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Abstract: In this contribution, we assessed the biomass and carbon stock of a post-fire area covered
by a young oak coppice of Quercus pyrenaica Willd. associated with shrubs, mainly of Cistus laurifolius
L. This area was burned during the fire event of Chequilla (Guadalajara, Spain) in 2012. Sentinel-2
imagery was used together with our own forest inventories in 2020 and machine learning methods
to assess the total biomass of the area. The inventory includes plots of total dry weight ranging
between 6 and 14 Mg·ha−1 with individuals up to 8 years old. Nonlinear, nonparametric Gaussian
process regression methods were applied to link reflectance values from Sentinel-2 imagery with total
shrub biomass. With a reduced inventory of only 32 plots covering 136 ha, the total biomass could
be assessed with a root-mean-square error of 1.36 Mg·ha−1 and a bias of −0.04 Mg·ha−1, getting a
relative error between 9.8% and 20.4% for the gathered biomass. This is a rather good estimation
considering the little effort and time invested; thus, the suggested methodology is very suitable for
forest monitoring and management.

Keywords: machine learning; remote sensing; Gaussian process regression; forest inventory

1. Introduction

Biomass inventories are key to assess policies concerning carbon stocks and seques-
tration [1], including forest management proposals to maximize the protection and the
dynamics of both the reservoirs and the sinks. Consequently, a robust carbon accounting
must be performed [2].

Due to recurrent fire events in the Iberian Peninsula, it is of special interest to assess
the carbon recovery after a fire, normally as a shrub structure. However, the quantification
of these shrublands is a costly and time-consuming effort, although some standard method-
ologies have been proposed for its estimation [3]. For shrublands, some of the so-called
fuel models are used for biomass assessment concerning forest fire prevention [4], but
these models are a mere collection of vegetative features giving wide intervals of biomass
values [5] and they cannot be used for a precise estimation of biomass and carbon.

Shrub biomass of woody plants has also been studied through biophysical values,
such as leaf area index (LAI). As an example, for stands of Pinus halepensis Mill. in Spain, the
relationship between LAI and total biomass displays a decreasing trend, highly dependent
on with age [6]. However, the extended period needed to find significant variances makes
this method not suitable for a temporal analysis, nor can it be applied at an affordable cost.

Regarding field sampling, biomass assessment, i.e., carbon stocks, can be achieved at
large scale by traditional forest inventories, such as the National Forest Inventory (NFI) in
Spain [7], using biomass models. However, the inventoried areas and the gap between plots
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in the NFI (typically, 1 km) are rather large since both are designed for a global assessment.
Moreover, the time between consecutive field works, i.e., actual lag accounting for more
than 14 years for most of the Spanish territory, is also another limitation. Thus, there is a
lack of accurate information on specific areas of interest. Large areas of shrublands after
fire events have been studied with a general classification regardless of the shrubland
composition [8]. Indeed, shrub biomass models are not usually available in the literature.
In Spain, for example, where shrublands occupy a notable area, there is little information
for biomass estimation at the formation level [3,9].

Recently, biomass equations based on vegetation soil cover and height measurements
became available for most of the shrub structures in Spain [10]. These equations provide
accurate quantification of biomass for each shrub structure and can give an advantage for
biomass assessment if land use is segmented. This allows the application of specific equa-
tions to related structures since forest fires promote inhomogeneous vegetation recovery
for the whole affected area. Nevertheless, not all the shrub structures are often included,
and additional efforts must be made to cover all shrub formations [10].

From a remote sensing point of view, this ground truth is essential; although the
relationship between optical reflectance and biomass is well known, it is not possible to
directly assess biomass from remote sensing imagery without linking this information with
field data [11,12]. This means that, for any study, previous field data for calibration and
validation must be sampled as reflectance is ever dependent on these field values.

Notwithstanding the origin of the remote sensing data, from passive or active sensors,
several methodologies for data processing have been tested, including multiple regression
analysis, k-nearest neighbors (k-NN), and neural networks [13]. Those parametric regres-
sion methods have achieved accuracy values of R2 from 0.56 to 0.74. In these approaches, a
direct relationship (linear, quadratic, multiple) between reflectance and the observed vari-
able is assumed, and multispectral imagery over different kinds of forests is applied [14].
However, all of these studies were performed over homogeneous mature forests and never
over shrublands.

