Ecosystem Carbon Stocks and Their Annual Sequestration Rate in Mature Forest Stands on the Mineral Soils of Estonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Sites
2.2. Additional Explanations of the Used Terms
- -
- In the actual work, only mineral soil mature forest ecosystems’ productivity indices (as an assemblage of phytocoenosis and soil cover) are treated.
- -
- Phytocoenosis is the main component of the aboveground part of the ecosystem enfolding overstorey tree, understorey tree, shrub, herb and moss layers.
- -
- Plant–soil system is the association of plant and soil covers and the focal point in the functioning of the ecosystem.
- -
- Phytomass, known as plant biomass, is used here for a more exact separating of the plant origin biomass from microbial, animal, etc., biomasses.
- -
- Organic carbon, as a term, is acceptable to use for both plants’ and soils’ carbon of an ecosystem as this excludes soil carbon with mineral origin.
- -
- Soil cover or solum, is formed mainly by soil forming processes proceeded in the superficial layer of a landscape and consists of a humus cover (including forest floors) and subsoil.Soil species is the main taxon of Estonian soil classification identified by soil-forming processes.
- -
- Physical clay, separated by the Katchinsky system, is the assemblage of mineral soil particles with a diameter <0.01 mm [28].
2.3. Characterization of Soil Covers
2.4. Evaluation Status of Tree Stands
2.5. Methodological Principles of Data Elaborating
3. Results
3.1. Organic Carbon Surface Densities in Different Compartments of Phytocoenoses and Soil Covers
3.2. AI of OC Stocks in Different Compartments of Forest Phytocoenoses
3.3. Allocation of Phytomass and AI in Forest Phytocoenoses
4. Discussion
4.1. Classifications of Different Forest Compartments as Valuable Tools in Sustainable Forest Management
4.2. Pedo-Ecological Regularities in Allocation with OC in Phytocoenosis Phytomass and Its Annual Increment
4.3. General Lines of Carbon Balance in Forest Ecosystems and Its Structural Compartments
4.4. OC Amounts in Belowground Phytomass and Their Annual Increase
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilvesniemi, H.; Forsius, M.; Finér, L.; Holmberg, M.; Kareinen, T.; Lepistö, A.; Piirainen, S.; Pumpanen, J.; Rankinen, K.; Starr, M.; et al. Carbon and nitrogen storages and fluxes in Finnish forest eco-systems. In Understanding the Global Systems; Käyhkö, J., Talve, L., Eds.; The Finnish Perspective: Turku, Finland, 2002; pp. 69–82. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutter, R.; Kõlli, R.; Tullus, A.; Tullus, H. Ecosystem carbon stocks of Estonian premature and mature managed forests: Effects of site conditions and overstorey tree species. Eur. J. For. Res. 2019, 138, 125–142. [Google Scholar] [CrossRef]
