Drainage Ditch Cleaning Has No Impact on the Carbon and Greenhouse Gas Balances in a Recent Forest Clear-Cut in Boreal Sweden
Abstract
:1. Introduction
- (1)
- Quantify the magnitudes of CO2 and CH4 fluxes from seasonal to inter-annual scales;
- (2)
- Investigate the effects of DC on the spatio-temporal variations in CO2 and CH4 fluxes;
- (3)
- Identify environmental factors that drive the changes in CO2 and CH4 fluxes in response to DC;
- (4)
- Estimate the effect of DC on the annual C and GHG balances.
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Greenhouse Gas Flux Measurements
2.3. Measurements of Abiotic Factors
2.4. Vegetation Characteristics
2.5. Statistical Analysis
2.6. Modelling of Annual CO2 and CH4 Flux Budgets
3. Results
3.1. Environmental Data
3.2. Temporal Variations of CO2 and CH4 Fluxes
3.3. DC Effect on CO2 and CH4 Fluxes
3.4. Distance to Ditch Effect Effects on CO2 and CH4 Fluxes
3.5. Three-Way Interaction between Ditch Treatments, Environmental Factors and GHG Fluxes
3.6. Total Annual Carbon and GHG Balances
4. Discussion
4.1. Ditch Cleaning Effects on Hydrology, Vegetation and GHG Fluxes
4.2. Ditch Cleaning Effects on the Annual C and GHG Balances of a Boreal Forest Clear-Cut
5. Conclusions
- (1)
- The clear-cut area with old and degraded ditches acted as a net carbon source in all four post-harvest years. However, during the study period, the annual total carbon emissions decreased by 76% (from 6.7 ± 1.4 t-C ha−1 year−1 to 1.6 ± 1.6 t-C ha−1 year−1).
- (2)
- Ditch cleaning had a limited initial effect on the spatio-temporal variations in the net CO2 exchange and its component fluxes, GPP and Reco. The variation in the component fluxes was instead primarily controlled by the within-site variations in ground vegetation development, likely in response to drainage legacy effects on soil carbon and nitrogen contents.
- (3)
- In comparison, ditch cleaning reduced the soil water content and thereby mitigated CH4 emissions during wet post-harvest years.
- (4)
- Ditch distance had no consistent effect on CO2 and CH4 fluxes. While Reco and GPP tended to increase towards uncleaned ditches coinciding with legacy trends in soil carbon and nitrogen content, maximum Reco and GPP occurred at 20 m from cleaned ditches, likely in response to an optimal WTL for vascular plants commonly observed in the DC area. In comparison, high emissions of CH4 mainly occurred on nearly saturated soil locations near to uncleaned ditches.
- (5)
- Overall, ditch cleaning had no significant impact on the annual carbon and GHG balance in the initial post-harvest years.
- (6)
- There is a critical need for long-term observations to evaluate DC effects on the forest carbon and GHG balances during the entire subsequent rotation period.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Information on the Measurement of N2O Fluxes
References
- Bradshaw, C.J.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Chang. 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Lindeskog, M.; Smith, B.; Lagergren, F.; Sycheva, E.; Ficko, A.; Pretzsch, H.; Rammig, A. Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4. 0, r9710): Implementation and evaluation of simulations for Europe. Geosci. Model Dev. 2021, 14, 6071–6112. [Google Scholar] [CrossRef]
- Paavilainen, E.; Päivänen, J. Utilization of peatlands. In Peatland Forestry; Springer: Berlin/Heidelberg, Germany, 1995; pp. 15–29. [Google Scholar] [CrossRef]
- Fenton, N.J.; Bergeron, Y. Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. J. Veg. Sci. 2006, 17, 65–76. [Google Scholar] [CrossRef]
