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Abstract: Height to crown base (HCB) is an important variable used as a predictor of forest growth
and yield. This study developed a nonlinear, mixed-effects HCB model through inclusion of plot-level
random effects using data from 29 sample plots distributed across a state-owned Yixing forest farm
in Jiangsu province, eastern China. Among several predictor variables evaluated in the analyses,
bamboo height, canopy density, and total basal area of bamboo with a diameter larger than that
of the subject bamboo individual contributed significantly to the HCB variations. The inclusion of
random effects improved the prediction accuracy of the model significantly, indicating that the HCB
variations within and across the sample plots were substantial. The model was localized using four
sampling strategies, and the study identified that using two medium-sized bamboos by diameter at
breast height per sample plot resulted in the smallest prediction error. This strategy, which would
balance both measurement cost and potential error, may be applied to estimate the random effects
and localization of the nonlinear mixed-effects HCB model for moso bamboo in eastern China.

Keywords: random effects; subject-specific prediction; response calibration; BAL; modeling bam-
boo height

1. Introduction

Since the signing of the Kyoto Protocol in December 1997, the ability of woody plants to
store carbon has been widely examined [1–4]. The most important environmental services
related to climate change and global warming are CO2 absorption from the atmosphere
and carbon storage in the terrestrial ecosystem. Some bamboo species, including Makino
bamboo (Phyllostachys makinoi) [5] and moso bamboo (Phyllostachys heterocycla (Carr.) Mit-
ford cv. Pubescens) [1,3,4], can accumulate substantial amounts of biomass in a short period.
The average annual carbon storage of moso bamboo is 2.39 times that of Cunninghamia
lanceolata, and after 40 days of high growth, there could be an accumulation of 76% of
carbon by mature bamboo [1,3]. Under the effective management, bamboo shoots mature
into the culms in 5 years and can be harvested for different uses.

The sixth assessment report by the Intergovernmental Panel on Climate Change (IPCC)
reports the average concentration of atmospheric CO2 as 410 ppm. Carbon sequestration
by growing forests is a cost-effective option for mitigating CO2 emission caused by human
activities [2]. Thus, the carbon cycle remains an important topic worldwide for research,
and all green plants, including bamboo, play major roles for carbon storage. Although
forest areas have continued to decline over the last 30 years worldwide, bamboo forests
have increased at an average rate of 3% annually [6]. Bamboo forests play an important
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role in the mitigation of climate change. Therefore, they are among the most important
forest types worldwide.

The bamboo canopy is an important part of the nutrient and energy exchange between
bamboo and the environment. The canopy functions as an important site for physiological
processes, such as photosynthesis and transpiration, and it drives nutrient absorption [7],
which affects biomass production and distribution and bamboo quality. Bamboos share
similar characteristics with trees, such as height, crown size, bole diameter, and HCB.
However, because of unique characteristics, such as fast growth, high production efficiency,
and rapid maturation, growth patterns of bamboo differ from those of tree species. In recent
decades, carbon stock of moso bamboo forests has steadily increased, serving as a carbon
sink in the subtropical region of China [2,8]. In addition to carbon fixing, moso bamboo
forests also provide other ecosystem services, such as water storage, soil proliferation, and
biodiversity enhancement [9], which are important forest ecosystem functions.

Bamboo crown ratio (ratio of crown length to height) is a key index for evaluating
the vitality and quality of bamboo. The crown ratio can be used as an important predictor
variable in forest growth and yield models [10,11]. Several studies calculated crown length
by measuring total height and HCB [12]. Analyzing and understanding crown ratio is
important for determining the vitality and production efficiency of bamboo.

Crown ratio can be measured directly or indirectly using HCB model. HCB, which
is height of the first living branch from the ground [13], is necessary for estimating the
crown ratio. Knowledge of HCB provides some advantages, such as determination of
canopy change patterns and prevention of potential forest fires. Due to high stand density
of bamboo forests and difficulty in distinguishing each bamboo crown, measuring HCB
is usually challenging, time-consuming, and expensive [14]. Therefore, estimating HCB
using an established HCB model is a better alternative for forest managers.