- Ķēniņa, L.; Elferts, D.; Bāders, E.; Jansons, Ā. Carbon Pools in a Hemiboreal Over-Mature Norway Spruce Stands. Forests 2018, 9, 435. [Google Scholar] [CrossRef] [Green Version]
- Kleja, D.B.; Svensson, M.; Majdi, H.; Jansson, P.-E.; Langvall, O.; Bergkvist, B.; Johansson, M.-B.; Weslien, P.; Truusb, L.; Lindroth, A.; et al. Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Biogeochemistry 2008, 89, 7–25. [Google Scholar] [CrossRef]
- Uri, V.; Varik, M.; Aosaar, J.; Kanal, A.; Kukumägi, M.; Lõhmus, K. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 2012, 267, 117–126. [Google Scholar] [CrossRef]
- Grüneberg, E.; Ziche, D.; Wellbrock, N. Organic carbon stocks and sequestration rates of forest soils of Germany. Glob. Chang. Biol. 2014, 20, 2644–2662. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Giberti, G.S.; Wellstein, C.; Giovannelli, A.; Bielak, K.; Uhl, E.; Aguirre-Ráquira, W.; Giammarchi, F.; Tonon, G. Annual Carbon Sequestration Patterns in Trees: A Case Study from Scots Pine Monospecific Stands and Mixed Stands with Sessile Oak in Central Poland. Forests 2022, 13, 582. [Google Scholar] [CrossRef]
- Köster, T.; Kõlli, R. Interrelationships between soil cover and plant cover depending on land use. Est. J. Earth Sci. 2013, 62, 93–112. [Google Scholar]
- Högberg, P.; Wellbrock, N.; Högberg, M.N.; Mikaelsson, H.; Stendahl, J. Large differences in plant nitrogen supply in German and Swedish forests—Implications for management. For. Ecol. Manag. 2021, 482, 118899. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Kõlli, R.; Köster, T. Interrelationships of humus cover (pro humus form) with soil cover and plant cover: Humus form as transitional space between soil and plant. Appl. Soil Ecol. 2018, 123, 451–454. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.; Domingos, T. Detailed global modelling of soil organic carbon in cropland, grassland and forest soils. PLoS ONE 2019, 14, e0222604. [Google Scholar] [CrossRef] [Green Version]
- Reintam, L. Taim-muld süsteem on elu alus [Plant-soil system is fundamentaal for life]. In Muld Ökosüsteemis, Seire ja Kaitse; Reintam, L., Ed.; ETA Looduskaitse Komisjon: Tartu, Estonia, 2004; pp. 11–23. [Google Scholar]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta-analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Hansson, K.; Olsson, B.A.; Olsson, M.; Johansson, U.; Kleja, D.B. Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden. For. Ecol. Manag. 2011, 262, 522–530. [Google Scholar] [CrossRef]