- Simard, M.; Lecomte, N.; Bergeron, Y.; Bernier, P.Y.; Paré, D. Forest productivity decline caused by successional paludification of boreal soils. Ecol. Appl. 1997, 17, 1619–1637. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Tian, S.; Chescheir, G.M.; Amatya, D.M.; Youssef, M.A. Forest drainage. In Forest Hydrology: Processes, Management and Assessment; CABI: Oxfordshire, UK, 2016; pp. 124–140. [Google Scholar]
- Dubé, S.; Plamondon, A.P.; Rothwell, R.L. Watering up after clear-cutting on forested wetlands of the St. Lawrence lowland. Water Resour. Res. 1995, 31, 1741–1750. [Google Scholar] [CrossRef]
- Roy, V.; Ruel, J.C.; Plamondon, A.P. Establishment, growth and survival of natural regeneration after clearcutting and drainage on forested wetlands. For. Ecol. Manag. 2000, 129, 253–267. [Google Scholar] [CrossRef]
- Koivusalo, H.; Ahti, E.; Laurén, A.; Kokkonen, T.; Karvonen, T.; Nevalainen, R.; Finér, L. Impacts of ditch cleaning on hydrological processes in a drained peatland forest. Hydrol. Earth Syst. Sci. 2008, 12, 1211–1227. [Google Scholar] [CrossRef]
- Manninen, P. Effects of forestry ditch cleaning and supplementary ditching on water quality. Boreal Environ. Res. 1998, 3, 23–32. [Google Scholar]
- Ahti, E.; Kojola, S.; Nieminen, M.; Penttilä, T.; Sarkkola, S. The effect of ditch cleaning and complementary ditching on the development of drained Scots pine-dominated peatland forests in Finland. In Proceedings of the 13th International Peat Congress. After Wise Use—The Future of Peatlands, Tullamore, Ireland, 8–13 June 2008; pp. 457–459. [Google Scholar]
- Ahti, E.; Päivänen, J. Response of stand growth and water table level to maintenance of ditch networks within forest drainage areas. In Northern Forested Wetlands: Ecology and Management; CRC Press: Boca Raton, FL, USA, 2018; pp. 449–457. ISBN 9780203745380. [Google Scholar]
- Sarkkola, S.; Hökkä, H.; Ahti, E.; Koivusalo, H.; Nieminen, M. Depth of water table prior to ditch network maintenance is a key factor for tree growth response. Scand. J. For. Res. 2012, 27, 649–658. [Google Scholar] [CrossRef]
- Sikström, U.; Hökkä, H. Interactions between soil water conditions and forest stands in boreal forests with implications for ditch network maintenance. Silva Fennica 2016, 50, 1416. [Google Scholar] [CrossRef] [Green Version]
- Sikström, U.; Hjelm, K.; Hanssen, K.H.; Saksa, T.; Wallertz, K. Influence of mechanical site preparation on regeneration success of planted conifers in clearcuts in Fennoscandia—A review. Silva Fennica 2020, 54, 10172. [Google Scholar] [CrossRef] [Green Version]
- Minkkinen, K.; Vasander, H.; Jauhiainen, S.; Karsisto, M.; Laine, J. Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland. Plant Soil 1999, 207, 107–120. [Google Scholar] [CrossRef]
- Hökkä, H.; Kojola, S. Kunnostusojituksen kasvureaktioon vaikuttavat tekijät [Factors affecting growth response due to ditch network maintenance operation]. In Suometsien Kasvatuksen ja Käytön Teemapäivät [Management and Utilization of Peatland Forests]; NBN:fi-metla-2014112610063; Hiltunen, I., Kaunisto, S., Eds.; The Finnish Forest Research Institute: Vantaa, Finland, 2001; Volume 832, pp. 30–36. (In Finnish) [Google Scholar]
- Hökkä, H.; Kojola, S. Suometsien kunnostusojitus—Kasvureaktion tutkiminen ja kuvaus. [Ditch network maintenance in peatland forests—Growth response and it’s description]. In Soilla ja Kankailla—Metsien Hoitoa ja Kasvatusta Pohjois-Suomessa [On Peatlands and Uplands—Forest Management in Northern Finland]; Jortikka, S., Varmola, M., Tapaninen, S., Eds.; The Finnish Forest Research Institute: Vantaa, Finland, 2003; Volume 903, ISBN 951-40-1897-4. (In Finnish) [Google Scholar]