Other empirical methods are based on nonparametric regression functions without
explicit assumptions about variable dependences or data distribution. These methods avoid
carrying out previous spectral band relationships, transformations, or fitting functions [15].

Alternatively, empirical methods are limited inside the range of values of the training
dataset and, therefore, it is hard to extrapolate the results to other conditions or biomes [16].
However, some of the nonparametric regression methods have demonstrated their capabil-
ities to be adapted to remote sensing studies. Among them, machine learning nonlinear
regression algorithms such as artificial neural networks (ANN), support vector machine
(SVM), and Gaussian process regression (GPR) have been efficiently applied for the assess-
ment of biophysical variables from Earth observation data [17,18].

GPR is a collection of finite random variables with a multivariate normal distribu-
tion [19]. These processes are related to a collection of indexed random variables that can
be defined through a shared density of probability, typically a Gaussian distribution. The
application of GPR for shrubland biomass assessment has not been deeply tested until now.

Previously described methods used a wide range of values and field data, and no
information about the number of samples needed for good performance can be taken as
a reference. Thus, a study concerning nonlinear methods applied to Copernicus imagery
from the Sentinel constellation could be of potential interest for biomass assessment.

The overall purpose of this contribution was the biomass assessment of the post-fire
recovered area that experienced a wildfire in 2012 in Chequilla (Guadalajara, Spain). Indeed,
the main specific objectives were the following: (i) to define a routine using an empirical
nonparametric method based on GPR machine learning techniques over Sentinel-2 images;
(ii) to evaluate the algorithm accuracy estimating the total biomass of a characteristic
post-fire plant association; (iii) to assess the carbon sequestration derived from post-fire
vegetation regeneration in the area in the posterior eight years; (iv) to obtain a map of
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biomass and carbon stock over the study area with a spatial resolution of 10 m using
Sentinel-2 imagery.

2. Materials and Methods
2.1. Study Area

The burnt area affected by the forest fire is located in the surroundings of the Munici-
palities of Chequilla, Checa, Alcoroches, and Traid, in the province of Guadalajara (Spain).

This area has a typical temperate oceanic climate, Cfb by Köppen, without a dry
season and a warm summer, where the average temperature during the coldest month is
barely below 0 ◦C, the annual average temperature is above 22 ◦C, and up to 7 months
average above 10 ◦C. Chequilla records an average annual temperature of 9.1 ◦C, as well as
total annual rainfall of 703 mm, and it lies at 1,355 m.a.s.l. The soils are mainly schist or
slate-based schist with some areas dominated by sandstone and quartzite.

The fire started on 1 August 2012 and finished on 4 August 2012, affecting up to
1151 ha, of which 788 ha was included in the forest category mainly dominated by Pinus
sylvestris L. with some individuals of Pinus nigra Arnold. and Quercus pyrenaica Willd. in
the understory.

It was a crown fire affecting every green needle of the Pinus sylvestris L. and Pinus
nigra Arnold., and all the pines died. After the fire, every pine was cut and harvested,
extracted away. Together with the crown fire burning all the pines, fire affected the second
story composed of Quercus pyrenaica Willd. Regarding the severity, all the pines and shrubs
were burned.

In 2020, the burnt area was naturally regenerated only in 136.52 ha composed of
Quercus pyrenaica Willd. as coppice and shrubs of Cistus laurifolius L. and Genista florida L.,
representing a typical association of degraded forest according to Ruiz de la Torre [20]. This
regenerated area of young oak coppice covering 136.52 ha was the object of our study. The
shrub structure after the fire could, in principle, be considered homogeneous in comparison
with the neighboring areas that were not burned. However, different development stages
of the shrub vegetation were found due to different species composition, from shrub areas
simultaneously displaying low and high development to other areas with only short (Cistus
laurifolius L.) or with tall shrubs (Genista florida L.).

The center of the studied area is located at 604,700, 4,495,300 coordinates referenced to
the UTM 30 TWL zone over datum WGS-84, corresponding to 40◦36′7” N, 1◦45′45” E. Next
to this area, significant forest structures corresponding to Pinus sylvestris L. (DGCN, 2006),
burned areas, and agrarian and urban settlements can be found (Figure 1).

2.2. Satellite Imagery

Sentinel-2 imagery was used, taking advantage of its availability, high spatial resolu-
tion, and processing level. The image was downloaded in a Level2A reflectance (at the
bottom of the atmosphere) [21], and no further post-processing of the image was performed.