Studies report negative correlation between HCB and utilization rate of bamboo culms
and the size of bamboo crowns [15–18]. The HCB model can predict bamboo canopy size,
which is important for physiological processes, such as photosynthesis, transpiration, and
nutrient absorption. Bamboo canopy affects the production and distribution of bamboo
forest, and, consequently, carbon storage of bamboo forests. The HCB models developed
so far are based on data from various tree species [11,19–21]; however, bamboo HCB
models are not available in the literature. Data typically used for HCB modeling are
hierarchically structured, and observations within the subject (sample plot and culm) are
most likely correlated. Mixed-effects modeling, which effectively addresses these problems,
is a possible solution. Thus, nonlinear mixed-effects (NLME) modeling has been frequently
used in forest modeling in recent years [22–25]. The NLME model predicts a response
variable with or without the estimated random effects from prior measurements of the
response variable of interest [23,24].

This study uses moso bamboo distributed mostly in tropical and subtropical regions of
Asia. Moso bamboo provides wood and food for humans and has economic and ecological
benefits [26,27].

Given the importance of moso bamboo, which lacks quantitative investigation, such
as HCB modeling, this study thus aimed to: (1) develop an NLME HCB model for moso
bamboo forests and (2) determine the optimal number of bamboo individuals per sample
plot, which is necessary to estimate the random effects and calibration of a NLME HCB
model. Results of this study will be useful for carbon accounting and management of
bamboo forests in eastern China.

2. Materials and Methods
2.1. Study Area and Data

The study was conducted in a state-owned bamboo forest farm in Yixing, Jiangsu
Province (31◦15′01′ ′–31◦15′40′ ′ N, 119◦43′52′ ′–119◦44′41′ ′ E) (Figure 1). The area has a sub-
tropical monsoon climate. Affected by Taihu Lake and the ocean, the annual precipitation
and heavy rainfall are unevenly distributed in time and space throughout the year. Precip-
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itation was concentrated in the summer. The average annual precipitation is 1805.4 mm,
and the summer precipitation accounts for half of the annual precipitation. Annual average
maximum and minimum temperatures are 20–24 ◦C and 12–14 ◦C, respectively.

Figure 1. Study area showing location of sample plots. Note: (A, B, C, D and E) represents China,
Jiangsu Province, Wuxi City, Yixing City, and sample plot locations, respectively.

In total, 29 temporary sample plots (20 m × 3 m) were established, covering a wide
range of stand conditions, and bamboo data collected from 229 bamboo individuals from
July through September, 2019 (Figures 1 and 2). Sample plots were selected to provide
representative information for a variety of bamboo stand structures, densities, heights,
ages, and site productivity. Parameters measured in each sample plot were height to crown
base (HCB), bamboo height (H), and diameter at breast height (DBH). Ultrasonic altimeter
was used to measure H and HCB. The canopy density was measured using fisheye lenses.
Scatter plots distributions between height to crown base (HCB) and different predictor
variables are shown in Figure 3. The 29 sample plots were randomly split into two groups:
24 plots with 195 bamboo individuals were used for model fitting, while five plots with
34 bamboo individuals were used for model validation (Table 1). Figure 2 shows the
characteristics of bamboo in this area (stand density is high and bamboo crown is not easy
to distinguish), indicating the importance and urgency of building HCB model.
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Figure 2. Actual situation of bamboo forest in the sample plot.

Figure 3. Scatter plots distribution between height to crown base (HCB) and different predictor
variables used for modeling HCB for moso bamboo (diameter at breast height (DBH), quadratic mean
DBH (QMD), relative diameter (ratio of DBH of individuals to quadratic mean diameter; RD), bamboo
height (H), canopy density (CD), and total basal area of all bamboos with diameters larger than that of
the subject bamboo (BAL), r represents the correlation analysis between HCB and different variables,
and the p value between HCB and each variable is <0.001).



