Treeline-Quo Vadis? An Ecophysiological Approach
Abstract
:1. Introduction
2. Alpine Treeline: Definitions and Concepts
3. Treeline Position
4. Treeline Structure and Dynamics
5. Treeline Quo Vadis?
6. Global Change Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otto, H.J. Waldökologie; Ulmer UTB: Stuttgart, Germany, 1994. [Google Scholar]
- Matyssek, R.; Fromm, J.; Rennenberg, H.; Roloff, A. Biologie der Bäume. Von der Zelle zur globalen Ebene; Ulmer UTB: Stuttgart, Germany, 2010. [Google Scholar]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas mit den Alpen in Ökologischer, Dynamischer und Historischer Sicht, 6th ed.; Ulmer UTB: Stuttgart, Germany, 2010. [Google Scholar]
- Crawford, R.M.M. Plants at Their Margin. In Ecological Limits and Climate Change; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Wieser, G.; Tausz, M. Trees at Their Upper Limit: Treelife Limitation at the Alpine Timberline; Springer: Berlin/Heidelberg, Germany, 2007; Volume 5. [Google Scholar]
- Körner, C. Alpine Treelines. Functional Ecology of the Global High Elevation Tree Limits; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Tranquillini, W. Physiological Ecology of the Alpine Timberline. Tree Existence at High Altitudes with Special Reference to the European Alps; Springer: Berlin/Heidelberg, Germany, 1979; Volume 31. [Google Scholar]
- Wieser, G. Alpine and polar treelines in a changing environment. Forests 2020, 11, 254. [Google Scholar] [CrossRef] [Green Version]
- Holtmeier, F.K.; Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 2005, 14, 395–410. [Google Scholar] [CrossRef]
- Holtmeier, F.K.; Broll, G. Altitudinal and Polar Treelines in the Northern Hemisphere–Causes and Response to Climate Change. Polarforschung 2010, 79, 139–153. [Google Scholar]
- Bader, M.Y.; Llambi, L.D.; Case, B.S.; Buckley, H.L.; Tiovonen, J.M.; Camarero, J.J.; Cairns, D.M.; Brown, C.D.; Wiegland, T.; Resler, L.M. A global framework for linking alpine-treeline ecotone patterns to underlying processes. Ecography 2021, 44, 265–292. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gutierrez, E.; Fortin, M.-J. Spatial patterns of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. For. Ecol. Manag. 2020, 134, 1–16. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gazol, A.; Sanchez-Salguero, R.; Fajardo, A.; McIntire, E.J.B.; Guiterrez, E. Global fading of temperature-growth coupling at alpine and polar treelines. Glob. Chang. Biol. 2021, 27, 1879–1889. [Google Scholar] [CrossRef]
- Holtmeier, F.K.; Broll, G. Treeline advances–driving processes and adverse factors. Landsc. Online 2007, 1, 11–33. [Google Scholar] [CrossRef]
- Körner, C. The cold range limit of trees. Trends Ecol. Evol. 2021, 36, 979–989. [Google Scholar] [CrossRef]
- Holtmeier, F.-K. Mountain Timberlines. Ecology, Patchiness, and Dynamics; Springer: Dordrecht, The Netherlands, 2009; Volume 36. [Google Scholar]
- Körner, C. Alpine Plant life. In Functional Plant Ecology of High Mountain Ecosystems, 3rd ed.; Springer: Basel, Switzerland, 2021. [Google Scholar]
- Körner, C.; Hoch, G. A test of treeline theory on a montane permafrost island. Arct. Antarct. Alp. Res. 2006, 38, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Bonanomi, G.; Zotti, M.; Mogavero, V.; Cesarano, G.; Saulino, L.; Rita, A.; Tesei, G.; Allegrezza, M.; Saracino, A.; Allevato, E. Climatic and anthropogenic factors explain the variability of Fagus sylvatica treeline elevation in fifteen mountain groups across the Apennines. For. Ecosyst. 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Körner, C.; Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Körner, C. Climatic treelines: Conventions, global patterns, causes. Erdkunde 2007, 61, 316–324. [Google Scholar] [CrossRef]
- Sveinbjörnsson, B. North American and European treeline. External forces and internal processes controlling position. Ambio 2000, 29, 388–395. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauries, A.; Anfodillo, T.; Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 2007, 152, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.; Wieser, G.; Oberhuber, W. Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra. Tree Physiol. 2009, 29, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Turner, H.; Streule, A. Wurzelwachstum und Sprossentwicklung junger Koniferen im Klimastress an der Waldgrenze mit Berücksichtigung von Mikroklima, Photosynthese und Stoffproduktlion. In Wurzelökologie Und Ihre Nutzanwendung. Internationales Symposium Gumpenstein; Gumpenstein: Irdning, Austria, 1982; pp. 617–635. [Google Scholar]