- Zanella, A.; Jabiol, B.; Ponge, J.-F.; Sartori, G.; DeWaal, R.; Van Delft, B.; Graefe, U.; Cools, N.; Katzensteiner, K.; Hager, H.; et al. A European morpho-functional classification of humus forms. Geoderma 2011, 164, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Kõlli, R.; Tamm, I. Humus cover and its fabric depending on pedo-ecological conditions and land-use: An Estonian ap-proach to classification of humus forms. Estonian J. Ecol. 2013, 62, 6–23. [Google Scholar] [CrossRef] [Green Version]
- Karlberg, L.; Gustafsson, D.; Jansson, P.-E. Modeling Carbon Turnover in Five Terrestrial Ecosystems in the Boreal Zone Using Multiple Criteria of Acceptance. Ambio 2006, 35, 448–458. [Google Scholar] [CrossRef]
- Stefańska-Krzaczek, E.; Szymura, T.H. Species diversity of forest floor vegetation in age gradient of managed scots pine stands. Balt. For. 2015, 21, 233–243. [Google Scholar]
- Lõhmus, E. Eesti Metsakasvukohatüübid (Estonian Forest Site Types); Eesti Loodusfoto: Tartu, Estonia, 2004. (In Estonian) [Google Scholar]
- Astover, A.; Reintam, E.; Leedu, E.; Kõlli, R. Muldade Väliuurimine [Survey of Soils]; Eesti Loodusfoto: Tartu, Estonia, 2013. (In Estonian) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Whittaker, R.H. Branch dimensions and estimation of branch production. Ecology 1965, 46, 365–370. [Google Scholar] [CrossRef]
- Newbold, P.I. Methods for estimating net primary of forests. In IBP Handbook Nr 2; Willmer Brothers Limited Birkenhead: Birkenhead, UK, 1967; p. 29. [Google Scholar]
- Rodin, L.E.; Remezov, N.P.; Bazilevich, N.I. Metodicheskie Ukazanija k Izutšeniju Dinamiki i Biologitšeskovo Krugovorota Fitotsenozah; Leningrad, Russia, 1968; p. 143. (In Russian) [Google Scholar]
- Kachinsky, N. Fizica Pochvy [Soil Physics]; University Press: Moscow, Russia, 1965; Volume I. (In Russian) [Google Scholar]
- Kiviste, A. Eesti riigimetsa puistute kõrguse, diameetri ja tagavara vanuseridade diferentsmudel 1984–1993. aasta metsakorralduse andmeil. Trans. Est. Agric. Univ. 1997, 189, 63–75, (In Estonian with English Summary). [Google Scholar]
- Clarke, N.; Gundersen, P.; Jönsson-Belyazid, U.; Kjønaas, O.J.; Persson, T.; Sigurdsson, B.D.; Stupak, I.; Vesterdal, L. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems. For. Ecol. Manag. 2015, 351, 9–19. [Google Scholar] [CrossRef]
- Cremer, M.; Kern, N.V.; Prietzel, J. Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. For. Ecol. Manag. 2016, 367, 30–40. [Google Scholar] [CrossRef]
- Kõlli, R. Ökosüsteemide fütoproduktiivsuse pedoökoloogiline analüüs. I. Metsad. Agraarteadus. 1991, 2, 39–60, (In Estonian with English Summary). [Google Scholar]
- Uri, V.; Kukumägi, M.; Aosaar, J.; Varik, M.; Becker, H.; Aun, K.; Lõhmus, K.; Soosaar, K.; Astover, A.; Uri, M.; et al. The dynamics of the carbon storage and fluxes in Scots pine (Pinus sylvestris) chronosequence. Sci. Total Environ. 2022, 817, 152973. [Google Scholar] [CrossRef]
