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Abstract: The forest stock volume (FSV) is one of the crucial indicators to reflect the quality of forest
resources. Variable selection methods are usually used for FSV estimated models. However, few
studies have explored which variable selection methods can make the selected data set have better
explanatory and robustness for the same dominant tree species in different regions after the feature
variables were filtered by the feature selection methods. In this study, we chose six dominant tree
species from Lin’an District, Anji County, and a part of Longquan City. The tree species include
broad-leaved, coniferous, Masson pine, Chinese fir, coniferous and broad-leaved mixed forest, and
all tree species which include the above five groups of tree species. The last two tree species were
represented by mixed and all, respectively. Then, the satellite images, terrain factors, and forest
inventory data were selected by six variable selection methods (least absolute shrinkage and selection
operator (LASSO), recursive feature elimination (RFE), stepwise regression (Step-Reg), permutation
importance (PI), mean decrease impurity (MDI), and SelectFromModel based on LightGBM (SFM)),
according to different dominant tree types in different regions. The selected variables were formed
into a new dataset divided by different dominant trees. Besides, extreme gradient boosting (XGBoost)
was used, combined with variable selection methods to estimate the FSV. The performed results are
as follows: In the feature selection of coniferous, RFE performed better both in the average and in
the separate regions. In the feature selection of Chinese fir and all, PI performed better both in the
average and in the separate regions. In the feature selection of Masson pine, MDI performed better
both in the average and in the separate regions. In the feature selection of mixed, MDI performed
better in the average while RFE performed better in the separate regions comprehensively. The results
showed that not only in separate regions, but the average result two factors, RFE, MDI, and PI all
performed well to select variables to estimate the FSV. Furthermore, we selected the top five high
feature-importance factors of different tree types, and the results showed that tree age and canopy
density were both of great importance to the estimation of FSV. Besides, in the exhibited results of
feature selection methods, compared with no variable selection, the research also found that variable
selection can improve the performance of the model. Additionally, from the results of different tree
types in different regions, we also found that small-scale and diversity of dominant tree types may
lead to the instability and unreliability of experimental results. The study provides some insight into
the application the optimal variable selection methods of the same dominant tree type in different
regions. This study will help the development of variable selection methods to estimate FSV.
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1. Introduction

Forests are a vital ecosystem on the earth which play an important role in the global
carbon cycle and provide habitats for a wide diversity of wild fauna and flora [1]. The forest
stock volume (FSV, m3/mu, 1 mu = 0.06667 ha), which is defined as the sum of the stem
volumes of all living trees per unit area [2], is one of the key indicators for forest resource
assessment. Due to various types of human activities leading to changes in carbon stocks,
FSV data need to be updated regularly [3]. Traditionally, financial and logistical constraints
may lead to low quality of field measurements of the FSV [4]. With the development
of remote sensing technology, currently an effective rapid estimation method has been
performed to estimate the forest FSV, which combined remote sensing images and plot data.

Remote sensing data has been widely used in various studies. Lindberg et al. [5]
compared estimation of forest variables from regression models based on measures derived
from Airborne Laser Scanning (ALS) data in small (0.5 m) raster cells, based on variables
derived from the 3D point cloud. Earlier in 2001, Tomppo et al. [6] proposed a multisource
and multiresolution method, which combined Landsat TM data and IRS-1C WiFS data,
together with field plot data from the National Forest Inventories (NFIs), to estimate
a large area of growing stock. A study conducted by Gonzlez-Alonso et al. [7] found
a highly dependent relationship between satellite data and ground information from
forest surveys. In their research, Razi Ahmed et al. [8] thought that the ability of LiDAR
remote sensing technology to cover large areas is a very useful tool for large-scale biomass
estimation. Zhang et al. [9] used TM images, combined with topographic factors and forest
characteristics factors, to predict the total forest accumulation in the Three Gorges Reservoir
Region, and the overall prediction accuracy reached 89.58%. Besides, multispectral remote
sensing images, combined with many other factors, are widely used as feature variables for
forest accumulation prediction.

In the FSV, growing stock volume (GSV), or biomass estimation field, some studies
have examined assessments through using remote sensing and regression model. Matteo
Mura et al. [10] found that Sentinel-2A imagery performed well by utilizing eight k-nearest
neighbors (kNN) methods to estimate the GSV of forest. In the study of Pang et al. [11],
the accuracy of Sentinel-2A satellite image combined with kNN in three scales of forestry
bureau, forest farm, and subclass reached 97.0%, 93.2%, and 83.6%, respectively. By us-
ing the stepwise regression-based multiple linear regression models, in the research of
Li et al. [12], they found it achieved better than using Boruta-based multiple linear regres-
sion models. Four different machine-learning algorithms were used to build regression
models by Li et al. [13] for aboveground biomass (AGB) estimation, and they found that the
most powerful coefficients with the estimated AGB were the height and coverage variables
of photogrammetric point cloud, texture mean value, and the visible differential vegetation
index of the digital orthophoto mosaic. Li et al. [14] used Sentinel-2A imagery data, forest
inventory data, and digital elevation model (DEM) data of the study area, and combined
the Stacking model with LASSO in their study on the FSV estimation of Linhai City and
Chun’an County, and the minimum MAPE of the FSV estimation reached 20.24%. To
estimate the forest GSV in Georgia, Obata et al. [15] presented a random forest regression
(RFR) model with 30 m spatial resolution, and they indicated that the ecophisiological
variations in each forest performed better by the variables derive from Landsat time series.

In the FSV, GSV, or biomass estimation models, except for remote sensing spectrum,
there are a variety of feature factors that can be used as candidate variables for FSV or
ground biomass estimation [16–19]. The variables include vegetation indices, image texture
characteristics, terrain factors and forest inventory data, etc. Using a large number of
feature variables can increase the likelihood of improving the prediction model accuracy.
However, it may increase computational load, data noise, or interference [20]. Besides, high-
dimensional images often result in information redundancy and “dimension disasters” [21].
At this time, variable selection is a good method to improve efficiency and prediction
accuracy. Variable selection methods are commonly used for prediction models [22] based
on high-dimensional data. For example, Yu et al. [19] compared the performance among
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ten variable selection approaches based on linear regression model to estimate subtropical
forest biomass. They found that the Bayesian criteria (BIC) method was the best result in
comprehensive evaluation. Additionally, lots of researchers combinate variable selection
approaches with machine learning algorithms to evaluate forest biomass and then select the
better performance results from various models. Based on Landsat OLI data, Luo et al. [18]
imputed the aboveground biomass of forest by using three variable selection methods and
three machine learning algorithms. They put forward that combining RFE and CatBoost
modeling to estimate the AGB is the best combination method. Li et al. [23] proposed
an adaptive feature variable combination optimization (AFCO) program to estimate the
GSV of coniferous plantations. They selected feature variables from three datasets (GF-2,
Sentinel-2, and the integrated data) following the AFCO and four other variable selection
methods, which combined with KNN or RFR to estimate the GSV. The result showed that
the GSV estimation obtained by the AFCO method was more accurate, as the RMSErs
were 30.0%, 23.7%, 17.7%, and 17.5% lower than four other feature selection methods,
respectively. The above examples show the importance of variable selection method in
predicting forest resources information. However, in different regions, owing to different
terrain factors, weather, or other reasons, the factors strongly related to dominant tree types,
which represent the largest proportion of tree species in the mixed forests, might change a
lot. Few studies have explored which variable selection methods can make the selected
data set have better explanatory and robustness for the same dominant tree species in
different regions after the feature variables were filtered by the feature selection methods.