The image acquisition and the field sampling data were contemporaneous (Table 1).
Considering that the annual biomass growth is achieved in the spring and summer months
and assuming only a unique total annual rate (as a discrete value, not as a continuous
increase), just a single satellite image, the closest image to the summer solstice of 2020 was
used to obtain the final biomass map.

Table 1. Sentinel-2 imagery data.

Mission/
Sensor Level Acquisition

Date Reference UTM Azimuth
Angle

Elevation
Angle

Sentinel
2/MSI L2A 22 June

2012 R094 N T30TWL 139.09 21.8433
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2.3. Sampling Method and Evaluation

Concerning sampling methods in shrublands, many methodologies have been sug-
gested. For example, the line intercept method developed by Canfield [22] is a technique
that was employed to estimate cover in the grasslands of southwestern USA. It is the
most used and adapted for rangeland inventory and monitoring applications, including
the assessment of biomass in burned areas in a shrub–grassland mosaic [23]. However,
due to the aim of the actual research of reducing the sampling cost and maximizing the
representativeness of the database, a random inventory was developed.

Circular 15 m radius plots were randomly established along predefined transects
ensuring a minimum distance between them of at least 100 m to avoid overlapping of the
Sentinel-2 pixels related to the plot.

For each one of the 32 plots sampled, the species composition was checked to ensure
that it belongs to the shrub formation composed of Quercus pyrenaica and Cistus laurifolius,
and the soil cover and mean height of the structure were measured. The field campaign
was performed between 22 June 2012 and 24 June 2012.

To ensure the reliability of the sample selection procedure, the Monte Carlo method
was applied [24]. This method proceeds with a data analysis based on random sampling
to generate the values for the probabilistic components. It compares the sampling with
simulated databases to evaluate the representativeness of the sampling, regardless of the
small number of plots sampled. Moreover, this method combines statistical concepts such
as random sampling with the generation of pseudo-random numbers, and it is based on
systematic sampling of random variables.

An evaluation of the radiometric value distribution was performed following the
Monte Carlo procedure, comparing the NDVI distribution values of inventoried plots
against the NDVI distribution against a random surrounding area of 10 × 10 km. As
the number of plot pixels and the area of study were completely different, it was not
statistically consistent to compare two NDVI histograms. Then, a comparison between
the NDVI cumulative frequencies of both distributions was carried out to benchmark the
actual frequency to a randomly shifted sampling pattern.
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Thanks to this method, (i) a cumulative frequency of the N pixel of NDVI values
corresponding to the sampling was computed. Afterward, (ii) the cumulative frequency of
NDVI on a randomly shifted sampling design was computed, and then step (ii) is repeated
199 times with 199 different random translation vectors.

This method provided a total population of N = 199 + 1 (actual) cumulative frequency
on which a statistical test with a significance level of 0.05 was applied: for a given NDVI
level, if the actual plot density function is located between two limits defined by the five
highest and five lowest values of the 200 cumulative frequencies, the null hypothesis is not
rejected because there are no differences between both samples; otherwise, it is rejected.
In the first case, both NDVI distributions are supposed to be equivalent, assuming those
NDVI distributions between the area of study and the sampling plots.

2.4. Allometric Equations

An allometric equation for shrub formation composed of Quercus pyrenaica and Cistus
laurifolius was applied [25] Equation (1).

Biomass (Mg·ha−1) = 0.2693 × (soil cover ×mean height)0.5232, (1)

where soil cover of the vegetation is taken as a percentage (%), and mean height of the
formation is taken in cm.

2.5. Carbon Sequestration Assessment

The total biomass stock recovered after a forest fire is considered as carbon sequestra-
tion in a CO2 equivalent form (CO2 eq.). First, a carbon fraction of dry biomass of 0.4799 was
calculated according to previous studies [26,27]. Then, the molecular weight of the CO2
and the stoichiometric relationship between carbon and CO2 were considered to achieve
the total amount of CO2 eq. This approach shows a transforming coefficient from biomass
to CO2 eq. of 1.759.

2.6. Data Analysis with Gaussian Process Regression (GPR)

Gaussian process regression (GPR) models are nonparametric kernel-based proba-
bilistic models. While linear regressions estimate the error from the database itself, a GPR
generates a response from an interval of variables of the training data and a new vector as
input by introducing variables from a Gaussian process.