Forests 2022, 13, 823 5 of 15

Table 1. Summary statistics of measurements of bamboo variables. Height to crown base (HCB),
diameter at breast height (DBH), quadratic mean DBH (QMD), basal area (BA), relative diameter
(ratio of DBH of individual to QMD; RD), base area per hectare (BA), bamboo height (H), canopy
density (CD), total basal area of all bamboos with diameter larger than that of the subject bamboo
(BAL), Number of culms per hectare (N), and standard deviation (SD).

Variable Min Max Mean SD

DBH (cm) 5.30 13.30 10.00 1.42
QMD (cm) 8.90 11.10 9.96 0.48

RD 0.52 1.37 0.99 0.13
BA (m2 ha−1) 20.75 72.56 46.38 16.31

HCB (m) 2.10 9.90 8.10 1.47
H (m) 6.70 15.90 14.14 1.55

CD 73.00 87.00 78.71 5.42
BAL (m2 ha−1) 0 70.58 23.44 17.32
N (culms ha−1) 833.00 2333.00 1299.00 481.08

2.2. Selection of Predictor Variables

Owing to similarities between moso bamboo and tree species, such as height, crown
size, HCB, and bole diameter, HCB modeling methods for trees were adapted for bamboo
HCB modeling.

Evaluation was conducted for the factors affecting HCB, such as bamboo size, health
and vigor, and site characteristics, and potential effects of eight variables on the HCB
variations. Predictor variables selected were not significantly correlated among themselves
and showed considerable contributions to the HCB models. Multicollinearity among the
independent variables was verified with the variance inflation factor (VIF). According
to a common rule-of-thumb, multicollinearity among variables was considered to occur
when VIF > 5 [28]. Thus, the variance inflation factor (VIF) was used to examine whether
variables would be collinearity with each other, and variables with VIF < 5 were retained in
our final models.

2.3. HCB Model Development
2.3.1. Base Model

Three versatile growth functions for HCB modeling (Table 2) were selected from sev-
eral previously reported functions [11,20,21]. These basic functions and their corresponding
NLME versions were fitted to determine the best-performing model for further analyses
using nonlinear least square regression. Although DBH and diameter larger than that
of the subject bamboo individual (BAL) could have a linear relationship, their separate
contributions to the HCB model were investigated, and the parameter that contributed the
most to this study’s final HCB model was selected.

The most common statistical measures (Equations (1)–(4)) were used to evaluate fitting
performance of the basic models: the model with largest pseudo coefficient of determination
(pseudo− R2) and smallest mean residual error (e), root mean square error (RMSE), and
total relative error (TRE) was selected for further analyses.

Table 2. HCB candidate models considered (HCB: height to crown base; H: bamboo height; x: vector
of bamboo variables; β, a: parameter vector; ∞: infinity).

Designation Mathematical Form Name of Function Value Range Source

M1 HCB = H[1− e(βx)] Exponential (−∞, H) [10]
M2 HCB = H[1− ae(βx)2

] Exponential (−∞, H) [28]
M3 HCB = H

[1+e(βx)]
Logistic (0, H) [29]
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e =
1
n

n

∑
i=1

(HCBi − ˆHCBi) (1)

pseudo−R2 = 1−
n

∑
i=1

(HCBi − ˆHCBi)
2
/ n

∑
i=1

(HCBi −

n
∑

i=1
HCBi

n
)2 (2)

RMSE =

√
1
n

n

∑
i=1

(HCBi − ˆHCBi)
2 (3)

TRE =
n

∑
i=1

∣∣HCBi − ˆHCBi
∣∣/ n

∑
i=1

ˆHCBi (4)

where HCBi and ˆHCBi are the measured and predicted HCB values for bamboo i respec-
tively, and n is the number of observations.

2.3.2. Mixed-Effects HCB Model

The NLME HCB models were established using the appropriate predictor variables
and random effects at sample plot-level. All combinations of fixed and random effect
parameters were considered to determine the most appropriate association in the model.
The NLME model would have a within-sample plot variance-covariance matrix of the error
term, which is defined as:

Ri = σ2G0.5
i ΓiG0.5

i (5)

where Ri is the variance-covariance matrix of error, σ2 is a scaling factor of the error
dispersion, Gi is the ni × ni diagonal matrix, which is the expression of the within-sample
plot heteroscedasticity variance, and Γi is the ni × ni matrix showing the within-sample
plot autocorrelation error structure. As the residual analysis showed insignificant effects
of heteroscedasticity and autocorrelations, both Gi and Γi were reduced to the identity
matrices. See for detailed explanation and calculation method in the mixed-effects modeling
literature [22,30].