The data used in China’s forest field survey is mainly based on forest inventory
data. During the FSV estimation, data of permanent plots (the basic units of NFI, set
up by systematic sampling methods at the intersection of kilometer networks referring
to the topographic maps with 1:50,000 map scale, usually with an area of 0.0667 ha) are
frequently chosen to validate the prediction of FSV [24,25]. However, the number of
subclasses (the basic unit of inventory for forest management planning and design, divided
by the terrain boundaries, including ridge line, valleys, roads, etc., or forest ownership
boundaries) is much larger than the number of permanent plots in China. To reduce the cost
of investigating, the estimation of FSV based on subplots is more valuable than methods
based on permanent forest plots.

In this paper, six variable selection methods were opted to combine with XGBoost,
which is a regression model, to estimate the FSVs of six dominant tree species divided
by three different areas in Zhejiang Province of China. The purposes of this study are
as follows:

1. Identifying which feature selection approaches have better performance on the same
type of tree species in different regions.

2. Exploring whether feature selection method is more effective in estimating the FSV
than without feature selection method. Additionally, from the estimated results,
exploring which features were crucial to the FSV estimation.

3. Exploring whether the small-scale and diversity of forest types will lead to the bad
performance and exploring whether the amount is big enough that the above phe-
nomenon would disappear.

2. Study Area

The experimental study areas were selected from three places in Zhejiang Province,
include Anji County, Lin’an District, and a part of Longquan City (Figure 1). Each region
has a multitude of dominant tree types. In order to explore different tree species in
different regions as far as possible, we chose six species, which would be introduced in the
next section.

Anji County is a Municipal County (1885.71 km2, 30◦23′–30◦53′ N, 119◦14′–119◦53′ E)
of Huzhou City, Zhejiang Province. It belongs to the north subtropical monsoon climate
zone. The main vegetation types in the territory include subtropical coniferous forest,
evergreen broad-leaved forest, subtropical coniferous and broad-leaved mixed forest, and
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subtropical bamboo forest. Anji has a forest area of 138,227.72 hm2, most of which are
distributed in hills [26].
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Figure 1. Zhejiang province in East China and the study area, shown in a natural color composite
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Lin’an District (3134.78 km2, 29◦56′–30◦23′ N, 118◦51′–119◦52′ E) is located in the west
of Hangzhou, Zhejiang Province and at the foot of southern Tianmu Mountain. It is about
100 km long from east to west and 50 km wide from north to south, with a total area of
312,600 hm2. The forest vegetation in Lin’an District belongs to the subtropical evergreen
broad-leaved forest distribution area. The vegetation types and flora of the whole region are
complex, which can be divided into evergreen broad-leaved forest, coniferous broad-leaved
mixed forest, coniferous forest, and so on.

Longquan City (3059 km2, 27◦42′–28◦20′ N, 118◦42′–119◦25′ E) is located in the south-
west of Zhejiang Province. It is 70.25 km wide from east to west and 70.80 km long from
north to south, with a total area of 3059 km2. The forest area reached 257,200 hm2 and the
volume reached 19.12 million m3 [16]. We chose an area in the southern Longquan City,
and we used Longquan City or Longquan area to represent this area in the following text.

3. Data

The research data include forest inventory data, digital elevation model, and Sentinel-
2A satellite data.

3.1. Forest Inventory Data

The research data come from the forest resource inventory data in Longquan City in
2016, Lin’an District in 2019 and Anji County in 2018, with subclass as the unit (Table 1).
The dominant tree species, which mean the largest proportion tree species in all the mixed
forests, were divided into broad-leaved, coniferous, Chinese fir, Masson pine, coniferous
and broad-leaved mixed forest, and all tree species, which include the above five groups of
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tree species. The tested six groups of dominant tree species are expressed by broad-leaved,
coniferous, Chinese fir, Masson pine, mixed, and all, respectively.

Table 1. Groups divided by the area and the dominant tree species and the number of subplots.

Area Dominant Tree Species Number of Subplot Proportion (%)

Anji County

Broad-leaved 3027 36.88
Coniferous 443 5.40
Chinese Fir 1716 20.91

Masson Pine 1808 22.03
Mixed 1213 14.78

All 8207 100

Lin’an District

Broad-leaved 13,785 34.32
Coniferous 4439 11.05
Chinese Fir 8846 22.03

Masson Pine 7463 18.58
Mixed 5630 14.02

All 40,163 100

A part of Longquan City

Broad-leaved 101 1.75
Coniferous 1656 28.63
Chinese Fir 3086 53.34

Masson Pine 154 2.66
Mixed 788 13.62

All 5785 100

3.2. Characteristic Variable Extraction Based on Image Data

In this study, DEM (ASTER GDEM), with a spatial resolution of 30 m in Lin’an
District, Longquan City, and Anji County, were obtained from the geographic data space
Bureau, and elevation, slope, and aspect were extracted from the aster GDEM data as
topographic factors.

The satellite imageries used in the study were downloaded from ESA (https://scihub.
copernicus.eu/, accessed on 6 November 2021). The Sentinel-2A imageries, which have no
clouds, were of good quality in the study area selected. Longquan City, Lin’an District, and
Anji City images were acquired on 28 March 2016, 13 February 2019, and 1 October 2018,
respectively. The imageries were from L1-level product, which is an atmospheric apparent
reflectance product after orthorectification and sub-cell geometric precise correction [27],
thus, only atmospheric correction was required. In this study, we used SNAP to resample
the bands at the resolution between 20 m and 60 m to the resolution of 10 m through using
the nearest neighbor method, then converted Envi standard format for clipping in Envi.

Eleven bands were extracted from the Sentinel-2A satellite imageries and 14 commonly
used vegetation indices [14,28–31] were calculated. For forest variable prediction in the
boreal forest, Astola et al. [28] found that the best predictive Sentinel-2 image band was the
band5. In addition, according to related studies [29,30], the correlation between reflectance
at 705 nm and chlorophyll content is better than that at 740 and 783 nm. Therefore, the
band at 705 nm band5 is selected in this paper as the red-edge band in the calculation of
vegetation index.

The paper used the gray level co-occurrence matrix method put forward by Haralick
et al. [32], then used PCA to extract the first principal component. Besides, we chose eight
GLCM texture features, which encompass Mean (ME), Variance (VA), Homogeneity (HO),
Contrast (CO), Dissimilarity (DI), Entropy (EN), Second Moment (SM), and Correlation
(CC), whose window sizes were 5 × 5.

3.3. Data Integration

In this article, the feature variables included 11 multispectral bands, 14 vegetation
indices calculated based on bands, DEM, texture features, and forest inventory data, as

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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shown in Table 2 below. Among them, the dominant tree species, which is a variable of
forest inventory data, only have this feature for all tree species.

Table 2. Summary of predictor variables, including Sentinel-2A spectral variables, vegetation indices,
texture measures, and forest factors.

Variable Type Characteristic Variable Variable Number Description

Spectral variable

Band2, Band3, Band4,
Band5, Band6, Band7,
Band8, Band8a, Band9,

Band11, Band12

11 Sentinel-2A bands

Vegetation indices

NDVI

14

(B8 − B4)/(B8 + B4)
EVI 2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1)
SR B8/B4

DVI B8 − B4
SAVI (B8 − B4)/(B8 + B4 + 0.5) × 1.5

CIgreen B8/B3 − 1
NDWI (B3 − B5)/(B3 + B5)

NDVIre (B8 − B5)/(B8 + B5)
SRre B8/B5

MTCI (B8 − B5)/(B5 − B4)
MCARI [(B5 − B4) − 0.2 × (B5 − B3)] × (B5 − B4)
NDI45 (B5 − B4)/(B5 + B4)
MSRre (B8/B5 − 1)/

√
B8
B5 + 1

CIre (B8/B5 − 1)

Texture measures Elevation, Slope, Aspect 3

Forest factors

Canopy density,
Soil thickness,

Tree age,
Thickness of soil humus,

Vegetation Coverage,
Dominant Species

5

Note: BX represent BandX of Sentinel-2A.