The main assumption is that a set of random variables at any finite combination of
them are distributed along the Gaussian curve, and then any number of observed variables
are also distributed as Gaussian. Consequently, a GPR model is a probabilistic method;
thus, it is possible to predict the outcome intervals from training models. Moreover, the
results do not fit a line of responses but lie over a probability interval [19].

The covariance function between input and output variables shows the similarity
between them. This kernel function and its mean (adjusted to zero for simplicity) define the
GPR [28]. In this study, a kernel function with a separated length scale for each predictor
was applied over the data, where an automatic relevance determination (ARD) method
was used to order the inputs according to their importance [29].

GPR is a very suitable method for remote sensing analysis as it is not limited by the
large number of parameters needed for the implementation of methods such as neural
networks [30], and its computation requirements are less demanding than those based on
pixel-by-pixel inversion methods such as the lookup table (LUT)-based radiative transfer
model (RTM) [15]. However, GPR has not yet been tested on areas requiring a huge effort
of inventory to simplify the field data.

GPR computation [31] was trained with Sentinel-2 spectral bands 2 to 8A (490 to
865 nm), both included, along with SWIR bands 11 (1610 nm) and 12 (2190 nm) as inputs,
whereas total biomass represented the output. No additional synthetic band was created
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because nonparametric methods could extract all the relevant information of the bands
without user intervention.

Field data were randomly split into six subsets with well-distributed values of biomass.
Moreover, five subsets were used for algorithm training in each iteration, and one subset
was utilized for the result validation. This procedure was performed six times in total
so that each subset was used once as a validation group during the statistical analysis.
The obtained estimations and corresponding errors resulted from the average of the six
iterations. The aim of the iterations was the generation of every possible combination
between training and validating subsets to make the validation more robust by using
all the subsets for this purpose. The performance was evaluated with the absolute root-
mean-square error (RMSE) and the coefficient of determination (R2) as overall indicators
of accuracy.

To understand the fit between observed and predicted values, a major axis regression
(MAR) line corresponding to the well-adjusted slope was included [32]. Although it has
been demonstrated that, for adult forest structures, it is necessary to split the reflectance
values according to their features [33], the post-fire regenerated shrub structures were
tested as a single class.

3. Results
3.1. Inventory and Database

After the random application of the sampling method, great variability of biomass
including stories and weight was observed (Figure 2 and Table 2) when characterizing a
post-fire shrub structure with just a limited number of plots (32 sampled plots). CO2 eq. was
calculated for the database (Table 2).
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Figure 2. Biomass sampling of Quercus pyrenaica Willd. in Chequilla (Mg·ha−1), 2020.

Table 2. Statistics of the shrub biomass values (Mg·ha−1) and its corresponding CO2 equivalent
(Mg·ha−1) for the Chequilla study area. 2020.

Variable Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Biomass
(Mg·ha−1) 6.7 7.947 9.06 9.488 11.127 14.040

CO2 eq.

(Mg·ha−1)
11.785 13.978 15.936 16.489 19.572 24.696

All 32 plots ranged between 50% and 95% fractional cover with 25 plots with at least
70% fractional cover. The height of Quercus pyrenaica Willd. ranged between 0.6 and 1.9 m.
The plot area with a radius of 15 m was shared with Cistus laurifolius L. and Genista florida L.,
but typically with a lower height than that of Quercus pyrenaica Willd.
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For the shrub biomass sampling, the mean (9.488 Mg·ha−1) was slightly higher than
the median value (9.06 Mg·ha−1). The difference between the median and the third quar-
tile (11.127 Mg·ha−1) was higher than that between the median and the first quartile
(7.947 Mg·ha−1). As a result, the database displayed a slightly positive skewed distribution
but was close to a normal one. The range of 6.7 to 14.040 Mg·ha−1 was not especially wide
for a shrub structure of the same age. In addition, remarkable differences could not be
found via a visual inspection. However, even with a minor asymmetry in the distribution of
the biomass, these values and ranges were also reported by other authors [12]; consequently,
the sampling could be accepted as adequate for this study.