Vector µi of the random effects (ui1, ui2, ui3) in these models (Equations (M7) and
(M8) ) was assumed to have a multivariate normal distribution with zero mean and plot
variance–covariance matrix D, defined by Equation (6).

D =


σ2

µi1
σ2

µi1µi2
σ2

µi1µi3

σ2
µi2µi1

σ2
µi2

σ2
µi2µi3

σ2
µi3µi1

σ2
µi3µi2

σ2
µi3

 (6)

2.4. Parameter Estimation

Basic models were estimated using the nonlinear least square regression, and param-
eters of the NLME HCB models were estimated with the NLME package in R software
(version 4.1.1) using the maximum likelihood method. Fitting performance of the ba-
sic models was evaluated using the statistical measures presented in Equations (1)–(4).
Subsequently, the model with the best-fit statistics was selected for further analyses.

2.5. Prediction with NLME Models

The best fitting base model with the selected predictor variables was used to formu-
late a one-level NLME HCB model by introducing sample plot-level random effects into
the model. The NLME model alternatives that resulted from all the possible expansion
combinations of fixed-effects parameters with the random effects were fit to the data. The
resulting model with the smallest AIC, BIC, and the largest log-likelihood (LL) was selected
for further analyses. To avoid the problems due to over-parameterization, we performed a
likelihood-ratio test (LRT) [31].
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The model with the best-fit statistics could be applied for HCB predictions, either
with the random effects included (subject-specific model) or without random effects (M
response: only a fixed part of the NLME) included into the model. However, M response
did not provide a high prediction accuracy; therefore, the estimated random effects should
be added to the M response for high accuracy. The empirical best linear unbiased prediction
(EBLUP) theory (Equation (7)) [22,30] was used to estimate the random effects and calibrate
the NLME HCB model.

µ̂i = ψ̂ZT
i
(

R̂i + Ziψ̂ZT
i
)−1ei

= ψ̂ZT
i
(

R̂i + Ziψ̂ZT
i
)−1

[yi − f (β̂, µ∗i , xi) + Ziµ
∗
i ]

(7)

where µ̂i is the estimated random effects for the ith sample plot (I = 1,. . ., M); f () is the NLME
HCB model; β̂ is the vector of the fixed effects β; xi is the vector of the predictor variables;
ψ̂ is the estimated variance-covariance matrix for the random effects µi (i = 1,. . .M); R̂i is the
estimated variance-covariance matrix (Equation (5)) of the errors ei; and Zi is the ni × q design
matrix of the partial derivatives of the estimated NLME HCB model f () with respect to the
random effects ui.

2.6. Response Calibration or Localization of NLME HCB Model

Multiple strategies were considered to select the appropriate number of bamboo
individuals and their sizes per sample plot to estimate the random effects of NLME model.
Forest modeling studies have shown that the optimal number of sample trees per sample
plot can be used to estimate random effects [11,20,24,28]. However, none of these studies
were conducted for bamboo NLME modeling. Therefore, considering the importance of
determining the optimum number of bamboo individuals per sample plot, the following
selection strategies were used to estimate random effects and identified the optimal number:

(i). The 1–3 randomly selected bamboo plants per sample plot (random);
(ii). The 1–3 bamboo plants with an average DBH per sample plot (medium);
(iii). The 1–3 bamboo plants with the largest DBH per sample plot (largest);
(iv). The 1–3 bamboo plants with the smallest DBH per sample plot (smallest).

Under the same sampling strategy mentioned above, some studies repeated 40 times
and showed robust results [11,20,24]. In this case, (though sample data used in the current
study is relatively small), in order to ensure the stability of the results. Each strategy was
repeated 100 times to compute the prediction statistics, such as RMSE (Equation (3)), and
TRE (Equation (4)), and evaluate the accuracy of each strategy.