3.4. Data Preprocessing

(1) Delete the missing value of the data set and eliminate the small class data with stock
volume of 0.

(2) Data normalization:

Due to the different value ranges among most attributes in the training set and test set
of intrusion detection [33], and in order to make the data processing and model learning
process more convenient and efficient, the training data was normalized and preprocessed
so that the load value of the training data is between 0 and 1. The data normalization
equation adopted in this paper is:

xnorm =
x− xmin

xmax − xmin
(1)

4. Methods
4.1. Study Scheme Design

In this study, we adopted the strategy of cross validation. The overall purpose of cross
validation is to select a model then use the complete data set to refit the selected model, so
as to accurately evaluate the prediction error [34]. The commonly used methods of cross val-
idation are LOOCV and K-fold cross-validation (K-fold CV). K-fold CV is to divide the data
set into K subsets, then take one of the K subsets as the verification data set and the other
K-1 data sets as the training set, calculate the K models, and take their average prediction
accuracy as the final accuracy value. To compare the performance among different variable



Forests 2022, 13, 787 7 of 22

selection methods, Yu et al. [19] employed 50 times 10-fold cross validation in the linear
regression model to estimate aboveground biomass. Huang et al. [16] combined stepwise
regression and XGboost to estimate the FSV, and also used ten-fold cross validation in the
training model. LOOCV mainly refers to the assumption that n is the number of samples
in the training set, only one training sample is retained as the test set every time, and all
the remaining samples are used as the training set training model. The prediction result of
this method is more accurate, but its operation cost and time consumption are large. The
test set in the model was used to test the accuracy of the training algorithm [35], and its
performance showed the generalization ability of the network.

In this study, 10-fold cross validation method was employed in the train sets to
optimize the model. We firstly selected the FSV of two of three regions as train set, one as
test set. Then, the FSV train sets classified by six dominant tree species, as well as three
regions, were randomly divided into ten sets, nine of which are used as train sets and one
as test set. This process is repeated ten times to prevent the phenomenon of “over-fitting”.
Then, the test set was used to evaluate the model.

For the three regions of the study, we took subclass as unit, and each area was divided
according to six dominant tree types. We took two regions as the training set and the
remaining one as the test set. In other words, three groups of experiments were required
for the verification of each variable selection methods:

(1) Training set: Lin’an District, Longquan City; Test set: Anji County
(2) Training set: Lin’an District, Anji County; Test set: Longquan City
(3) Training set: Longquan City, Anji County; Test set: Lin’an District.

Finally, we classified the results of the three test sets according to the dominant tree
types and obtained the average value of their estimation results. Through the average
value, we could observe the accuracy of the variable selection methods in selecting different
dominant tree variables in different regions.

4.2. Formatting of Mathematical Components

As a data preprocessing process, variable selection plays an important role in data
mining and machine learning. It could be considered that feature analysis is a process
of designing feature collection for machine learning applications [36]. Through variable
selection, the complexity of the problem can be reduced, and the prediction accuracy,
robustness, and interpretability of the learning algorithm can be improved [37].

4.2.1. Least Absolute Shrinkage and Selection Operator Method

LASSO was proposed by Robert Tibshirani [37]. The main idea of LASSO is to use
L1- regularization to generate sparse regression solution, that is, when constructing linear
regression model, add penalty term to make the sum of regression coefficients less than a
certain threshold, minimize the sum of squares of residuals, and compress the regression
coefficients of some characteristic variables to 0, so as to achieve the purpose of dimensional
reduction by deleting these variables. The larger the λ, the stronger the compression effect
on the estimated parameters, and the fewer variables can be selected. The smaller the λ,
the less the model variables, and the smaller the penalty in the model. The study used a
3-fold cross-validation. The equation of LASSO is generally expressed as follows:

β̂LASSO= argmin
β

{
1
2 ∑N

i=1

(
yi − β0 −∑p

j=1 xijβ j

)2
+ λ ∑p

j=1

∣∣β j
∣∣}, λ ∈ [0, ∞) (2)

4.2.2. Recursive Feature Elimination

RFE is a packaging method for finding the optimal feature subset proposed by Guyon
et al. [38] based on SVM. It is a model-based backward search method. The feature set at
the beginning of the algorithm is all variables. In each subsequent iteration, the modeling
is carried out according to the current feature set. After the modeling was completed, the
feature with the lowest score was deleted according to the score of each feature, and the
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algorithm continues to iterate according to the above process until the feature subset is
empty. This study adopts a 10-fold cross-validation method of RFE.

4.2.3. Stepwise Regression

Stepwise regression (Step-Reg) is also a packaging method in feature selection. It
established the linear relationship between FSV and original variable set through multiple
linear regression method. Step-Reg is the process of selecting a stepwise way for F-test [39]
and gradually eliminating irrelevant factors. Only important variables are included in the
final regression equation to ensure that the final set of explanatory variables is optimal.

We used SPSS for Step-Reg analysis. Generally, probability (p) has three values,
0.001, 0.01, and 0.05. It is considered statistically significant if it is 0.01 < p ≤ 0.05, and
0.001 ≤ p ≤ 0.01 is highly statistically significant. The evaluation factors of p ≤ 0.05 in this
study were retained.

4.2.4. Permutation Importance

Breiman [40] thought that after each tree in the random forest was constructed, the
importance of the features could be measured by randomly replacing the mth features. Let
X be the original eigenvalue matrix, Xπ,m be a new matrix obtained by randomly replacing
the mth column of the X matrix, and L(yi, f (xi)) be expressed as the loss function obtained
by f (xi) to predict yi, then the characteristic importance of mth can be expressed as follows:

VIπ
m =

N

∑
i=1

L
(
yi, f

(
xπ,m

i
))
− L(yi, f (xi)) (3)

In this paper, we used PI to represent Permutation Importance.

4.2.5. Mean Decrease Impurity

Random forest provides an algorithm of mean decrease impurity for feature selection.
Mean decrease impurity determines the importance of the feature by calculating the reduc-
tion degree of the feature to the average value of node impure of all regression decision
trees in the random forest. It uses Gini index to measure node impurity. The more Gini
index decreases, the more node impurity decreases, so this feature is more important. Gini
index is calculated as follows:

GIm =
|K|

∑
k=1

∑
k′ 6=k

pmk pmk′ = 1−
|K|

∑
k=1

p2
mk (4)

where K indicates that there are K categories in the sample, pmk represents the proportion
of category k in node m. In this paper, we used MDI to represent Mean Decrease Impurity.

4.2.6. SelectFromModel Based on LightGBM

The tree growth process is also a heuristic search process for feature subsets. The
trained model can be directly used to output the importance of features. After LightGBM
regression tree trains, the feature importance attribute can list the contribution of each
feature of the establishment of the tree. In this experiment, the SelectFromModel method
was used to select the features, and the threshold parameters are set first. For the features
below the threshold, it is considered that the feature is not important. The threshold set in
this experiment is the Mean. In this paper, we used SFM to represent SelectFromModel
methods based on LightGBM.