- Aitsam, V.; Sims, A.; Tolm, T.; Nikopensius, M.; Karu, H.; Raudsaar, M.; Valgepea, M.; Timmusk, T.; Pärt, E. Statistiline Mets: 20 aastat Statistilist Metsainventeerimist Eestis; Keskonnaagentuur: Tallinn, Estonia, 2019. (In Estonian) [Google Scholar]
- Bazilevich, N.I.; Titljanova, A.A. Biotic Turnover on Five Continents: Element Exchange Processes in Terrestrial Natural Ecosystems; Publishing House SB RAS: Novosibirsk, Russia, 2008. (In Russian) [Google Scholar]
- Kumar, A.; Kumar, M.; Pandey, R.; ZhiGuo, Y.; Cabral-Pinto, M. Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to Nature Based Climate Solutions. Catena 2021, 207, 105667. [Google Scholar] [CrossRef]
- Ostonen, I.; Truu, M.; Helmisaari, H.-S.; Lukac, M.; Borken, W.; Vanguelova, E.; Godbold, D.; Lõhmus, K.; Zang, U.; Tedersoo, L.; et al. Adaptive root foraging strategies along a boreal–temperate forest gradient. New Phytol. 2017, 215, 977–991. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, P.G.; Saugier, B.; Schulze, E.-D. Productivity of Boreal Forests. In Terrestrial Global Productivity; Roy, J., Saugier, B., Mooney, H.A., Eds.; Academic Press: San Diego, CA, USA; San Francisco, CA, USA; New York, NY, USA; Boston, MA, USA; London, UK; Sydney, Australia; Tokio, Japan, 2001; pp. 211–244. [Google Scholar]
Characteristic | Code | Unit | Code (1) and Group Number of Soil | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Kh Kr | K | Ko Kog | KI KIg | LP | Lk Lkg | L Lg | Go GI | LkG LG LG1 | |||
I | II | III | IV | V | VI | VII | VIII | IX | |||
Thickness | h | cm | 27.7 a | 55.6 bc | 46.8 b | 70.0 c–e | 92.8 f | 74.8 e | 64.8 cd | 64.6 c–e | 75.5 de |
Fine earth | FE | 102 Mg ha−1 | 25.9 a | 68.2 bc | 59.2 b | 103.3 de | 143.7 f | 115.9 e | 92.8 cd | 87.0 b–d | 95.7 cd |
Clay | CL | 10 Mg ha−1 | 66 a | 151 ab | 192 bc | 300 de | 349 e | 257 cd | 66 a | 265 b–e | 87 a |
Specific surface area | SSA | Index 105 | 295 ab | 353 a–d | 348 bc | 471 d | 465 d | 379 b–d | 120 e | 460 cd | 230 a |
Exchangeable acidity | EA | kmol ha−1 | 0.1 a | 0.2 a | 0.2 a | 7.6 a | 116 c | 71.8 b | 55.2 b | 4.5 a | 145 d |
Hydrolytic acidity | HA | kmol ha−1 | 51 a | 122 ab | 114 a | 289 a–c | 543 c | 439 bc | 276 ab | 273 a–c | 762 e |
Basic cations | BC | kmol ha−1 | 629 a–c | 1796 f | 1317 de | 1326 d–f | 1133 cd | 686 b | 300 a | 1894 f | 422 ab |
Cation exchange capacity | CEC | kmol ha−1 | 680 ab | 1918 de | 1431 cd | 1615 de | 1676 de | 1124 bc | 576 a | 2170 e | 1246 cd |
% of saturation | BS | % | 92.5 f | 93.0 ef | 90.0 ef | 80.6 de | 61.8 c | 58.4 c | 45.5 b | 76.1 d | 35.1 a |
Soil organic matter | SOM | Mg ha−1 | 181 c | 194 cd | 134 ab | 165 bc | 111 a | 120 a | 78 e | 248 d | 202 c |