- Häsler, R.; Streule, A.; Turner, H. Shoot and root growth of young Larix decidua in contrasting microenvironments near the alpine timberline. Phyton 1999, 39, 47–52. [Google Scholar]
- Hertel, D.; Schöling, D. Below-ground response of Norway spruce to climate conditions at Mt. Brocken (Germany)–a re-assessment of Central Europe’s northernmost treeline. Flora 2011, 206, 127–135. [Google Scholar] [CrossRef]
- Kubisch, P.; Leuschner, C.; Coners, H.; Gruber, A.; Hertel, D. Fine root abundance and dynamics of Stone pine (Pinus cembra) at the Alpine treeline is not impaired by self-shading. Front. Plant Sci. 2017, 8, 602. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Climatic Controls of the Global High Elevation Treelines. In Encyclopedia of the World’s Biomes; Goldstein, M.I., DellaSala, D.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 275–281. [Google Scholar]
- Wiegland, T.; Camarero, J.; Rüdger, N.; Gutierrez, E. Abrupt population changes in treeline ecotones along smooth gradients. J. Ecol. 2006, 94, 880–892. [Google Scholar] [CrossRef]
- Millar, C.I.; Westfal, R.D.; Delany, D.L.; Flint, A.L.; Flint, L.E. Recruitment patterns and growth of high-elevation pines in response to climatic variability (1883–2013), in the western Great Basin, USA. Can. J. For. Res. 2015, 45, 1299–1312. [Google Scholar] [CrossRef]
- Harsch, M.A.; Bader, M.Y. Treeline form—A potential key to understanding treeline dynamics. Glob. Ecol. Biogeogr. 2011, 20, 582–596. [Google Scholar] [CrossRef]
- Wieser, G.; Oberhuber, W.; Gruber, A. Effects of climate change at treeline: Lessons from space-for-time studies, manipulative experiments, and long-term observational records in the central Austrian Alps. Forests 2019, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Harsch, M.A.; Hulme, P.E.; McGlone, M.S.; Duncan, R.P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 2009, 12, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Camarero, J.J.; Linares, J.C.; Garcia-Cervigon, A.I.; Batllori, E.; Martinez, I.; Guitierrez, E. Back to the Future: The Responses of Alpine Treelines to Climate Warming are constrained by ecosystem structure. Ecosystems 2017, 20, 683–700. [Google Scholar] [CrossRef]
- Wieser, G.; Matyssek, R.; Luzian, R.; Zwerger, P.; Pindur, P.; Oberhuber, W.; Gruber, A. Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann. For. Sci. 2009, 66, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehring-Fasel, J.; Gusian, A.; Zimmermann, N.E. Tree line shifts in the Swiss Alps: Climate change or land abandonment. J. Veg. Sci. 2007, 18, 571–582. [Google Scholar] [CrossRef]
- Wang, Y.; Pederson, N.; Ellison, A.M.; Buckley, H.L.; Case, B.S.; Liang, E.; Camarero, J.J. Increased stem density and competition may diminish the positive effect of warming at alpine treeline. Ecology 2016, 97, 1668–1679. [Google Scholar] [CrossRef] [Green Version]
- Walker, X.J.; Alexander, H.D.; Berner, L.T.; Body, M.A.; Loranty, M.M.; Natali, S.M.; Mack, M.C. Positive response of tree productivity to warming is reversed by increased tree density at the Arctic tundra-taiga ecotone. Can. J. For. Res. 2021, 51, 1323–1338. [Google Scholar] [CrossRef]
- Schreel, J.D.M. Is temperature still the most limiting factor for tree growth in northern boreal forests? Holocene 2021, 31, 1351–1353. [Google Scholar] [CrossRef]
- Oberhuber, W.; Bendler, U.; Gamper, V.; Geier, J.; Hölzl, A.; Kofler, W.; Krismer, H.; Waldboth, B.; Wieser, G. Growth trends of coniferous species along elevational transects in the Central European Alps indicate decreasing sensitivity to climate warming. Forests 2020, 11, 132. [Google Scholar] [CrossRef] [Green Version]