4.3. XGBoost

XGBoost is a machine learning system based on lifting tree, which was put forward by
Chen et al. [41] on the basis of a great deal of previous research work on gradient lifting
algorithm [42]. XGBoost has the advantages of high speed, good effect, being able to handle
large-scale data, and supporting multiple languages [17]. XGBoost is a CART regression
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tree model, which gradually adds trees to the model. Every time a CRAT is added, the
overall effect will be improved. Its prediction model can be expressed as:

ŷi =
K

∑
k=1

fk(xi), fkεF (5)

where K is the total number of trees, fk represents the kth tree of space F, ŷi represents
sample xi prediction results. xi is the ith data input; F is the set of all possible cart trees. The
objective function of XGBoost is expressed as:

δobj = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk)

Ω( fk) = γT + 1
2λ ‖ w ‖2

(6)

∑i l(ŷi, yi) is used to measure the difference between the predicted score and the real score;
∑k Ω( fk) is the regularization term, which is used to measure the complexity of the model.
It can be L1-Regularization, L2-Regularization, etc. In Equation (6) T is the number of leaf
nodes and the score of leaf node; the purpose of γ is to control the number of leaf nodes,
and ensure that the score of leaf nodes is not too large.

4.4. Model Performance Metrics

In this study, the comprehensive evaluation method was used to evaluate the perfor-
mance of the FSV estimation model. The main evaluation indexes include determination co-
efficient (R2), root mean square error (RMSE), and relative root mean square error (RMSEr).
Finally, the evaluation indexes of various models are calculated by using the estimated and
existing FSV values. Generally speaking, the larger the R2, the better the fitting effect of the
model, and the smaller the RMSE and RMSEr, the higher the estimation accuracy.

R2 =
∑N

i=1(ŷi − y)2

∑N
i=1(yi − y)2 (7)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (8)

RMSEr =
RMSE

y
× 100% (9)

5. Results
5.1. Selection of Key Variables

In this study, we used six feature selection methods, LASSO, RFE, Step-Reg, PI,
MDI, and SFM, and selected variables according to six different types of dominant tree
species. The variable number in Table 3 indicates the number of features selected by the
corresponding feature selection method.

Table 4 exhibits the top five most important features of the feature-importance among
different dominant tree types obtained by using different feature selection methods, which
were combined with XGBoost. In this study, the models of all dominant trees species with
high feature importance include different spectral variables, vegetation indices, texture
features, topographic factors, and forest inventory factors. Although the specific selected
variables were different, they include all types of features. This result also showed that the
variables of multiple categories affect the estimation of forest stock volume, rather than the
variables of a single category.
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Table 3. Summary of selected variables divided by variable selection methods and dominant tree types.

Dominant Tree Species Method Variable Number Selected Variables

Broad-leaved

LASSO 8 Tree Age, Canopy density, Soil Thickness, Vegetation Coverage,
Thickness of Soil Humus, Band_6, SRre, CIre

RFE 24

Elevation, Slope, Aspect, Soil Thickness, Vegetation Coverage,
Tree Age, Canopy density, Band_2, Band_4, Band_5, Band_9,
Band_11, Band_12, EVI, NDWI, MCARI, NDI45, MSRre, CIre,
MTCI, VA, HO, SM, CC

Step-Reg 25

Elevation, Slope, Tree Age, Canopy density, Vegetation
Coverage, Soil Thickness, Thickness of Soil Humus, Band_2,
Band_3, Band_6, Band_8, Band_8a, Band_9, Band_11, Band_12,
CIre, NDI45, NDWI, MSRre, SAVI, MCARI, MTCI, CO, CC, ME

PI 25

Elevation, Slope, Aspect, Tree Age, Canopy density, Vegetation
Coverage, Soil Thickness, Thickness of Soil Humus, Band_2,
Band_3, Band_5, Band_6, Band_12, MTCI, NDWI, EVI, CIre,
SRre, NDVIre, CIgreen, NDI45, MCARI, CO, SM, ME

MDI 25

Elevation, Slope, Aspect, Tree Age, Canopy density, Vegetation
Coverage, Soil Thickness, Band_2, Band_3, Band_4, Band_5,
Band_6, Band_12, Band_11, MTCI, NDVI, EVI, CIgreen, NDI45,
MCARI, CIre, CO, SM, HO, VA

SFM 22
Elevation, Slope, Aspect, Soil Thickness, Tree Age, Vegetation
Coverage, Band_2, Band_9, Band_11, Band_12, EVI, CIgreen,
NDWI, MCARI, NDI45, MTCI, VA, HO, CO, EN, SM, CC

Coniferous

LASSO 7 Elevation, Tree Age, Canopy density, Soil Thickness, Thickness
of Soil Humus, Band_5, SR

RFE 16
Elevation, Slope, Soil Thickness, Vegetation Coverage, Tree Age,
Canopy density, Band_2, Band_5, Band_6, NDVI, EVI, NDWI,
NDI45, MTCI, VA, CC

Step-Reg 37

Elevation, Slope, Aspect, Soil Thickness, Thickness of Soil
Humus, Vegetation Coverage, Tree Age, Canopy density,
Band_2, Band_3, Band_4, Band_5, Band_6, Band_7, Band_8,
Band_8a, Band_9, Band_11, Band_12, NDVI, EVI, SR, CIgreen,
NDWI, NDVIre, MCARI, NDI45, CIre, MTCI, ME, VA, HO, CO,
DI, EN, SM, CC

PI 25

Elevation, Slope, Soil Thickness, Thickness of Soil Humus,
Vegetation Coverage, Tree Age, Canopy density, Band_2, Band_3,
Band_4, Band_5, Band_6, Band_8, Band_9, Band_11, Band_12,
EVI, NDWI, NDI45, MTCI, CIre, MSRre, MCARI, CIgreen, CC

MDI 25

Elevation, Slope, Aspect, Soil Thickness, Vegetation Coverage,
Tree Age, Canopy density, Band_2, Band_11, Band_4, Band_5,
Band_6, Band_12, EVI, NDWI, NDI45, MTCI, CIgreen, MCARI,
CC, VA, SM, CO, HO, EN

SFM 23
Elevation, Slope, Aspect, Soil Thickness, Tree Age, Canopy
density, Band_2, Band_6, Band_9, Band_11, Band_12, EVI,
CIgreen, NDWI, NDI45, MTCI, VA, HO, CO, DI, EN, SM, CC

Chinese Fir

LASSO 8 Elevation, Vegetation Coverage, Tree Age, Canopy density,
Thickness of Soil Humus, Band_5, NDVI, NDI45

RFE 36

Elevation, Slope, Aspect, Soil Thickness, Thickness of Soil Humus,
Vegetation Coverage, Tree Age, Canopy density, Band_2, Band_3,
Band_4, Band_5, Band_6, Band_9, Band_11, Band_12, NDVI, EVI,
DVI, CIgreen, NDWI, SRre, MCARI, NDI45, MSRre, CIre, MTCI,
SAVI, ME, VA, HO, CO, DI, EN, SM, CC
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Table 3. Cont.

Dominant Tree Species Method Variable Number Selected Variables

Step-Reg 27

Slope, Thickness of Soil Humus, Vegetation Coverage, Tree Age,
Canopy density, Band_3, Band_4, Band_5, Band_6, Band_8a,
Band_9, Band_11, Band_12, SR, NDWI, MSRre, Cire, MCARI,
NDI45, MTCI, SAVI, ME, VA, HO, DI, SM, CC

PI 25

Elevation, Slope, Soil Thickness, Thickness of Soil Humus,
Vegetation Coverage, Tree Age, Canopy density, Band_2,
Band_3, Band_4, Band_5, Band_6, Band_8, Band_8a, Band_9,
Band_11, Band_12, NDWI, EVI, MTCI, MCARI, DVI, SRre,
CC, ME

MDI 25

Elevation, Slope, Aspect, Soil Thickness, Thickness of Soil
Humus, Vegetation Coverage, Tree Age, Canopy density, Band_2,
Band_3, Band_4, Band_5, Band_6, Band_9, Band_11, Band_12,
NDWI, EVI, MTCI, CIgreen, NDI45, MCARI, CC, VA, SM

SFM 20
Elevation, Slope, Aspect, Vegetation Coverage, Tree Age,
Vegetation Coverage, Band_6, Band_9, Band_11, Band_12, EVI,
NDWI, MCARI, MTCI, VA, HO, CO, EN, SM, CC