Total nitrogen | NT | Mg ha−1 | 5.1 bc | 5.6 bc | 5.3 c | 6.5 c | 4.5 b | 4.9 b | 2.0 a | 10.8 d | 5.1 bc |
SOC/NT | C/N | Index | 19.5 bc | 16.7 ab | 15.2 ab | 16.1 ab | 16.0 ab | 14.2 a | 24.1 d | 14.6 ab | 23.2 cd |
Characteristic | Abbreviation | Unit | Code (1) and Group Number of Soil | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Kh Kr | K | Ko Kog | KI KIg | LP | Lk Lkg | L Lg | Go GI | LkG LG LG1 | |||
I | II | III | IV | V | VI | VII | VIII | IX | |||
Age | A | year | 98.9 b | 97.2 b | 89.7 b | 63.8 a | 79.5 ab | 80.1 ab | 78.4 ab | 80.9 ab | 84.9 b |
Basal area (2) | BAbh | m2 ha−1 | 20.8 a | 20.3 a | 26.4 b | 27.3 bc | 30.8 c | 27.7 b | 27.1 b | 25.6 ab | 26.0 b |
Stocking level | Stc lv | cf | 0.60 a | 0.58 a | 0.76 bc | 0.76 bc | 0.84 c | 0.78 bc | 0.78 bc | 0.73 a–c | 0.75 b |
Stock of stem | Stc st | m3 ha−1 | 204 a | 225 ab | 291 bc | 312 bc | 390 d | 330 c | 271 b | 293 bc | 260 ab |
% of spruce | Sp | % | 74.3 c | 44.8 bc | 71.1 c | 62.0 c | 65.2 c | 43.4 b | 5.9 a | 25.6 ab | 15.4 a |
% of pine | Pn | % | 23.9 a–c | 33.7 bc | 9.8 ab | 0.6 a | 15.3 a–c | 28.4 c | 87.1 d | 11.1 a–c | 75.8 d |
% of birch | Br | % | 1.1 a | 12.2 a-d | 10.1 ab | 26.0 cd | 17.8 b–d | 17.1 bc | 5.0 c | 32.0 d | 8.2 ab |
Quality class | Q cl | class | IV,8 | II,4 | II,9 | I,6 | I,4 | I,3 | II,6 | I,1 | II,1 |
Position of soil group on matrix’s hydro-scalar | 8.1 a | 16.3 ab | 18.0 b | 26.2 c | 25.2 c | 29.0 c | 20.7 b | 45.0 d | 51.0 d | ||
Position of soil group on matrix’s litho-genetic scalar | 9.9 a | 14.8 b | 24.9 c | 35.2 e | 45.0 f | 53.7 g | 74.9 h | 30.8 d | 67.4 i |
Constituents (1) | Code (2) and Group Number of Soils | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Kh Kr | K | Ko Kog | KI KIg | LP | Lk Lkg | L Lg | Go GI | LkG LG LG1 | ||
Name | Code | I | II | III | IV | V | VI | VII | VIII | IX |
Herbs | Hrb | 2.63 bc | 3.92 e | 2.97 de | 3.41 de | 1.74 b | 1.98 bc | 0.54 a | 3.19 de | 0.28 a |
Mosses | Mss | 6.76 a | 5.16 a | 6.62 a | 4.85 a | 5.72 a | 7.18 a | 18.64 b | 3.87 a | 21.62 c |
Shrubs | Shr | 0.18 ab | 0.33 ab | 0.27 a | 0.06 a | 0.96 ab | 1.59 b | 3.67 c | 0.28 ab | 6.32 d |
Ground vegetation | Grv | 9.6 a | 9.4 a | 9.9 a | 8.3 a | 8.4 a | 10.8 b | 22.8 b | 7.3 a | 28.2 c |
Understorey trees | Unw | 7.4 a–c | 6.0 ab | 12.7 c | 18.6 d | 6.6 b | 4.8 ab | 3.1 a | 8.0 bc | 5.7 ab |
Foliage of trees | Tre gr | 42.5 c | 33.6 bc | 60.6 d | 56.4 d | 57.8 d | n.d. (3) | 21.2 ab | 45.8 cd | 13.8 a |
Branches of trees | Tre br | 99 b | 93 b | 150 c | 139 c | 156 c | n.d. | 68 b | 163 c | 35 a |
Stems of trees | Tre st | 371 a | 442 ab | 596 bc | 566 bc | 762 d | n.d. | 475 d | 752 cd | 500 ab |