- Oberhuber, W.; Kofler, W.; Pfeifer, K.; Seeber, A.; Gruber, A.; Wieser, G. Long-term changes in tree-ring climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees 2008, 22, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortz, J.; Lienert, G.A.; Boenke, K. Verteilungsfreie Methoden in der Biostatistik; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Elliott, G.P. Influences of 20th century warming at the upper treeline contingent on local-scale interactions: Evidence from a latitudinal gradient in the Rocky Mountains, USA. Glob. Ecol. Biogeogr. 2011, 20, 46–57. [Google Scholar] [CrossRef]
- Gruber, A.; Oberhuber, W.; Wieser, G. Nitrogen addition and understory removal but not soil warming increased radial growth of Pinus cembra at treeline in the Central Austrian Alps. Front. Plant Sci. 2018, 9, 711. [Google Scholar] [CrossRef] [Green Version]
- Broderson, C.R.; Germino, M.J.; Johnson, D.M.; Reinhardt, K.; Smith, W.K.; Resler, L.M.; Bader, M.Y.; Sala, A.; Küppers, L.M.; Broll, G.; et al. Seedling survival at timberline is critical to conifer mountain forest elevation and extent. Front. For. Glob. Chang. 2019, 2, 9. [Google Scholar] [CrossRef]
- Batllori, E.; Camarero, J.J.; Gutierrez, E. Current regeneration patterns at the tree line in the Pyrenees indicate similar recruitment processes irrespective of the past disturbance regime. J. Biogeogr. 2015, 37, 1938–1950. [Google Scholar] [CrossRef]
- Elliot, K.J.; Vose, J.M.; Knoepp, J.D.; Climpton, B.D.; Kloeppel, B.D. Functional role of the herbaceous layer in eastern deciduous forest ecosystems. Ecosystems 2012, 18, 221–236. [Google Scholar] [CrossRef]
- Grau, O.; Ninot, J.M.; Blanco-Moreno, J.M.; van Logtestijn, R.S.P.; Cornelissen, J.H.C.; Callaghan, T.V. Shrub-tree interactions and environmental changes drive treeline dynamics in the Subarctic. Oikos 2012, 121, 1680–1690. [Google Scholar] [CrossRef]
- Liang, E.; Wang, Y.; Piao, S.; Lu, X.; Camarero, J.J.; Zhu, H.; Zhu, L.; Ellison, A.M.; Ciais, P.; Penuelas, J. Species interactions slow warming-induced upward shifts of treelines in the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2016, 113, 4380–4385. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.K.; Germino, M.J.; Johnsom, D.M.; Reinhardt, K. The altitude of alpine treeline: A bellwether of climate change. Bot. Rev. 2009, 75, 163–190. [Google Scholar] [CrossRef]
- Boscutti, F.; Poldini, L.; Buccheri, M. Green alder communities in the Alps: Phytosociological variability and ecological features. Plant Biosyst. 2013, 148, 917–934. [Google Scholar] [CrossRef]
- Bühlmann, T.; Hiltbrunner, E.; Körner, C. Alnus viridis expansion contributes to excess reactive nitrogen release, reduces biodiversity and constrains forest succession in the Alps. Alp. Bot. 2014, 124, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Oberhuber, W.; Wieser, G.; Bernich, F.; Gruber, A. Radial stem growth of the clonal shrub Alnus alnobetula at treeline is constrained by summer temperature and winter desiccation and differs in carbon allocation strategy compared to co-occurring Pinus cembra. Forests 2022, 13, 440. [Google Scholar] [CrossRef]
- Van den Bergh, T.; Körner, C.; Hiltbrunner, E. Alnus shrub expansion increases evapotranspiration in the Swiss Alps. Reg. Environ. Chang. 2018, 18, 1375–1385. [Google Scholar] [CrossRef]
- Hiltbrunner, E.; Aerts, R.; Bühlmann, T.; Huss-Danell, K.; Magnusson, B.; Myrold, D.D.; Reed, S.C.; Sigurdsson, B.D.; Körner, C. Ecological consequences of the expansion of N2-fixing plants in cold biomes. Oecologia 2014, 176, 11–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bühlmann, T.; Körner, C.; Hiltbrunner, E. Shrub expansion of Alnus viridis drives former montane grassland into nitrogen saturation. Ecosystems 2016, 19, 968–985. [Google Scholar] [CrossRef]
- Cernusca, A. Aims and tasks of ECOMONT. In Land-Use Changes in European Mountain Ecosystems. ECOMONT-Concepts and Results; Cernusca, A., Tappeiner, U., Bayfield, N., Eds.; Blackwell: Berlin, Germany, 1999; pp. 13–35. [Google Scholar]
- Wieser, G. Lessions from the timberline ecotone in the Central Tyrolean Alps: A review. Plant Ecol. Divers. 2012, 5, 127–139. [Google Scholar] [CrossRef]
- Körner, C.; Hoflacher, H.; Wieser, G. Untersuchungen zum Wasserhaushalt von Almflächen im Gasteiner Tal. In Ökologische Analysen von Almflächen im Gasteiner Tal; Cernusca, A., Ed.; Veröffentlichungen des Österr MaB Hochgebirgsprogramms Hohe Tauern Universitätsverlag Wagner Innsbruck: Innsbruck, Austria, 1978; pp. 67–79. [Google Scholar]