Masson Pine

LASSO 11
Slope, Soil Thickness, Thickness of Soil Humus, Vegetation
Coverage, Tree Age, Canopy density, Band_6, NDVI, NDI45,
SAVI, EN

RFE 14
Elevation, Slope, Soil Thickness, Vegetation Coverage, Tree Age,
Canopy density, Band_2, Band_5, Band_6, NDWI, NDI45,
MTCI, SM, CC

Step-Reg 37

Elevation, Slope, Aspect, Soil Thickness, Thickness of Soil
Humus, Vegetation Coverage, Tree Age, Canopy density,
Band_2, Band_3, Band_4, Band_5, Band_6, Band_7, Band_8,
Band_8a, Band_9, Band_11, Band_12, NDVI, EVI, SR, CIgreen,
NDWI, NDVIre, SRre, MCARI, NDI45, MTCI, ME, VA, HO, CO,
DI, EN, SM, CC

PI 25

Elevation, Slope, Vegetation Coverage, Tree Age, Canopy
density, Soil Thickness, Thickness of Soil Humus, Band_2,
Band_3, Band_4, Band_5, Band_6, Band_9, NDWI, MTCI, EVI,
NDI45, CIgreen, MCARI, NDVIre, SM, EN, VA, HO, DI

MDI 25

Elevation, Slope, Aspect, Vegetation Coverage, Tree Age,
Canopy density, Thickness of Soil Humus, Soil Thickness,
Band_2, Band_3, Band_9, Band_5, Band_6, Band_11, NDWI,
NDI45, EVI, MTCI, CIgreen, CO, SM, VA, EN, HO, CC

SFM 19
Elevation, Slope, Aspect, Tree Age, Band_2, Band_9, Band_11,
Band_12, EVI, NDWI, MCARI, NDI45, MTCI, VA, HO, CO, EN,
SM, CC

Mixed

LASSO 5 Elevation, Tree Age, Canopy density, Thickness of Soil Humus,
Band_11

RFE 20
Elevation, Slope, Aspect, Soil Thickness, Vegetation Coverage,
Tree Age, Canopy density, Band_2, Band_5, Band_6, Band_12,
EVI, NDWI, NDVIre, NDI45, MTCI, VA, CO, SM, CC

Step-Reg 39

Elevation, Slope, Aspect, Soil Thickness, Thickness of Soil
Humus, Vegetation Coverage, Tree Age, Canopy density,
Band_2, Band_3, Band_4, Band_5, Band_6, Band_7, Band_8,
Band_8a, Band_9, Band_11, Band_12, NDVI, EVI, SR, CIgreen,
NDWI, NDVIre, MCARI, NDI45, MSRre, CIre, MTCI, SAVI,
ME.VA, HO, CO, DI, EN, SM, CC
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Table 3. Cont.

Dominant Tree Species Method Variable Number Selected Variables

PI 25

Elevation, Slope, Aspect, Soil Thickness, Vegetation Coverage,
Tree Age, Canopy density, Band_2, Band_3, Band_11, Band_5,
Band_6, Band_8, EVI, MTCI, NDI45, DVI, NDWI, CIgreen, CIre,
MSRre, CC, CO, SM, ME

MDI 25

Elevation, Slope, Aspect, Soil Thickness, Vegetation Coverage,
Tree Age, Canopy density, Band_2, Band_3, Band_11, Band_5,
Band_6, Band_9, Band_12, EVI, NDWI, NDI45, MTCI, MCARI,
CC, VA, CO, SM, EN, HO

SFM 18 Elevation, Slope, Aspect, Tree Age, Band_6, Band_9, Band_11,
Band_12, EVI, NDWI, NDI45, MTCI, VA, HO, CO, EN, SM, CC

All

LASSO 6 Soil Thickness, Vegetation Coverage, Tree Age, Canopy density,
Dominant Species, Band_11

RFE 32

Elevation, Slope, Aspect, Soil Thickness, Thickness of Soil
Humus, Vegetation Coverage, Dominant Species, Tree Age,
Canopy density, Band_2, Band_3, Band_4, Band_5, Band_6,
Band_9, Band_11, Band_12, EVI, DVI, CIgreen, NDWI, SRre,
MCARI, NDI45, MTCI, SAVI, VA, HO, CO, EN, SM, CC

Step-Reg 38

Elevation, Slope, Aspect, Soil Thickness, Thickness of Soil
Humus, Vegetation Coverage, Dominant Species, Tree Age,
Canopy density, Band_2, Band_3, Band_4, Band_5, Band_6,
Band_7, Band_8a, Band_9, Band_11, Band_12, NDVI, EVI, SR,
DVI, CIgreen, NDWI, NDVIre, SRre, MCARI, NDI45, MTCI,
ME, VA, HO, CO, DI, EN, SM, CC

PI 25

Elevation, Slope, Aspect, Soil Thickness, Thickness of Soil
Humus, Vegetation Coverage, Dominant Species, Tree Age,
Canopy density, Band_2, Band_3, Band_4, Band_5, Band_6,
MTCI, CIgreen, NDWI, EVI, NDI45, CC, SM, ME, HO, VA, EN

MDI 25

Elevation, Slope, Aspect, Soil Thickness, Thickness of Soil Humus,
Vegetation Coverage, Dominant Species, Tree Age, Canopy
density, Band_2, Band_11, Band_4, Band_5, Band_6, Band_12,
NDWI, CIgreen, MTCI, EVI, NDI45, CC, VA, SM, CO, EN

SFM 17
Elevation, Slope, Aspect, Soil Thickness, Vegetation Coverage,
Dominant Species, Tree Age, Canopy density, Band_11,
Band_12, EVI, NDWI, NDI45, MTCI, VA, SM, CC

Through observing the features, whose feature-importance were higher, selected by
different variable selection methods for different tree species, we found that with the
exception of Masson pine, the tree age and canopy density, which are two features that
come from the forest inventory factors, show high feature-importance among all variables.
This result is close to what Luo et al. found in their research [18], which showed the
complexity and diversity of forest canopy structure.

5.2. Model Performance

In XGBoost, we used GridSearchCV package, which is in Python’s scikit-learn to
adjust and evaluate the parameters, so as to obtain the optimal parameters for the FSV
estimations. The value range of each parameter is shown in Table 5.

The research object of this study is a variety of dominant tree types in different regions.
The FSV is retrieved by feature selection algorithm combined with XGBoost, and the
regional universality of feature selection algorithm was explored through the estimated
results. The test results are shown in Tables 6, A1 and A2, in which df1 and df2 represent the
degree of freedom, and significance represents the significance level about the regression.
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Table A1 shows the FSV estimated accuracy assessments on validation dataset by
combining different variable selection methods with XGBoost for different dominant tree
types in Longquan City, while Table A2 shows the FSV estimated accuracy assessments
on validation dataset by combining different variable selection methods with XGBoost for
different dominant tree types in Anji County. From the results, all the significances are less
than 0.5, which indicated that the regression models are all effective to estimate the FSV.
It could be seen from the results that the estimated results of different feature selection
algorithms are close in most models. The Masson pine and mixed tree modeled with SFM
performed quite poorly in three areas. We indicated that the features of some dominant tree
types selected by the feature selection algorithm of SFM have poor performance. Moreover,
even for the same dominant tree type, when the test areas are different, the feature selection
algorithm with the optimal estimated result is also different.

Table 4. Five most important variables divided by variable selection methods and dominant tree types.