3.2. Field Sampling Evaluation

Once biomass values were well distributed, an evaluation of the radiometric value
distribution was performed by comparing the NDVI distribution values of inventoried
plots against the NDVI distribution over the whole scene employing the Monte Carlo
procedure (Figure 3). For a methodological demonstration, a global area of 10 × 10 km
was selected, including the burned area. Nevertheless, this burned area represented only
around 5% of the total territory included in the study area and a wide surrounding area
that was not burned.
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Figure 3. NDVI distribution in Chequilla, Spain. 23 June 2012. The study area is delineated by a
red circle.

The Monte Carlo procedure was performed to avoid any extreme value or outlier in the
sampled plots. Its application could also confirm that the included reflectance values did
not promote any bias, and that no imagery processing issues were present in the database.

Figure 4 displays that plotted values (green dots) were rather representative of the
other pixels in the whole area, and that any bias was forced. After iterating groups of
random pixels against sampled pixels, it can be noted that the NDVI value distribution for
the field sampling agreed with the values of the study area. Moreover, real and simulated
distributions were equivalent, as shown in Figure 4, with the NDVI values of the plots
ranging between 0.44 and 0.80. It was assumed that lower values were not related to the
forest due to the high soil cover fraction values of the plots (0.5 to 0.95).

This wide area of 10 × 10 km clearly shows that NDVI values were very similar for
both burnt and recovered areas, as well as other non-disturbed forest parts.
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3.3. Biomass and Carbon Assessment

Figure 5 shows the scatterplot between the best-fitted model obtained by GPR and
biomass ground data for the oak coppice forest of Q. pyrenaica Willd. with other shrub
species. Using all these points for training a GPR with Sentinel-2 data, the R2 between
those estimated values against field data could account for up to 57% of the variability of
the forest.
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the bias; RMSE: root-mean=square error. The dashed line corresponds to the 1:1 line, while the
continuous line is the MAR fit. Green points are shrub plots.

The error, evaluated as root-mean-square error (RMSE), accounted for 1.36 Mg·ha−1 in
the gathered biomass range of 6.7 and 14.040 Mg·ha−1, representing a relative error between
9.75% and 20.4% in the biomass assessment. In some cases, biomass was underestimated,
whereas, in others, it was overestimated.

The linear MAR fit between predictions and ground values revealed fitted slopes (0.71)
and a small offset where the y-intercept was roughly 2.7 Mg·ha−1, a value that shows
a barely uncovered terrain (Table 3). All these results indicate that the combined use of
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random field and low-intensity sampling together with a minimum segmentation of the
database, which was ensured by equivalent real and simulated distributions, could provide
satisfactory results for forest management purposes and carbon accountability by using
probabilistic models applied to remote sensing imagery of Sentinel-2.

Table 3. Statistics of the performance of a Gaussian process depending on the satellite imagery
and story segmentation. MAR: major axis regression fit; R2: coefficient of determination; RMSE:
root-mean-square error.

Imagery Structure MAR R2 RMSE

Sentinel-2A Shrubs of Quercus pyrenaica Willd. y = 2.68 + 0.71x 0.57 1.36

Next, the general algorithm obtained from the GPR was applied over the correspond-
ing area to determine the total biomass in the post-fire regenerated area (Figure 6a). Addi-
tionally, the relationship between the biomass and the CO2 eq. was considered to estimate
the total sequestrated carbon in the next 8 years after the wildfire (Figure 6b).
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In the area of 136.52 ha, a total sequestered carbon of 2307.37 Mg of CO2 eq. was
estimated for the young oak coppice during the natural recovery period, corresponding to
an average carbon sequestration of 2.112 Mg CO2 eq·ha−1·year−1.

3.4. Application of GPR over Non-Burned Areas

Although the GPR was trained for a specific forest structure, its application over
another type of forest was also tested. After the application of the GPR methodology over
the young oak coppice, an experiment was performed by applying the same routine over
14.8 ha of non-burned areas (Figure 7). In particular, the affected area remained as a mature
forest dominated by Pinus sylvestris L.
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Figure 7. Application of the general algorithm over both a young oak coppice and a mature forest of
Pinus sylvestris L. without class segmentation in the area of the Chequilla fire, June 2020. Inside the
red circle, there is a mature forest of Pinus sylvestris L. with a remarkable underrating of biomass.

GPR gave underrated values of biomass for a homogeneous mature forest of Pinus
sylvestris L. When a specific algorithm for young oak coppice was applied over another forest
structure, it was not able to distinguish the species, the structure, or the biomass differences.