- Wieser, G.; Stöhr, D. Net ecosystem carbon dioxide dynamics in a Pinus cembra forest at the upper timberline in the Austrian Alps. Phyton 2005, 45, 233–242. [Google Scholar]
- Matyssek, R.; Wieser, G.; Patzner, K.; Blaschke, H.; Häberle, K.-H. Transpiration of forest trees and stands at different altitude: Consistencies rather than contrasts. Eur. J. For. Res. 2009, 128, 579–596. [Google Scholar] [CrossRef]
- Larcher, W. Ergebnisse des IBP-Projektes “Zwergstrauchheide Patscherkofel”. Sitzungsbericht der Österr Akademie der Wiss. 1977, 186, 301–371. [Google Scholar]
- Koch, O.; Tscherko, D.; Küppers, M.; Kandlet, E. Interannual ecosystem CO2 dynamics in the Alpine zone of the Eastern Alps. Arct. Antarct. Alp. Res. 2008, 40, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Guggenberger, H. Untersuchungen Zum Wasserhaushalt der Alpinen Zwergstrauchheide Patscherkofel. Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 1980. [Google Scholar]
- Kronfuss, H. Das Klima Einer Hochlagenaufforstung in der Subalpinen Höhenstufe; FBVA Bericht 100: Wien, Austria, 1977. [Google Scholar]
- Wieser, G.; Gruber, A.; Oberhuber, W. Sap flow characteristics and whole-tree water use of Pinus cembra across the treeline ecotone of the central Tyrolean Alps. Eur. J. For. Res. 2014, 133, 287–295. [Google Scholar] [CrossRef]
- Wieser, G.; Hammerle, A.; Wohlfahrt, G. The water balance of grassland ecosystems in the Austrian Alps. Arct. Antarct. Res. 2008, 40, 439–445. [Google Scholar] [CrossRef]
- Callaway, R.M. Competition and facilitation on elevation gradients in subalpine forests in the northern Rock Mountains, USA. Oikos 1998, 82, 561–573. [Google Scholar] [CrossRef]
- Fajardo, A.; Gazol, A.; Mayr, C.; Camarero, J.J. Recent decadal drought reverts warming-triggered growth enhancement in contrasting climates in the southern Andes treeline. J. Biogeogr. 2019, 46, 1367–1379. [Google Scholar]
- Lyn, L.; Zhang, Q.-B.; Pellatt, M.G.; Büntgen, U.; Li, M.-H.; Cherubini, P. Drought limitation on tree growth at the Northern Hemisphere´s highest treeline. Dendrochronologia 2019, 53, 40–47. [Google Scholar]
Term | Definition |
---|---|
Treeline ecotone | The transition zone between the closed montane forest and the treeless alpine zone |
Treeline | The low temperature range limit of the life-form tree at high elevation or high latitude |
Life-form tree | Upright stemmed woody plant of at least 2–3 m in height which is well coupled to the atmosphere |
Krummholz | environmentally distorted dwarfed forms of tree specimem that become upright at favourable sites |
Scrub | treeline specimem whose shrubby form is of genetic origin |
Tree species line | The elevational limit of tree species (seedlings, and crippled individuals) |
Fundamental niche | The range of environmental conditions where a taxon is able to live, survive and grow. E.g., physiological boundary of the life-form tree |
Realized niche | The space where a taxon actually lives set by disturbances, etc. The local limit of the life form, which is always smaller than the corresponding fundamental niche |
Limes divergence | A diffuse boundary zone in which one major habitat type changes gradually into another |
Limes convergence | A well-defined boundary zone between two fairly uniform major habitat types |
Vegetation | ET (mm y−1) | NEP (g C m−2 y−1) |
---|---|---|
Uppermost closed forest | 480 | 360 |
Dwarf shrubs | 350 | 210–250 |
Grassland and pastures | 210–280 | 60–140 |
Trees at treeline | 278–350 | |
Krummholz | 250 | |
Alnus alnobetula | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruber, A.; Oberhuber, W.; Wieser, G. Treeline-Quo Vadis? An Ecophysiological Approach. Forests 2022, 13, 857. https://doi.org/10.3390/f13060857
Gruber A, Oberhuber W, Wieser G. Treeline-Quo Vadis? An Ecophysiological Approach. Forests. 2022; 13(6):857. https://doi.org/10.3390/f13060857
Chicago/Turabian StyleGruber, Andreas, Walter Oberhuber, and Gerhard Wieser. 2022. "Treeline-Quo Vadis? An Ecophysiological Approach" Forests 13, no. 6: 857. https://doi.org/10.3390/f13060857
APA StyleGruber, A., Oberhuber, W., & Wieser, G. (2022). Treeline-Quo Vadis? An Ecophysiological Approach. Forests, 13(6), 857. https://doi.org/10.3390/f13060857