- Lauhanen, R.; Ahti, E. Effects of maintaining ditch networks on the development of Scots pine stands. Suo 2001, 52, 29–38. [Google Scholar]
- Houle, D.; Lajoie, G.; Duchesne, L. Major losses of nutrients following a severe drought in a boreal forest. Nat. Plants 2016, 2, 1–5. [Google Scholar] [CrossRef]
- Verry, E.S. Hydrological processes of natural, northern forested wetlands. In Northern Forested Wetlands; Routledge: New York, NY, USA, 1997; pp. 163–188. ISBN 9780203745380. [Google Scholar]
- Jutras, S.; Plamondon, A.P.; Hökkä, H.; Bégin, J. Water table changes following pRecommercial thinning on post-harvest drained wetlands. For. Ecol. Manag. 2006, 235, 252–259. [Google Scholar] [CrossRef]
- Leppä, K.; Korkiakoski, M.; Nieminen, M.; Laiho, R.; Hotanen, J.P.; Kieloaho, A.J.; Korpela, L.; Laurila, T.; Lohila, A.; Minkkinen, K.; et al. Vegetation controls of water and energy balance of a drained peatland forest: Responses to alternative harvesting practices. Agric. For. Meteorol. 2020, 295, 108198. [Google Scholar] [CrossRef]
- Marcotte, P.; Roy, V.; Plamondon, A.P.; Auger, I. Ten-year water table Recovery after clearcutting and draining boreal forested wetlands of eastern Canada. Hydrol. Processes Int. J. 2008, 22, 4163–4172. [Google Scholar] [CrossRef]
- Drzymulska, D. Peat decomposition-shaping factors, significance in environmental studies and methods of determination; a literature review. Geologos 2016, 22, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Korkiakoski, M.; Tuovinen, J.P.; Penttilä, T.; Sarkkola, S.; Ojanen, P.; Minkkinen, K.; Rainne, J.; Laurila, T.; Lohila, A. Greenhouse gas and energy fluxes in a boreal peatland forest after clear-cutting. Biogeosciences 2019, 16, 3703–3723. [Google Scholar] [CrossRef] [Green Version]
- Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biol. Biochem. 2006, 38, 1388–1395. [Google Scholar] [CrossRef]
- Feng, H.; Guo, J.; Han, M.; Wang, W.; Peng, C.; Jin, J.; Song, X.; Yu, S. A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems. For. Ecol. Manag. 2020, 455, 117702. [Google Scholar] [CrossRef]
- Fest, B.; Hinko-Najera, N.; von Fischer, J.C.; Livesley, S.J.; Arndt, S.K. Soil methane uptake increases under continuous throughfall reduction in a temperate evergreen, broadleaved Eucalypt forest. Ecosystems 2017, 20, 368–379. [Google Scholar] [CrossRef]
- Minkkinen, K.; Laine, J. Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry. Plant Soil 2006, 285, 289–304. [Google Scholar] [CrossRef]
- Hånell, B.; Magnusson, T. An evaluation of land suitability for forest fertilization with biofuel ash on organic soils in Sweden. For. Ecol. Manag. 2005, 209, 43–55. [Google Scholar] [CrossRef]
- Kayes, I.; Mallik, A. Boreal Forests: Distributions, Biodiversity, and Management; Springer International Publishing: Cham, Germany, 2020; pp. 1–12. [Google Scholar] [CrossRef]
- Liski, J.; Westman, C.J. Carbon storage in forest soil of Finland. 2. Size and regional pattern. Biogeochemistry 1997, 36, 261–274. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Livingston, G.P.; Hutchinson, G.L. Enclosure-based measurement of trace gas exchange: Applications and sources of error. Biog. Trace Gases Meas. Emiss. Soil Water 1995, 51, 14–51. [Google Scholar]
- Järveoja, J.; Peichl, M.; Maddison, M.; Soosaar, K.; Vellak, K.; Karofeld, E.; Teemusk, A.; Mander, Ü. Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area. Biogeosciences 2016, 13, 2637. [Google Scholar] [CrossRef] [Green Version]