Dominant
Tree Species Variable Selection Method No. 1 No. 2 No. 3 No. 4 No. 5

Broad-leaved

LASSO TreeAge CanopyDensity CIre SRre Band_6
RFE TreeAge CanopyDensity MSRre CIre NDI45

Step-Reg TreeAge CanopyDensity MSRre CIre SAVI
PI TreeAge CanopyDensity CIre SRre NDVIre

MDI TreeAge CanopyDensity CIre CIgreen NDVI
SFM TreeAge CanopyDensity NDI45 NDWI Band_2
None TreeAge CanopyDensity MSRre CIre SRre

Coniferous

LASSO CanopyDensity SR Band_5 TreeAge SoilDepth
RFE EVI Varience MTCI Band_2 Band_6

Step-Reg EVI Varience Contrast MTCI Band_2
PI EVI MTCI Band_2 Band_6 Band_3

MDI EVI Varience Contrast MTCI Band_2
SFM EVI Varience Contrast MTCI Band_2
None EVI Varience Contrast MTCI Band_2

Chinese Fir

LASSO CanopyDensity TreeAge Band_5 NDI45 NDVI
RFE CanopyDensity TreeAge Band_6 Band_2 Band_5

Step-Reg CanopyDensity TreeAge Band_6 Band_5 Band_3
PI CanopyDensity TreeAge Band_6 Band_2 Band_5

MDI CanopyDensity TreeAge Band_6 Band_2 Band_5
SFM CanopyDensity TreeAge Band_6 Elevation NDWI
None CanopyDensity TreeAge Band_6 Band_2 Band_5

Masson Pine

LASSO NDVI SAVI NDI45 Band_6 CanopyDensity
RFE Band_2 NDI45 Band_6 CanopyDensity NDWI

Step-Reg Band_2 EVI NDVI NDVIre NDI45
PI Band_2 EVI NDVIre NDI45 Band_6

MDI Band_2 EVI NDI45 Band_6 CIgreen
SFM Band_2 EVI NDI45 NDWI MTCI
None Band_2 EVI NDVI SAVI NDVIre

Mixed

LASSO TreeAge CanopyDensity Band_11 Elevation SoilHumus
RFE EVI TreeAge CanopyDensity Band_6 Band_2

Step-Reg EVI TreeAge CanopyDensity Band_6 Band_2
PI EVI TreeAge CanopyDensity Band_6 Band_2

MDI EVI TreeAge CanopyDensity Band_6 Band_2
SFM EVI TreeAge CanopyDensity Band_6 Band_2
None EVI TreeAge CanopyDensity Band_6 Band_2

All

LASSO TreeAge CanopyDensity Band_11 DomiSpecies VegeCover
RFE TreeAge CanopyDensity Band_6 Band_2 Band_3

Step-Reg TreeAge CanopyDensity Band_6 Band_2 Band_3
PI TreeAge CanopyDensity Band_6 Band_2 Band_3

MDI TreeAge CanopyDensity Band_6 Band_2 CIgreen
SFM TreeAge CanopyDensity Band_6 Band_2 CIgreen
None TreeAge CanopyDensity Band_3 Band_3 Band_3

After the statistics of the first three feature selection methods with good performance
in estimating FSV results, what we have found as follows: (1) In Lin’an, PI ranked first two
in all dominant tree species. (2) In Anji, RFE ranked first in coniferous, Masson pine, mixed,
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and all trees, and ranked third in Chinese fir. Besides, PI ranked first in broad-leaved and
Chinese fir and ranked third in other dominant tree species, except for mixed.

Table 5. Tuned hyperparameters and the range of hyperparameters.

Tuned Hyperparameters Range of Hyperparameters

n_estimators [40, 50, 60, 80, 100]
max_depth [2, 5, 6, 8, 10]

learning_rate [0.06, 0.08, 0.12, 0.15, 0.2]

Table 6. FSV estimation accuracy assessments on validation dataset by combining different variable
selection methods with XGBoost for different tree types in Lin’an District.

Dominant
Tree Species Variable Selection Method R2 RMSE(m3/mu) RMSEr (%) df1 df2 Significance

Broad-leaved

LASSO 0.7173 1.1028 33.95 13,784 1 0.000
RFE 0.7170 1.1029 33.95 13,784 1 0.000

Step-Reg 0.6917 1.1528 35.49 13,784 1 0.025
PI 0.7183 1.1009 33.89 13,784 1 0.000

MDI 0.7165 1.1046 34.01 13,784 1 0.000
SFM 0.6044 1.3067 40.23 13,784 1 0.034
None 0.7247 1.0880 33.50 13,784 1 0.000

Coniferous

LASSO 0.7025 1.6105 22.33 4438 1 0.000
RFE 0.7135 1.5795 21.91 4438 1 0.000

Step-Reg 0.7137 1.5792 21.90 4438 1 0.000
PI 0.7154 1.5744 21.83 4438 1 0.000

MDI 0.7093 1.5913 22.07 4438 1 0.000
SFM 0.7046 1.6047 22.25 4438 1 0.001
None 0.7126 1.5821 21.94 4438 1 0.000

Chinese Fir

LASSO 0.7558 1.1048 14.44 8845 1 0.000
RFE 0.7633 1.0877 14.22 8845 1 0.000

Step-Reg 0.7434 1.1329 14.81 8845 1 0.000
PI 0.7661 1.0813 14.13 8845 1 0.000

MDI 0.7648 1.0843 14.17 8845 1 0.000
SFM 0.7500 1.1183 14.62 8845 1 0.000
None 0.7646 1.0848 14.18 8845 1 0.000

Masson Pine

LASSO 0.7065 1.6984 26.07 7462 1 0.000
RFE 0.7094 1.6895 25.93 7462 1 0.000

Step-Reg 0.7189 1.6615 25.50 7462 1 0.000
PI 0.7248 1.6440 25.23 7462 1 0.000

MDI 0.7155 1.6713 25.65 7462 1 0.000
SFM 0.2727 2.6802 41.14 7462 1 0.000
None 0.7193 1.6608 25.49 7462 1 0.000

Mixed

LASSO 0.6630 1.3690 24.62 5629 1 0.000
RFE 0.6610 1.3567 24.40 5629 1 0.006

Step-Reg 0.6621 1.3529 24.33 5629 1 0.016
PI 0.6638 1.3469 24.23 5629 1 0.000

MDI 0.6838 1.3112 23.58 5629 1 0.000
SFM 0.5250 1.6098 28.95 5629 1 0.000
None 0.6623 1.3531 24.34 5629 1 0.027

All

LASSO 0.8247 1.3544 22.05 40,162 1 0.000
RFE 0.8380 1.3024 21.21 40,162 1 0.000

Step-Reg 0.8373 1.3051 21.25 40,162 1 0.000
PI 0.8384 1.3005 21.17 40,162 1 0.000

MDI 0.8367 1.3704 21.29 40,162 1 0.000
SFM 0.8358 1.3110 21.34 40,162 1 0.000
None 0.8376 1.3041 21.23 40,162 1 0.000
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Additionally, Table A1 exhibited that R2 of broad-leaved in Longquan area was nega-
tive. Figure A1 delineates the scatter plot graph of the estimated and observed FSV of the
broad-leaved in Longquan City. In Figure A1, we noticed the phenomenon showed that the
fitted result of broad-leaved in this area is poor. Table 1 showed that the sample amount of
broad-leaved in Longquan City is only 101, and the total amount of broad-leaved is 16,913,
accounting for less than 0.6%. However, the sample amount of Masson pine in Longquan
City is only 154, and the total amount of Masson pine is 9425, accounting for only 1.6%.
Figure A2 shows the scatter plot graph of the estimated and observed FSV of the Masson
pine in Longquan City. Both of their performances were worse than the same dominant
tree species in the other two regions. At the same time, from Table A1 and Figure A1,
it was found that whether all the feature variables were selected or part of the feature
variables selected after feature selection, the FSV of broad-leaved in Longquan result was
poor. Therefore, it was speculated that the poor estimated results might be due to the
uneven distribution of broad-leaved in Longquan area, or the sample data of broad-leaved
in Longquan area having too much noisy data. In a word, the small scale and minimal
diversity of dominant tree species may lead to unstable and unreliable experimental results,
which is the same idea held by Zhou et al. [24].

