12.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morocho, R.; González, I.; Ferreira, T.O.; Otero, X.L. Mangrove Forests in Ecuador: A Two-Decade Analysis. Forests 2022, 13, 656. https://doi.org/10.3390/f13050656
Morocho R, González I, Ferreira TO, Otero XL. Mangrove Forests in Ecuador: A Two-Decade Analysis. Forests. 2022; 13(5):656. https://doi.org/10.3390/f13050656
Chicago/Turabian StyleMorocho, Ramiro, Ivonne González, Tiago Osorio Ferreira, and Xosé Luis Otero. 2022. "Mangrove Forests in Ecuador: A Two-Decade Analysis" Forests 13, no. 5: 656. https://doi.org/10.3390/f13050656
APA StyleMorocho, R., González, I., Ferreira, T. O., & Otero, X. L. (2022). Mangrove Forests in Ecuador: A Two-Decade Analysis. Forests, 13(5), 656. https://doi.org/10.3390/f13050656