2.7. Evaluation of Prediction Performance of NLME HCB Model

Validity of the final NLME HCB model was assessed using an independent dataset
consisting of 34 bamboo individuals from five randomly allocated sample plots. The deviations
of the predicted HCB from the observed HCB were used to compute e, pseudo− R2, RMSE,
and TRE (Equations (1)–(4)).

3. Results
3.1. Selection of Predictor Variables

Only three variables were retained in the final NLME HCB model based on the VIF
criterion (VIF < 5), which is commonly used for variable selection, such as bamboo height
(H), canopy density (CD), and diameter larger than that of the subject bamboo individual
(BAL) (Table 3). These three variables had significant contributions to the HCB variations
(Figure 3).
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Table 3. Variance influence factor (VIF) of the predictor variables evaluated.

DBH QMD RD CD H BAL

VIF 559.8993 66.1968 493.1091 1.3518 1.8514 2.5792

3.2. Base Model

Each basic function was expanded (Table 2) by including three predictor variables
identified (H, CD, and BAL) (Table 4). The parameter estimates and fit statistics for these
models are presented in Table 5. All parameter estimates were significant (p < 0.05), except
β2 of M5. HCB was negatively correlated with both the BAL and CD. Compared with M4
and M6, M5 fitted relatively poorly. The fit statistics calculated using the model fitting
dataset for M4 and M6 shows that each model performed almost identically; hence, M4
and M6 were selected to build the NLME HCB model.

Table 4. Summarized forms of HCB functions, which were expanded through inclusion of various
predictor variables.

Model Forms Designation

HCB = H[1− e(β1+β2CD+β3BAL)] M4

HCB = H[1− β1e(β2CD+β3BAL)2
] M5

HCB = H
1+e(β1+β2CD+β3BAL)2

M6

Note: HCB: height to crown base, H: bamboo height, CD: canopy density, BAL: basal area of all bamboos with
diameter larger than the subject bamboo individual, β1, β2, β3 are the model parameters to be estimated.

Table 5. Parameter estimates and fit statistics of the three basic models.

Parameter M4 M5 M6

β1
−0.2407
(0.1368)

0.4326
(0.0048)

0.8140
(0.2464)

β2
−0.0078
(0.0017)

−0.0011
(0.0010)

−0.0141
(0.0030)

β3
0.0021

(0.0005)
0.0081

(0.0015)
0.0036

(0.0010)
e −0.0263 −0.0293 −0.0269

pseudo− R2 0.7224 0.7001 0.7215
RMSE 0.7763 0.8068 0.7775
TRE 0.9650 1.0433 0.9681

Note: β1, β2, β3: parameters, e: mean residual error, RMSE: root mean square error, TRE: total relative error,
pseudo− R2: pseudo coefficient of determination. The numbers in the parenthesis are the standard errors.

3.3. NLME HCB Models

By incorporating random effects to account for sample plot-specific effects, M4 and
M6 were used to expand as NLME HCB models (Table 6). Table 7 presents the parameter
estimates and fit statistics for these models. Compared with the models without random
effects (M4 and M6), TRE and RMSE of the NLME models (M7 and M8) largely decreased
while pseudo-R2 increased. Compared with the model index of M6, TRE and RMSE of M8
decreased by 20.23% and 10%, respectively, pseudo-R2 increased by 7.33%. No significant
heteroscedasticity existed in the residuals of these models (Figure 4).



Forests 2022, 13, 823 9 of 15

Table 6. Forms of the NLME HCB models with random effects added to them.

Model Forms Designation

HCB = H
{

1− e[β1+µi1+(β2+µi2)CD+(β3+µi3)BAL]
}
+ ξi M7

HCB = H
1+e[β1+µi1+(β2+µi2)CD+(β3+µi3)BAL] + ξi M8

Note: HCB: height to crown base, H: bamboo height, CD: canopy density, BAL: basal area of all bamboos
with diameter larger than the subject bamboo individual, β1, β2, β3: parameters to be estimated, ξi : error term,
µi1, µi2, µi3: sample plot-specific random effects.