- Peichl, M.; Sonnentag, O.; Nilsson, M.B. Bringing color into the picture: Using digital repeat photography to investigate phenology controls of the carbon dioxide exchange in a boreal mire. Ecosystems 2015, 18, 115–131. [Google Scholar] [CrossRef]
- Sonnentag, O.; Hufkens, K.; Teshera-Sterne, C.; Young, A.M.; Friedl, M.; Braswell, B.H.; Milliman, T.; O’Keefe, J.; Richardson, A.D. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol. 2012, 152, 159–177. [Google Scholar] [CrossRef]
- Phillips, R.L.; Whalen, S.C.; Schlesinger, W.H. Influence of atmospheric CO2 enrichment on nitrous oxide flux in a temperate forest ecosystem. Glob. Biogeochem. Cycles 2001, 15, 741–752. [Google Scholar] [CrossRef]
- Schielzeth, H.; Dingemanse, N.J.; Nakagawa, S.; Westneat, D.F.; Allegue, H.; Teplitsky, C.; Réale, D.; Dochtermann, N.A.; Garamszegi, L.Z.; Araya-Ajoy, Y.G. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 2020, 11, 1141–1152. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal component analysis: A beginner’s guide—I. Introduction and application. Weather 1990, 45, 375–382. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Cadima, J.; Jolliffe, I.T. Loading and correlations in the interpretation of principle compenents. J. Appl. Stat. 1995, 22, 203–214. [Google Scholar] [CrossRef]
- Järveoja, J.; Peichl, M.; Maddison, M.; Teemusk, A.; Mander, Ü. Full carbon and greenhouse gas balances of fertilized and nonfertilized reed canary grass cultivations on an abandoned peat extraction area in a dry year. Gcb Bioenergy 2016, 8, 952–968. [Google Scholar] [CrossRef]
- Kandel, T.P.; Elsgaard, L.; Karki, S.; Lærke, P.E. Biomass yield and greenhouse gas emissions from a drained fen peatland cultivated with reed canary grass under different harvest and fertilizer regimes. BioEnergy Res. 2013, 6, 883–895. [Google Scholar] [CrossRef]
- Olson, D.M.; Griffis, T.J.; Noormets, A.; Kolka, R.; Chen, J. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. J. Geophys. Res. Biogeosci. 2013, 118, 226–238. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Smith, J.E.; Heath, L.S. Identifying influences on model uncertainty: An application using a forest carbon budget model. Environ. Manag. 2001, 27, 253–267. [Google Scholar] [CrossRef]
- Allison, S.D.; Treseder, K.K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Chang. Biol. 2008, 14, 2898–2909. [Google Scholar] [CrossRef] [Green Version]
- Hobbie, S.E.; Nadelhoffer, K.J.; Högberg, P. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 2002, 242, 163–170. [Google Scholar] [CrossRef]
- Piirainen, S.; Finér, L.; Mannerkoski, H.; Starr, M. Carbon, nitrogen and phosphorus leaching after site preparation at a boreal forest clear-cut area. For. Ecol. Manag. 2007, 243, 10–18. [Google Scholar] [CrossRef]
- Silvola, J.; Alm, J.; Ahlholm, U.; Nykaenen, H.; Martikainen, P.J. The contribution of plant roots to CO2 fluxes from organic soils. Biol. Fertil. Soils 1996, 23, 126–131. [Google Scholar] [CrossRef]
- Lafleur, P.M.; Hember, R.A.; Admiral, S.W.; Roulet, N.T. Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. Hydrol. Processes Int. J. 2005, 19, 3533–3550. [Google Scholar] [CrossRef]
- Martikainen, P.J.; Nykänen, H.; Alm, J.; Silvola, J. Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant Soil 1995, 168, 571–577. [Google Scholar] [CrossRef]
- Roulet, N.T.; Ash, R.; Quinton, W.; Moore, T. Methane flux from drained northern peatlands: Effect of a persistent water table lowering on flux. Glob. Biogeochem. Cycles 1993, 7, 749–769. [Google Scholar] [CrossRef] [Green Version]