In order to observe the robustness and explanation of the selected features to different
tree species and verify the regional universality of different feature selection methods we
averaged the results of the test area of the same tree species, and obtained the results as
shown in Table 7.

According to the results of Tables 6, 7, A1 and A2, except for broad-leaved owing to
the bad-fitting in Longquan, we compared the top three best performance of the results.
Through compared variable selection methods of the average results with those of the
results of tree species of the separate three regions comprehensively, what we could find
was as follows. In the feature selection of coniferous, RFE performed better both in the
average and in the separate regions. In the feature selection of Chinese fir and all, PI
performed better both in the average and in the separate regions. In the feature selection
of Masson pine, MDI performed better both in the average and in the separate regions.
However, in the feature selection of mixed, MDI performed better in the average while
RFE performed better in the separate regions comprehensively. From the results of the
mixed species, we found that in Longquan and Anji the results between MDI and RFE were
considerably close, while in Lin’an the results in MDI were a lot better than RFE, which is
the reason why MDI is the best result in the average result.

Table 7. FSV estimation accuracy assessments on validation dataset on average among three areas.

Dominant Tree Species Variable Selection Method R2 RMSE(m3/mu)

Broad-leaved

LASSO 0.3178 1.7599
RFE 0.1477 1.9380

Step-Reg 0.1512 1.1881
PI 0.2387 1.8469

MDI 0.1679 1.9222
SFM 0.2137 1.9118
None 0.1986 1.8961

Coniferous

LASSO 0.5969 1.8031
RFE 0.6252 1.7514

Step-Reg 0.6024 1.7932
PI 0.6169 1.7677

MDI 0.6125 1.7738
SFM 0.6106 1.7873
None 0.5990 1.7967
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Table 7. Cont.

Dominant Tree Species Variable Selection Method R2 RMSE(m3/mu)

Chinese Fir

LASSO 0.7303 1.7796
RFE 0.7379 1.7534

Step-Reg 0.7248 1.7986
PI 0.7434 1.7376

MDI 0.7389 1.7537
SFM 0.7204 1.8194
None 0.7367 1.7560

Masson Pine

LASSO 0.6868 1.9006
RFE 0.7017 1.8514

Step-Reg 0.7025 1.8527
PI 0.6871 1.9027

MDI 0.7034 1.8543
SFM 0.4501 2.4861
None 0.7021 1.8596

Mixed

LASSO 0.5720 1.7426
RFE 0.5917 1.7081

Step-Reg 0.5879 1.7133
PI 0.5890 1.7119

MDI 0.5953 1.9590
SFM 0.4528 1.9590
None 0.5874 1.7153

All

LASSO 0.7835 1.6758
RFE 0.7972 1.6207

Step-Reg 0.7949 1.6291
PI 0.7983 1.6154

MDI 0.7968 1.6427
SFM 0.7928 1.6388
None 0.7925 1.6238

6. Discussion

The purpose of this study was to use satellite imagery data, terrain data, and forest
inventory data as feature variables to estimate the FSV of six dominant tree species in
different regions by using different variable selection methods, and to explore the better
performance of variable selection methods according to the predicted results. FSV is an
important variable in forest management reports at the provincial and national levels. Using
Sentinel-2A imageries to process and establish models to estimate FSV maps is particularly
important in southern China. One of the reasons for this is that forestry inventory in
southern China is an important part of China’s forestry [43]. In addition, feature selection
methods can lead to the reduction of high-dimensional data, minimize the data storage
space, and improve the interpretability of the model. Consequently, it was used to improve
the performance of the prediction model. In order to explore which variable selection
approach has better performance on the same type of dominant tree species in different
regions, six feature selection algorithms, LASSO, RFE, Step-Reg, PI, MDI, and SFM, were
selected and combined with XGBoost.

Based on forest inventory data, Sentinel-2A spectral bands, terrain factors, vegetation
indices, and texture features extracted by Sentinel-2A imageries, this study explored the per-
formance about the FSV in different regions through using six feature selection algorithms
combined with XGBoost. The results exhibited that the variable selection methods can
select the best-performing features, which would change according to different dominant
tree types or the same dominant tree type in different regions. From Tables 6, A1 and A2,
we found that the variables selected by SFM performed unstably. Moreover, from the
average results of the three regions, we found that the feature selection algorithm was
better than those that had no use of feature selection. It showed that using partial feature
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selection can reduce capacity of data storage space, make models more explanatory, and
make the predicted results more accurate. In other words, variable selection is conducive
to improving the performance of FSV estimation, and this conclusion is consistent with the
conclusion Li et al. obtained [43].

From the FSV estimated results of three regions, all tree species estimation performed
better than the classified tree estimated error. This result was consistent with [44] forest
growth simulation, which used kNN to estimate the FSV based on Landsat TM imagery
and forest field survey data at the stand level. The results of this study showed that the FSV
estimation errors of different tree species are significantly higher than the overall estimation
errors. At the same time, when exploring the more important features of each dominant
tree type’s dataset, the importance of tree age and canopy density is very important for
the prediction of FSV of multiple dominant tree types, and the multiple features in forest
inventory data are important for the accurate prediction of FSV.

In the study, the amount of broad-leaved in Longquan is small, and the final estimated
results were poor, while the predicted results of broad-leaved in other two areas are better.
Besides, from Table 1, we found that in broad-leaved, the dominant tree in three regions
could be drawn that Longquan< Anji< Lin’an. In Masson pine, it could be drawn that
Longquan< Anji <Lin’an. In coniferous, it could be drawn that Anji < Longquan < Lin’an. In
the best performance of these dominant tree species, we found that in broad-leaved, it could
be drawn that Longquan < Anji < Lin’an. In Masson pine, however, it could be drawn that
Longquan < Lin’an < Anji. In coniferous, it could be drawn that Anji < Lin’an < Longquan.
Although broad-leaved and Masson pine in Longquan only account for 0.60% and 1.63% of
all the broad-leaved and Masson pine in three regions, respectively, Masson pine’s fitting
results have reached the qualified correlation index (R2 > 0.6), while R2 in broad-leaved
were all negative. From Figures A1 and A2, it is obvious that the fitting results of Masson
pine are much better than broad-leaved, which showed that the small amount is not the
only reason for bad fitting. On the contrary, we noticed that Masson pine in Anji and Lin’an,
respectively, account for 19.18% and 79.18% in all Masson pine, while Chinese fir in Lin’an
and Longquan account for 64.82% and 22.61%, respectively. From both of the results, we
found that if the samples occupy enough in the whole dominant tree species, the results
were not affected by the amount of the samples. We draw a conclusion that the small-scale
and diversity of tree species may lead to the instability and unreliability of experimental
results, which is the same as Zhou et al. [24] considered.

From Tables 6, A1 and A2, we found that whether it was classified by tree species or
by regions, MDI, PI and RFE performed well. From Table 7, the top three performance
of the variable selections of the average results showed that MDI, PI, and RFE also have
good performance. Whether in the average or in the separate regions, their final estimated
results were terribly close. Luo et al. [18] used three variable selection methods and three
machine learning algorithms to estimate the AGB and found that the combination of RFE
for variable selection and CatBoost as the regression approach got the best accuracy, which
showed that RFE is an effective method to optimize the variables. In the meanwhile, not
only RFE, but MDI and PI, were recommended for variable selection to estimate the FSV.