Table 7. Parameter estimates and fit statistics of the NLME HCB models.

Parameter M7 M8

β1
−0.3212
(0.1031)

0.7660
(0.3197)

β2
−0.0066
(0.0013)

−0.0131
(0.0040)

β3
0.0010

(0.0004)
0.0016

(0.0007)
Variance-covariance

matrix of random
effects

Sample plot
2.21 × 10−09

2.48 × 10−11

3.39 × 10−11

0.0924
1.15 × 10−05

2.11 × 10−07

e −0.1005 −0.0883
pseudo− R2 0.7122 0.7744

RMSE 0.7904 0.6997
TRE 0.9848 0.7723

Notes: Definitions of each acronym and symbol are the same as in Table 5.

Figure 4. Residuals of NLME HCB models: M7 (A) and M8 (B) at the sample plot-level.

The AIC, BIC, and -2log likelihood values of different models are shown in Table 8. The
AIC, BIC, and -2log likelihood calculated by the model with the random effects parameters
is smaller than that of the model fitted with the ordinary least square regression method
(also known as traditional modeling method). It indicates that adding random effects
parameters does not lead to over parameterization, and could prove that the mixed-effects
model was more appropriate than the traditional model for HCB modeling.
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Table 8. AIC, BIC, and -2log likelihood values of different models.

Model Name −2log Likelihood AIC BIC

M4 −221 451 464
M6 −222 452 465
M7 −188 393 418
M8 −166. 340 366

3.4. Model Evaluation

Table 9 presents prediction statistics of the NLME HCB models (M7 and M8) based on
the validation data. The mean prediction bias for these models did not differ statistically
(p > 0.05). Compared with the models fitted without random effects (M4 and M6), their
corresponding NLME model counterparts had the smaller e, RMSE, and TRE, and larger
pseudo − R2. M8 outperformed M7 in both the fit and prediction statistics. As M8 has
simpler structure than M7, it is preferred for recommending for prediction of the moso
bamboo HCB.

Table 9. Evaluation indicators with the model testing dataset: mean residual error (e), pseudo coefficient
of determination (pseudo− R2), root mean square error (RMSE), and total relative error (TRE).

Designation e pseudo−R2 RMSE TRE

M7 −0.0064 0.6602 0.5067 0.3849
M8 −0.0064 0.6642 0.5037 0.3803

3.5. Model Prediction

Four selection strategies were considered for random effects prediction using EBLUP
theory, and calibration of the best fitted NLME HCB model (M8) (Equation (6); Figure 5).
Each of the four strategies yielded similar RMSE and TRE values.

Figure 5. Performance of different selection strategies (root mean squared error (RMSE), total relative
error (TRE), nonlinear ordinary least square (NLS; M6), mean response (M response) of M8, and M8
with four sampling strategies and DBH sample sizes per sample plot, for estimating the random
effects (random: randomly selected DBH; largest: the largest DBH; medium: medium DBH; and
smallest: the smallest DBH)).

Regardless of the number of bamboo samples (1–3 bamboo individuals per sample
plot) used in the calibration, the RMSE and TRE of M8 were smaller than those of the M
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response and M6 model. The prediction accuracy of M8 increased gradually when more
bamboo individuals were used to estimate random effects. When two randomly selected
average-sized (in terms of DBH) bamboo individuals per sample plot were used to estimate
random effects, M8 produced the smallest RMSE and TRE values.

As the number of bamboo individuals increased, the RMSE decreased (Figure 5). The
use of average-sized bamboo per sample plot led to the largest reduction in RMSE and TRE
values compared to those of M response. RMSE and TRE can be further reduced by using
a larger number of average-sized bamboo individuals in the calibration. Owing to reduced
data collection time and cost of two average-sized bamboo individuals per sample plot,
applying this strategy to the NLME HCB model (M8) could produce the desired accuracy
and efficiency.