Phytocoenosis | Phc tot | 529 a | 586 ab | 834 c | 789 bc | 1001 d | n.d. | 593 a | 917 cd | 518 a |
-its green parts (4) | Phc gr | 51 a | 43 a | 72 c | 66 bc | 65 bc | n.d. | 38 a | 52 ab | 35 a |
-its woody parts (5) | Phc wd | 107 b | 99 ab | 164 c | 158 c | 165 c | n.d. | 80 ab | 166 c | 58 a |
OC in soil cover | SOC | 944 cd | 931 b–d | 765 bc | 954 cd | 644 b | 681 b | 445 a | 1503 e | 1139 d |
From it in forest floor | SOC | 73 ab | 79 ab | 47 a | 48 a | 72 a | 110 ab | 158 b | 98 ab | 385 c |
Constituents (1) | Code (2) and Group Number of Soils | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Kh Kr | K | Ko Kog | KI KIg | LP | Lk Lkg | L Lg | Go GI | LkG LG LG1 | ||
Name | Code | I | II | III | IV | V | VI | VII | VIII | IX |
Herbs | Hrb | 2.89 cd | 4.31 e | 3.27 de | 3.75 de | 1.91 b | 2.18 bc | 0.59 a | 3.51 de | 0.30 a |
Mosses | Mss | 1.65 a | 1.22 a | 1.76 a | 1.37 a | 1.43 a | 1.79 a | 4.60 b | 0.96 a | 4.56 b |
Shrubs | Shr | 0.04 a | 0.10 ab | 0.07 a | 0.00 a | 0.31 a | 0.73 bc | 1.06 cd | 0.00 a | 1.44 d |
Ground vegetation | Grv | 4.58 | 5.63 | 5.10 | 5.12 | 3.65 | 4.70 | 6.25 | 4.47 | 6.30 |
Understorey trees | Unw | 1.03 ab | 1.37 a–c | 2.43 cd | 2.77 d | 1.46 b | 0.75 ab | 0.39 a | 0.64 ab | 0.49 a |
Foliage of trees | Tre gr | 9.8 b | 8.9 ab | 15.6 c | 15.1 c | 15.7 c | n.d. (3) | 7.1 ab | 16.1 c | 4.7 a |
Branches of trees | Tre br | 8.1 a | 7.1 a | 13.3 c | 12.6 c | 13.1 c | n.d. | 5.7 ab | 14.5 c | 3.3 b |
Stems of trees | Tre st | 6.8 a | 6.9 a | 12.2 b | 17.0 cd | 14.5 bc | n.d. | 9.3 a | 19.2 d | 7.0 a |
Phytocoenosis | Phc tot | 33.2 b | 29.6 ab | 48.3 c | 52.0 c | 47.8 c | n.d. | 27.8 ab | 54.8 c | 22.4 a |
-its green parts (4) | Phc gr | 14.6 a | 14.9 ab | 21.5 c | 20.9 c | 19.7 c | n.d. | 12.3 a | 20.7 bc | 11.4 a |
-its woody parts (5) | Phc wd | 8.6 b | 7.8 b | 15.1 c | 14.1 c | 13.9 c | n.d. | 6.1 ab | 14.9 c | 4.0 a |
Characteristics | Constituents (1) | Code (2) and Group Number of Soils | |||||||
---|---|---|---|---|---|---|---|---|---|
Kh Kr | K | Ko Kog | KI KIg | LP | L Lg | Go GI | LkG LG LG1 | ||
I | II | III | IV | V | VII | VIII | IX | ||
Constituent % from Phc PMt | Hrb | 0.49 c | 0.81 d | 0.36 c | 0.40 c | 0.16 ab | 0.06 a | 0.31 bc | 0.04 a |
Mss | 1.24 a | 0.84 a | 0.89 a | 0.71 a | 0.54 a | 4.15 b | 0.43 a | 5.42 c | |
Unw | 1.53 ab | 1.54 ab | 1.64 ab | 2.65 b | 0.78 a | 0.75 a | 0.32 a | 1.89 ab | |
Tre | 96.7 c | 96.6 bc | 96.7 c | 96.4 bc | 98.4 c | 94.4 b | 99.0 c | 89.7 a | |
Consituent % from Phc AIt | Hrb | 7.92 d | 14.69 e | 6.33 d | 6.20 d | 3.10 bc | 1.11 a | 5.72 cd | 0.86 ab |
Mss | 4.81 a | 4.06 a | 3.88 a | 2.71 a | 2.97 a | 15.96 b | 2.03 a | 27.60 c | |
Unw | 3.29 a–d | 5.32 b–d | 5.20 cd | 6.03 d | 3.34 a–c | 1.35 a | 1.15 ab | 2.85 a-d | |