With further research, the estimated effect may be further improved. This study
is still applied to some forest inventory data, most of which still needs to be collected
artificially in the field. Future studies may consider using radar or satellite imagery to study
forest accumulation estimation through in-depth learning and fusion of satellite imagery in
isolation from these artificial factors.

7. Conclusions

In this study, six dominant tree species were selected in Lin’an District, Anji County,
and Longquan City. The FSV of tree species in each area was estimated by using different
variable selection methods combined with XGBoost. The regional suitability of different
feature selection methods in each tree species was studied through average results, and
three conclusions were drawn from data analysis. The following conclusion can be drawn:
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(1) MDI, PI, and RFE were recommended to select variables in dominant tree species
from different regions.

(2) Feature selection methods that simultaneously select the optimal features will change
according to different tree types, and they are crucial to improve the accuracy of
forest stock volume estimation. Moreover, tree age and canopy density were of great
importance to the estimation of the FSV.

(3) The small size and diversity of dominant tree types might cause the experiment
results to be unstable and unreliable. Furthermore, if the number of tree samples is
big enough, the above bad-fitting condition would not easily depend on the number.
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Appendix A

Table A1. FSV estimation accuracy assessments on validation dataset by combining different variable
selection methods with XGBoost for different tree types in Longquan City.

Dominant
Tree Species Variable Selection Method R2 RMSE(m3/mu) RMSEr (%) df1 df2 Significance

Broad-leaved

LASSO −0.3266 3.2272 80.51 100 1 0.000
RFE −0.8364 3.7513 93.58 100 1 0.000

Step-Reg −0.6511 3.5471 88.49 100 1 0.002
PI −0.5768 3.5055 87.45 100 1 0.001

MDI −0.7815 3.7188 92.77 100 1 0.004
SFM −0.5134 3.4666 86.48 100 1 0.000
None −0.7012 3.6516 91.10 100 1 0.000

Coniferous

LASSO 0.6829 1.9913 28.82 1655 1 0.002
RFE 0.6846 1.9827 28.69 1655 1 0.000

Step-Reg 0.6806 1.9974 28.91 1655 1 0.000
PI 0.6800 1.9982 28.92 1655 1 0.000

MDI 0.6883 1.9742 28.57 1655 1 0.000
SFM 0.6708 2.0238 29.29 1655 1 0.000
None 0.6823 1.9924 28.83 1655 1 0.000

Chinese Fir

LASSO 0.8042 2.0684 37.49 3085 1 0.000
RFE 0.8097 2.0397 36.97 3085 1 0.000

Step-Reg 0.7956 2.1139 38.32 3085 1 0.000
PI 0.8099 2.0376 36.93 3085 1 0.000

MDI 0.8049 2.0660 37.45 3085 1 0.000
SFM 0.7859 2.1631 39.21 3085 1 0.000
None 0.8112 2.0314 36.82 3085 1 0.000

Masson Pine

LASSO 0.6439 2.4748 27.14 153 1 0.000
RFE 0.6667 2.3867 26.17 153 1 0.000

Step-Reg 0.6741 2.3775 26.07 153 1 0.000
PI 0.6196 2.5525 27.99 153 1 0.000

MDI 0.6756 2.3845 26.14 153 1 0.000
SFM 0.5206 2.8857 31.64 153 1 0.000
None 0.6695 2.4073 26.39 153 1 0.000
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Table A1. Cont.

Dominant
Tree Species Variable Selection Method R2 RMSE(m3/mu) RMSEr (%) df1 df2 Significance

Mixed

LASSO 0.5149 2.2943 49.40 787 1 0.000
RFE 0.5079 2.3156 49.86 787 1 0.000

Step-Reg 0.5074 2.3143 49.83 787 1 0.000
PI 0.5041 2.3258 50.08 787 1 0.000

MDI 0.5014 2.3289 50.14 787 1 0.000
SFM 0.4148 2.5223 54.31 787 1 0.000
None 0.4955 2.3389 50.36 787 1 0.000

All

LASSO 0.7373 2.1490 37.70 5784 1 0.000
RFE 0.7570 2.0660 36.24 5784 1 0.000

Step-Reg 0.7572 2.0657 36.94 5784 1 0.000
PI 0.7627 2.0420 35.82 5784 1 0.000

MDI 0.7611 2.0494 35.95 5784 1 0.000
SFM 0.7491 2.1003 36.84 5784 1 0.000
None 0.7560 2.0707 36.33 5784 1 0.000

Table A2. FSV estimation accuracy assessments on validation dataset by combining different variable
selection methods with XGBoost for different tree types in Anji County.

Dominant
Tree Species Variable Selection Method R2 RMSE(m3/mu) RMSEr (%) df1 df2 Significance

Broad-leaved

LASSO 0.5626 0.9498 22.32 3026 1 0.000
RFE 0.5549 0.9559 22.47 3026 1 0.000

Step-Reg 0.5648 0.9438 22.18 3026 1 0.000
PI 0.5746 0.9342 21.96 3026 1 0.003

MDI 0.5688 0.9433 22.17 3026 1 0.002
SFM 0.5502 0.9620 22.61 3026 1 0.000
None 0.5723 0.9486 22.06 3026 1 0.000

Coniferous

LASSO 0.4053 1.8075 25.72 442 1 0.000
RFE 0.4775 1.6920 24.07 442 1 0.000

Step-Reg 0.4129 1.8029 25.65 442 1 0.000
PI 0.4552 1.7304 24.62 442 1 0.000

MDI 0.4399 1.7559 24.98 442 1 0.000
SFM 0.4564 1.7335 24.66 442 1 0.000
None 0.4021 1.8155 25.83 442 1 0.000

Chinese Fir

LASSO 0.6308 2.1655 39.51 1715 1 0.000
RFE 0.6408 2.1329 38.92 1715 1 0.000

Step-Reg 0.6354 2.1491 39.21 1715 1 0.000
PI 0.6543 2.0940 38.21 1715 1 0.000

MDI 0.6470 2.1109 38.51 1715 1 0.000
SFM 0.6253 2.1769 39.72 1715 1 0.000
None 0.6344 2.1518 39.26 1715 1 0.000

Masson Pine

LASSO 0.7099 1.5287 15.69 1807 1 0.000
RFE 0.7291 1.4780 15.17 1807 1 0.000

Step-Reg 0.7144 1.5191 15.59 1807 1 0.000
PI 0.7168 1.5116 15.51 1807 1 0.000

MDI 0.7190 1.5070 15.47 1807 1 0.000
SFM 0.5569 1.8923 19.42 1807 1 0.000
None 0.7174 1.5107 15.50 1807 1 0.000

Mixed

LASSO 0.5380 1.5646 31.78 1212 1 0.002
RFE 0.6063 1.4521 29.49 1212 1 0.000

Step-Reg 0.5941 1.4726 29.91 1212 1 0.000
PI 0.5990 1.4630 29.71 1212 1 0.000

MDI 0.6006 1.4601 29.65 1212 1 0.000
SFM 0.4186 1.7450 35.44 1212 1 0.000
None 0.6045 1.4540 29.53 1212 1 0.000
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Table A2. Cont.

Dominant
Tree Species Variable Selection Method R2 RMSE(m3/mu) RMSEr (%) df1 df2 Significance

All

LASSO 0.7884 1.5239 25.64 8206 1 0.000
RFE 0.7966 1.4936 25.13 8206 1 0.000

Step-Reg 0.7903 1.5164 25.51 8206 1 0.000
PI 0.7938 1.5037 25.30 8206 1 0.000

MDI 0.7925 1.5083 25.37 8206 1 0.000
SFM 0.7935 1.5050 25.32 8206 1 0.000
None 0.7958 1.4966 25.18 8206 1 0.000
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