4. Discussion

Due to the uncertainties and complexity of the growth processes of bamboo forests, we
lacked an effective tool or method to determine a reasonable combination of variables (tree-
level, stand-level, and climate) and their interactions with the stand-specific conditions for
predicting HCB. HCB has a certain maximum growth, which could be represented by hori-
zontal asymptote (maximum-bamboo height). In forestry, logistic and exponential functions
are widely used in the forest mortality [24,25], height growth [32], and DBH growth [33,34],
and so on. Therefore, this study selected three model forms that are commonly used in the
previous modeling studies [10,28,29], and they all have horizontal asymptotes.

This study compared the fitting performances of three basic forms of the HCB mod-
els selected from literature [11,20,21]. Afterward, the best-performing basic functions
were used to develop NLME HCB models. The variance influencing factor (VIF) was
used as a collinearity control metric, and only three variables (H, CD, and BAL) with
no multicollinearity effects were used for establishing the NLME HCB models (Table 3).
Additionally, random effects at the sample plot level were included in the model, which
substantially improved the NLME HCB model. Because of within- and across-sample HCB
variations in the plots, estimated random effects were significant, justifying the application
of the mixed-effects modeling. Bamboo and trees have similar characteristics, including
height, crown size, bole diameter, and HCB; therefore, frequently used basic functions for
HCB modeling of trees conveniently described large variations in the HCB of bamboo.

Moreover, other HCB modeling studies (e.g., Sharma et al., 2017; Fu et al., 2017;
Yang et al., 2020) reported tree height as an important variable predictor in HCB mod-
els [11,19,20]. The height growth of bamboo is almost completed in the first year followed
by radial growth, suggesting that height is an important attribute of bamboo as it deter-
mines canopy structure and production potential [3,20]. DBH is the most reliable and
easily measurable variable in the field and may also be an important contributor to HCB
variations. However, this study did not investigate this character because BAL provided
a better fit for the model and was retained in the final model (Table 5). This is because
that a significant correlation exists between DBH and BAL, and BAL better expresses the
competitive interaction among bamboo individuals in the culm. Combining H and BAL
is possibly the most effective predictor variable and is often used to describe tree vigor
and competitiveness [21]. CD is an important stand characteristic of bamboo, as it reflects
bamboo stand structure, growth, and vigor. In this study, CD had a certain impact on
HCB (Figure 3), and the parameter estimate of M8 was significantly negatively correlated
(p < 0.05). (i.e., with larger CD, there would be smaller HCB). Notably, CD has not been
used as a predictor in any previously developed HCB models, confirming the novelty or
our study.

There are some reports of the possible significant impact of aspect, slope, slope position,
stand age, and stand density on HCB [17,18,32]. We also attempted to evaluate these
variables in our study; however, model precision was not significantly improved. This
might be because of correlations between these variables and other predictor variables
retained in the final model. The HCB model may use various predictor variables, such as
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variables describing site productivity, stand structure and density, and growth of bamboo
attributes, which largely affect HCB. Although stand density (number of trees per hectare)
would be one of the most important contributors to HCB models [21,35], it was not observed
in our study. Bamboo has two developmental stages, with the culm height growth stage
being the first. Once maximum height is reached, the second stage begins, which is
characterized by increased culm strength through the accumulation of dry mass until
maturity [3,5]. Our study mainly focused on the second stage of bamboo forest growth
when height stops increasing and bole thickening occurs, possibly causing the insignificant
effect of stand density on HCB.

In this study, the over parameterization problem did not occur, and adding random
effect parameters in the model produced better fitting effects than the model estimated with
traditional modeling (Table 8). Introducing too many tree-level and stand-level variables
may significantly improve the prediction accuracy of HCB model, but models might not
be converged with global minimum, and estimated model could have large bias due to
over parameterization [11,31]. In addition, adding many predictors to the HCB model will
increase the cost of forest inventory. Therefore, a simple model with a reasonable accuracy
is the first choice for effective forest management.

Relative spacing may influence tree height and crown base relationships [21,36]. How-
ever, we did not apply this to our study, because the bamboo stand density did not change.
Annual bamboo shoots possibly lead to a change in the stand density, and bamboo is cut
down 4–6 years after it is unearthed.