4. Discussion

In this work, we proposed an operative and simple methodology for assessing biomass
sequestration in post-fire regenerated shrublands.

This routine applied the nonparametric empirical method of Gaussian process regres-
sion over Sentinel-2 surface reflectance and forest inventory data obtained after fieldwork.
In this way, carbon stock given as sequestrated CO2 eq. could be directly calculated as a
function of the total biomass data.

This method was demonstrated to be reliable and cost-effective in temperate oak
coppice forests with shrubs. Other methodologies have been purposed for accurate forest
inventories, by traditional [7] or even LiDAR means [34,35]. However, our approach
requires a very low number of forest inventories. Specifically, for an area of 136 ha, only a
sampling plot every 4 ha of regenerated coppice was enough to achieve an R2 of 0.57.

Moreover, this regression method needs no explicit selection of spectral bands, avoid-
ing an their hoc selection as GPR can extract the relevant information of each band. For this
purpose, the spectral resolution of the MSI sensor of Sentinel-2 was adequate.

The biomass in this study ranged between 6 and 14 Mg·ha−1, and the RMSE obtained
was low, showing a high level of determination found. Indeed, almost 60% of the variability
of the forest could be explained using this method.

The error magnitude was low enough to classify each pixel within each class of fuel
model [4,5] and improve the spatial segmentation because the representation of the results
was accurate at Sentinel-2 pixels with a 10 × 10 m resolution.

This methodology provided precise information of biomass and carbon content in
young oak coppice in agreement with previous studies, which can be used as a major
improvement of the accuracy for the assessment of carbon sequestration [36].

Once carbon sequestration was estimated for the whole area of study and assuming a
linear annual growth of young oak coppice until a dominant height of 5 m [37], an average
carbon sequestration of 2.112 Mg·ha−1·year−1 for this shrub structure was obtained, in
agreement with previous carbon quantification studies [11].
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Affordable methodologies have been proposed for shrubland biomass assessment at
large scales, taking advantage of remote sensing technologies [8]. In this study, remote
sensing was validated to detect differences in a small area of shrub post-fire structure that
could be in principle considered homogeneous, providing accurate information about its
evolution and carbon sequestration capacity.

After a fire occurrence, different development stages of the shrub vegetation can be
found: areas with low shrub development, others with high shrub development, and areas
with only short shrubs or only high size shrubs. Regardless of the stage and structure,
remote sensing and field data were used to estimate biomass in shrub areas in Portugal [8]
and California [38], to identify changes in aboveground biomass after fire in the Ama-
zon [39], and to evaluate vegetation recovery after fire in Siberia [40]. In this line, the
methods can be considered suitable for the proposed objectives of the manuscript as it
accurately estimated the carbon stock in small coppice areas.

In a random area of 10 × 10 km surrounding the study area, it was shown that
the distribution of NDVI values was equivalent for both recovered and unaffected forest
areas. Thus, for a precision analysis of the post-fire evolution, a segmentation needs to be
performed to not commit over- or underestimation of the biomass.

Consequently, the application of trained GPR for a specific forest structure over other
forest types must be avoided, as it will create confusion in the assessment of any biophysical
variable since reflectance values were quite similar for both vegetation groups, and only a
clear segmentation of the target areas could resolve this issue.

Although some spectral methods for land use and classification after a forest fire
have been proposed for a segmentation of the areas [3], the use of ground-truth maps is
recommended to apply algorithms over the same forest structures. According to [11,12],
segmentation of the classes is necessary to avoid errors in the biomass assessment, as
reflectance values are not valid to split structures in tiny areas.

For an accurate biomass assessment, land segmentation is required because, if any
error of land classification is made, GPR will under- or overestimate the results, as shown
in an experiment over 14.8 ha of Pinus sylvestris L.

5. Conclusions

As a conclusion, the combination of Sentinel-2 imagery, Gaussian process regressions,
a reduced database, and story segmentation can be considered as a suitable method for
shrubland biomass assessment and can be an essential tool for affordable and adaptive
management at a local scale by avoiding long and expensive forest inventories.

This methodology was tested over a specific shrubland structure, and further studies
could focus on any other type of shrub and pole structure. In addition, the effect of larger
spatial scales should be analyzed to better understand the influence of the density of plots
on the final results.
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