Tre | 76.8 b | 75.6 b | 84.5 bc | 85.1 bc | 89.9 c | 78.4 b | 91.2 c | 61.6 a | |
% green parts | in Phc PMt | 9.66 d | 7.84 b–d | 8.69 cd | 8.48 cd | 6.63 ab | 6.72 ab | 5.40 a | 7.73 bc |
in Phc AIt | 45.2 a–c | 51.1 cd | 44.5 ab | 40.4 ab | 40.8 a | 45.3 b | 40.4 ab | 53.6 d | |
% stand stems | in Phc PMt | 70.0 a | 74.6 ab | 71.5 a | 71.4 a | 76.6 bc | 79.6 c | 77.5 bc | 80.7 c |
in Phc AIt | 21.8 a | 22.8 ab | 25.6 a–c | 31.8 cd | 30.8 d | 33.2 d | 31.3 b–d | 29.5 b–d | |
% AI from Phc PMt | AIt/PMt | 6.39 bc | 5.32 ab | 5.83 bc | 6.70 c | 4.91 a | 4.88 a | 5.65 a–c | 4.42 c |
% forest floor OC from total soil cover OC | 7.7 | 8.5 | 6.1 | 5.0 | 11.2 | 35.5 | 6.5 | 33.8 | |
Ratio: Soil cover OC/Pch OC | 1.8 | 1.6 | 0.9 | 1.2 | 0.6 | 0.7 | 1.6 | 2.2 |
Soil Group | OC Density, 10−1 Mg ha−1 | AI, 10−1 Mg ha−1 year−1 | |||||||
---|---|---|---|---|---|---|---|---|---|
Code | No | Bgr (1) Gv + Uw | Bgr (2) Tr Woody | Bgr (3) PM | Phc (4) PM Sum | Bgr Gv + Uw | Bgr Tr woody | Bgr AI | Phc AI Sum |
Kh Kr | I | 6.7 | 71.0 | 77.8 | 607 | 3.1 | 2.2 | 5.3 | 38.6 |
K | II | 9.2 | 75.6 | 84.8 | 671 | 4.6 | 2.0 | 6.6 | 36.2 |
Ko Kog | III | 8.2 | 105.1 | 113.3 | 947 | 3.7 | 3.6 | 7.3 | 55.6 |
KI KIg | IV | 9.6 | 84.5 | 94.2 | 883 | 4.2 | 3.5 | 7.7 | 59.7 |
LP | V | 5.2 | 92.0 | 97.2 | 1098 | 2.3 | 2.8 | 5.1 | 52.9 |
Lk Lkg | VI | 5.5 | n.d. (5) | n.d. | n.d. | 2.6 | n.d. | n.d. | n.d. |
L Lg | VII | 2.6 | 59.8 | 62.4 | 655 | 0.9 | 1.7 | 2.5 | 30.3 |
Go GI | VIII | 8.0 | 91.5 | 99.5 | 1016 | 3.6 | 3.4 | 7.0 | 61.8 |
LkG LG LG1 | IX | 3.0 | 58.8 | 61.8 | 580 | 0.6 | 1.1 | 1.7 | 24.1 |
Mean | 6.5 | 79.8 | 86.4 | 807 | 2.8 | 2.5 | 5.4 | 44.9 | |
STdev | 2.6 | 16.4 | 18.2 | 203 | 1.4 | 0.9 | 2.2 | 14.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kõlli, R.; Kauer, K.; Tõnutare, T.; Lutter, R. Ecosystem Carbon Stocks and Their Annual Sequestration Rate in Mature Forest Stands on the Mineral Soils of Estonia. Forests 2022, 13, 784. https://doi.org/10.3390/f13050784
Kõlli R, Kauer K, Tõnutare T, Lutter R. Ecosystem Carbon Stocks and Their Annual Sequestration Rate in Mature Forest Stands on the Mineral Soils of Estonia. Forests. 2022; 13(5):784. https://doi.org/10.3390/f13050784
Chicago/Turabian StyleKõlli, Raimo, Karin Kauer, Tõnu Tõnutare, and Reimo Lutter. 2022. "Ecosystem Carbon Stocks and Their Annual Sequestration Rate in Mature Forest Stands on the Mineral Soils of Estonia" Forests 13, no. 5: 784. https://doi.org/10.3390/f13050784
APA StyleKõlli, R., Kauer, K., Tõnutare, T., & Lutter, R. (2022). Ecosystem Carbon Stocks and Their Annual Sequestration Rate in Mature Forest Stands on the Mineral Soils of Estonia. Forests, 13(5), 784. https://doi.org/10.3390/f13050784