The fit statistics were significantly improved when the random components describing
the sample plot-level effects were included in the HCB models. DBH and height growth
of bamboo were largely different in the different sample plots, and, consequently, HCB
differed within and across the sample plots. DBH can reflect the competitive ability and
vitality of bamboo [11,21], which is also similar to that by BAL and CD.

The mixed-effects HCB model can be used with or without prior measurement of a
response variable of the interest (HCB, in this study). Calibration of NLME HCB model
through a prior measurement of HCB for only a few bamboo samples may reduce the
measurement costs and increase the prediction accuracy [20,23,24,37]. Some variables that
may significantly influence HCB were not measured in the field, but their potential effects
were captured by a few samples used in calibration.

Several modeling studies in forestry have proposed an optimal sample size for cali-
brating NLME models [11,20,24,38,39]. All these studies show higher prediction accuracies
with increasing sample size used in calibration [19,35,40], which is consistent with the re-
sults of our study (Figure 5). However, in general, using a large sample size for calibration
is not practically justifiable, as this requires higher inventory cost. Thorough analyses of
four strategies aided for proposing optimal size in our study, which is two average-sized
bamboo individuals (in terms of DBH) per sample plot, because of a high prediction ac-
curacy (Table 8; Figure 5). This strategy could optimize prediction accuracy and possibly
reduced the model application cost. Our study aimed at finding the sampling strategy that
corresponds with maximum decline rate of errors (RMSE and TRE).

The HCB, whether measured directly in the sample plot or estimated using the HCB
model, is very important. Information, such as canopy change, forest fire potential, and
change in carbon storage, can be obtained from the bamboo HCB estimates. As acquir-
ing HCB data at a large scale through field measurements is relatively costly and time-
consuming, light detection and ranging (LiDAR) method, which provides high accuracy
for stand height on the rugged or irregular terrains [41], is a better alternative for data
acquisition strategy in bamboo forests. In future, HCB model developed in this study with
LiDAR data can be used to predict bamboo HCB for other regions of China. Compared
with total height, HCB determination is more difficult with LiDAR; therefore, bamboo
height was included as a predictors in the HCB model.

RMSE are statistically identical (Figure 5), which may be due to small number of
bamboo individuals in each sample plot. However, when increasing the number of samples
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bamboos, RMSE and TRE showed a downward trend. Our study will provide a cost-
effective method of sample plot investigation in future.

At present, there are only a few studies on the HCB modeling, especially using the
mixed-effects HCB modeling, which have also adopted various sampling strategies in
calibration and identified an optimal size of sample for predicting HCB [11,20]. However,
most of these studies focused on arbor forest. Bamboo has unique characteristics, such
as faster growth rate, shorter rotation, higher productivity, and more early maturation
than other forestry crops. The greater HCB of bamboo, the higher would be the utilization
efficiency of the bamboo culm [15–18]. Some studies have established bamboo height-DBH
models [3–5,27]. Because of measurement difficulty and higher cost of biomass sampling of
bamboo forests, our model can be combined with existing bamboo height-DBH models for
more accurately estimating biomass, and thus more precise estimates of carbon storage can
be obtained using the carbon conversion coefficients. These results may provide a good
reference for bamboo forest management in the context of climate change. Our model is
simpler to apply and can greatly reduce the workload of forest survey.

5. Conclusions

Nonlinear mixed-effects height to crown base (HCB) models were developed using
three predictor variables (bamboo height, canopy density, and total basal area of all the
bamboos with diameter larger than that of the subject bamboo) for moso bamboo in eastern
China. Prediction accuracy of the HCB model significantly improved when sample plot-
level random effect was included in the HCB model. Among the four sampling strategies
evaluated in calibrating NMLE HCB model, the strategy of two average-sized bamboo
individuals (in terms of DBH) provided the smallest prediction error, which may be an
appropriate compromise between measurement cost, model use efficiency, and prediction
accuracy. Findings of this study can be combined with bamboo height-diameter models for
more accurate estimation of carbon storage in moso bamboo forests.
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