- Ojanen, P.; Minkkinen, K.; Alm, J.; Penttilä, T. Soil–atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands. For. Ecol. Manag. 2010, 260, 411–421. [Google Scholar] [CrossRef]
- Ojanen, P.; Minkkinen, K.; Penttilä, T. The current greenhouse gas impact of forestry-drained boreal peatlands. For. Ecol. Manag. 2013, 289, 201–208. [Google Scholar] [CrossRef]
- Gauci, V.; Gowing, D.J.; Hornibrook, E.R.; Davis, J.M.; Dise, N.B. Woody stem methane emission in mature wetland alder trees. Atmos. Environ. 2010, 44, 2157–2160. [Google Scholar] [CrossRef] [Green Version]
- Terazawa, K.; Ishizuka, S.; Sakata, T.; Yamada, K.; Takahashi, M. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil Biol. Biochem. 2007, 39, 2689–2692. [Google Scholar] [CrossRef]
- Korkiakoski, M.; Määttä, T.; Peltoniemi, K.; Penttilä, T.; Lohila, A. Excess soil moisture and fresh carbon input are prerequisites for methane production in podzolic soil. Biogeosciences Discuss. 2021, 19, 2025–2041. [Google Scholar] [CrossRef]
- Radu, D.D.; Duval, T.P. Impact of rainfall regime on methane flux from a cool temperate fen depends on vegetation cover. Ecol. Eng. 2018, 114, 76–87. [Google Scholar] [CrossRef]
- Vestin, P.; Mölder, M.; Kljun, N.; Cai, Z.; Hasan, A.; Holst, J.; Klemedtsson, L.; Lindroth, A. Impacts of clear-cutting of a boreal forest on carbon dioxide, methane and nitrous oxide fluxes. Forests 2020, 11, 961. [Google Scholar] [CrossRef]
- Strömgren, M.; Hedwall, P.O.; Olsson, B.A. Effects of stump harvest and site preparation on N2O and CH4 emissions from boreal forest soils after clear-cutting. For. Ecol. Manag. 2016, 371, 15–22. [Google Scholar] [CrossRef]
- Sundqvist, E.; Vestin, P.; Crill, P.; Persson, T.; Lindroth, A. Short-term effects of thinning, clear-cutting and stump harvesting on methane exchange in a boreal forest. Biogeosciences 2014, 11, 6095–6105. [Google Scholar] [CrossRef] [Green Version]
- Uri, V.; Kukumägi, M.; Aosaar, J.; Varik, M.; Becker, H.; Aun, K.; Lõhmus, K.; Soosaar, K.; Astover, A.; Uri, M.; et al. The dynamics of the carbon storage and fluxes in Scots pine (Pinus sylvestris) chronosequence. Sci. Total Environ. 2022, 817, 152973. [Google Scholar] [CrossRef]
- Hyvönen, R.; Ågren, G.I.; Linder, S.; Persson, T.; Cotrufo, M.F.; Ekblad, A.; Freeman, M.; Grelle, A.; Janssens, I.A.; Jarvis, P.G.; et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: A literature review. New Phytol. 2007, 173, 463–480. [Google Scholar] [CrossRef]
- Kowalski, A.S.; Loustau, D.; Berbigier, P.; Manca, G.; Tedeschi, V.; Borghetti, M.; Valentini, R.; Kolari, P.; Berninger, F.; Rannik, Ü.; et al. Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Glob. Chang. Biol. 2004, 10, 1707–1723. [Google Scholar] [CrossRef]
- Rannik, Ü.; Altimir, N.; Raittila, J.; Suni, T.; Gaman, A.; Hussein, T.; Hölttä, T.; Lassila, H.; Latokartano, M.; Lauri, A.; et al. Fluxes of carbon dioxide and water vapour over Scots pine forest and clearing. Agric. For. Meteorol. 2002, 111, 187–202. [Google Scholar] [CrossRef]
- Rebane, S.; Jõgiste, K.; Põldveer, E.; Stanturf, J.A.; Metslaid, M. Direct measurements of carbon exchange at forest disturbance sites: A review of results with the eddy covariance method. Scand. J. For. Res. 2019, 34, 585–597. [Google Scholar] [CrossRef]
- Kulmala, L.; Aaltonen, H.; Berninger, F.; Kieloaho, A.J.; Levula, J.; Bäck, J.; Hari, P.; Kolari, P.; Korhonen, J.F.; Kulmala, M.; et al. Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agric. For. Meteorol. 2014, 188, 33–44. [Google Scholar] [CrossRef]
- Pihlatie, M.; Rinne, J.; Ambus, P.; Pilegaard, K.; Dorsey, J.R.; Rannik, Ü.; Markkanen, T.; Launiainen, S.; Vesala, T. Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques. Biogeosciences 2005, 2, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Chi, J.; Nilsson, M.B.; Kljun, N.; Wallerman, J.; Fransson, J.E.; Laudon, H.; Lundmark, T.; Peichl, M. The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden. Agric. For. Meteorol. 2019, 274, 29–41. [Google Scholar] [CrossRef]
- Korkiakoski, M.; Tuovinen, J.P.; Aurela, M.; Koskinen, M.; Minkkinen, K.; Ojanen, P.; Ojanen, P.; Penttilä, T.; Rainne, J.; Laurila, T. Methane exchange at the peatland forest floor–automatic chamber system exposes the dynamics of small fluxes. Biogeosciences 2017, 14, 1947–1967. [Google Scholar] [CrossRef] [Green Version]
Time | Pre-DC (2018/19) | Post-DC (2020/21) | ||
---|---|---|---|---|
Area | Control Area | DC Area | Control Area | DC Area |
GPP Model | ||||
α | −1.3 (0.37) | −1.1 (1.06) | −4.3 (0.72) | −6.9 (2.1) |
−1069 (141) | −1250 (215) | −1589 (74) | −1774 (110) | |
Adjusted R2 | 0.47 | 0.35 | 0.66 | 0.58 |
Reco model | ||||
34.9 (5.8) | 28.2 (4.2) | 47.4 (4.9) | 57.5 (6.3) | |
b | 0.09 (0.01) | 0.12 (0.01) | 0.09 (0.01) | 0.05 (0.01) |
β | 72.9 (21.3) | 23.9 (7.7) | 86.1 (12.8) | 288 (35) |
Adjusted R2 | 0.59 | 0.65 | 0.65 | 0.69 |
Gas Species | Period | N | Central Estimates ± SE | p Values from the Mixed Effect Models | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control Area | All Control Plots | DC Area | All DC Plots | |||||||||
4 m | 20 m | 40 m | 4 m | 20 m | 40 m | T | D | |||||
CO2 (mg C m−2 h−1) | ||||||||||||
NEE | Pre DC | 395 | −10 ± 13 | 87 ± 12 | 96 ± 9 | 58 ± 7 | 66 ± 12 | 75 ± 13 | 30 ± 15 | 57 ± 8 | 0.75 | 0.10 |
Post DC | 577 | −157 ± 26 | −118 ± 25 | 3 ± 19 | −90 ± 14 | −37 ± 25 | −156 ± 39 | −133 ± 32 | −109 ± 19 | 0.37 | 0.16 | |
Reco | Pre DC | 395 | 177 ± 17 | 168 ± 16 | 121 ± 10 | 155 ± 8 | 167 ± 14 | 168 ± 14 | 133 ± 9 | 156 ± 7 | 0.78 | <0.01 |
Post DC | 577 | 277 ± 19 | 296 ± 20 | 239 ± 17 | 271 ± 10 | 302 ± 21 | 368 ± 23 | 282 ± 18 | 317 ± 12 | <0.01 | 0.02 | |
GPP | Pre DC | 395 | −187 ± 20 | −81 ± 15 | −25 ± 7 | −97 ± 10 | −101 ± 19 | −94 ± 15 | −103 ± 18 | −99 ± 10 | 0.94 | <0.01 |
Post DC | 577 | −433 ± 34 | −414 ± 31 | −235 ± 26 | −360 ± 18 | −340 ± 37 | −525 ± 49 | −418 ± 43 | −427 ± 25 | <0.01 | 0.02 | |
CH4 (mg C m−2 h−1) | ||||||||||||
Pre DC | 392 | 0.00 ± 0.02 | −0.03 ± 0.03 | −0.02 ± 0.01 | −0.02 ± 0.01 | −0.04 ± 0.01 | −0.03 ± 0.01 | −0.02 ± 0.1 | −0.03 ± 0.01 | 0.24 | 0.85 | |
Post DC | 567 | 1.2 ± 0.4 | 0.08 ± 0.3 | −0.03 ± 0.01 | 0.08 ± 0.9 | −0.07 ± 0.01 | −0.04 ± 0.01 | −0.03 ± 0.2 | −0.05 ± 0.06 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, C.H.M.; Nilsson, M.B.; Drott, A.; Peichl, M. Drainage Ditch Cleaning Has No Impact on the Carbon and Greenhouse Gas Balances in a Recent Forest Clear-Cut in Boreal Sweden. Forests 2022, 13, 842. https://doi.org/10.3390/f13060842
Tong CHM, Nilsson MB, Drott A, Peichl M. Drainage Ditch Cleaning Has No Impact on the Carbon and Greenhouse Gas Balances in a Recent Forest Clear-Cut in Boreal Sweden. Forests. 2022; 13(6):842. https://doi.org/10.3390/f13060842
Chicago/Turabian StyleTong, Cheuk Hei Marcus, Mats B. Nilsson, Andreas Drott, and Matthias Peichl. 2022. "Drainage Ditch Cleaning Has No Impact on the Carbon and Greenhouse Gas Balances in a Recent Forest Clear-Cut in Boreal Sweden" Forests 13, no. 6: 842. https://doi.org/10.3390/f13060842
APA StyleTong, C. H. M., Nilsson, M. B., Drott, A., & Peichl, M. (2022). Drainage Ditch Cleaning Has No Impact on the Carbon and Greenhouse Gas Balances in a Recent Forest Clear-Cut in Boreal Sweden. Forests, 13(6), 842. https://doi.org/10.3390/f13060842