Nondormant Acorns Show Higher Seed Dispersal Effectiveness Than Dormant Ones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Seed Dormancy
2.3. Spatial Dispersal and Seedling Establishment in the Field
2.4. Seedling Establishment from Artificial Caches
2.5. Effects of Seed Dormancy on Acorn Selection by Rodents in Artificial Enclosures
2.6. Statistical Analyses
3. Results
3.1. Dormancy of Oak Acorns
3.2. Spatial Dispersal in Response to Seed Dormancy in the Filed
3.3. Seedling Establishment from Artificial Caches
3.4. Acorn Selection by Seed-Eating Rodents in Enclosures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vander Wall, S.B. Food Hoarding in Animals; University of Chicago Press: Chicago, IL, USA, 1990; p. 445. [Google Scholar]
- Steele, M.A.; Yi, X.; Zhang, H. Plant-animal interactions: Patterns and mechanisms in terrestrial ecosystems. Integr. Zool. 2018, 13, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yan, C.; Gu, H.; Zhang, Z. Interspecific synchrony of seed rain shapes rodent-mediated indirect seed–seed interactions of sympatric tree species in a subtropical forest. Ecol. Lett. 2020, 23, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Yan, C.; Wu, S.; Si, J.; Yi, X.; Li, H.; Zhang, Z. Effects of masting on seedling establishment of a rodent-dispersed tree species in a warm-temperate region, northern China. Integr. Zool. 2021, 16, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Howe, H.F.; Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 1982, 13, 201–228. [Google Scholar] [CrossRef]
- Poschlod, P.; Tackenberg, O.; Bonn, S. Plant dispersal potential and its relation to species frequency and coexistence. In Vegetation Ecology; van der Maarel, E., Ed.; Blackwell: Oxford, UK, 2005; pp. 147–171. [Google Scholar]
- Steele, M.A.; Yi, X. Squirrel-seed interactions: The evolutionary strategies and impact of squirrels as both seed predators and seed dispersers. Front. Ecol. Evol. 2020, 8, 259. [Google Scholar] [CrossRef]
- Xiao, Z.; Holyoak, M.; Krebs, C.J.; Huang, X. Palatability and profitability of co-occurring seeds alter indirect interactions among rodent-dispersed trees. Integr. Zool. 2021, 17, 206–216. [Google Scholar] [CrossRef]
- Wang, B.C.; Smith, T.B. Closing the seed dispersal loop. Trends Ecol. Evol. 2002, 17, 379–386. [Google Scholar] [CrossRef]
- Briggs, J.S.; Vander Wall, S.B.; Jenkins, S.H. Forest rodents provide directed dispersal of Jeffrey pine seeds. Ecology 2009, 90, 675–687. [Google Scholar] [CrossRef]
- Jansen, P.A.; Visser, M.D.; Joseph, W.S.; Rutten, G.; Muller-Landau, H.C.; Rejmanek, M. Negative density dependence of seed dispersal and seedling recruitment in a neotropical palm. Ecol. Lett. 2014, 17, 1111–1120. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Wang, Z.; Yan, C.; Chen, J.; Guo, C.; Zhang, Z. Differential foraging preferences on seed size by rodents result in higher dispersal success of medium-sized seeds. Ecology 2016, 97, 3070–3078. [Google Scholar] [CrossRef]
- Yi, X.; Ju, M.; Yang, Y.; Zhang, M. Scatter-hoarding and cache pilfering of rodents in response to seed abundance. Ethology 2019, 125, 492–499. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, J.; Wang, Z.; Huang, G.; Peng, C.; Zhang, H. Context-dependent responses of food-hoarding to competitors in Apodemus peninsulae: Implications for coexistence among asymmetrical species. Integr. Zool. 2020, 15, 115–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Yan, C.; Zhang, H. Mutualism between antagonists: Its ecological and evolutionary implications. Integr. Zool. 2021, 17, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Shilton, L.A.; Altringham, J.D.; Compton, S.G.; Whittaker, R.J. Old World fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1999, 266, 219–223. [Google Scholar] [CrossRef]
- Josep, P.; Pausas, J.G. Acorn dispersal estimated by radio-tracking. Oecologia 2007, 153, 903–911. [Google Scholar]
- Hirsch, B.T.; Kays, R.; Jansen, P.A. Evidence for cache surveillance by a scatter-hoarding rodent. Anim. Behav. 2013, 85, 1511–1516. [Google Scholar] [CrossRef]
- Venable, D.L.; Lawlor, L. Delayed germination and dispersal in desert annuals: Escape in space and time. Oecologia 1980, 46, 272–282. [Google Scholar] [CrossRef]
- Gremer, J.R.; Venable, D.L. Bet hedging in desert winter annual plants: Optimal germination strategies in a variable environment. Ecol. Lett. 2014, 17, 380–387. [Google Scholar] [CrossRef]
- Yi, X.; Yang, Y.; Curtis, R.; Bartlow, A.W.; Agosta, S.J.; Steele, M.A. Alternative strategies of seed predator escape by early-germinating oaks in Asia and North America. Ecol. Evol. 2012, 2, 487–492. [Google Scholar] [CrossRef]
- Yi, X.; Curtis, R.; Bartlow, A.W.; Agosta, S.J.; Steele, M.A. Ability of chestnut oak to tolerate acorn pruning by rodents. Naturwissenschaften 2013, 100, 81–90. [Google Scholar] [CrossRef]
- Yi, X.; Wang, M.; Xue, C.; Ju, M. Radicle pruning by seed-eating animals helps oak seedlings absorb more soil nutrient. Integr. Zool. 2021, 16, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Li, X.; Yi, X. One acorn produces two seedlings in Chinese cork oak Quercus variabilis. Plant Growth Regul. 2019, 14, e1654817. [Google Scholar] [CrossRef] [PubMed]
- Hadj-Chikh, L.Z.; Steele, M.A.; Smallwood, P.D. Caching decisions by grey squirrels: A test of the handling time and perishability hypotheses. Anim. Behav. 1996, 52, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Venable, D.L.; Brown, J.S. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Soc. Nat. 1988, 131, 360–384. [Google Scholar] [CrossRef]
- Rees, M. Trade-offs among dispersal strategies in British plants. Nature 1993, 366, 150–152. [Google Scholar] [CrossRef]
- Snyder, R.E. Multiple risk reduction mechanisms: Can dormancy substitute for dispersal? Ecol. Lett. 2006, 9, 1106–1114. [Google Scholar] [CrossRef]
- Siewert, W.; Tielbörger, K. Dispersal-dormancy relationships in annual plants: Putting model predictions to the test. Am. Zool. 2010, 176, 490–500. [Google Scholar] [CrossRef]
- Chen, S.; Poschlod, P.; Antonelli, A.; Liu, U.; Dickie, J.B. Trade-off between seed dispersal in space and time. Ecol. Lett. 2020, 23, 1635–1642. [Google Scholar] [CrossRef]
- Venable, D.L.; Levin, D.A. Ecology of achene dimorphism in Heterotheca latifolia. J. Ecol. 1985, 73, 133–145. [Google Scholar] [CrossRef]
- Ellner, S. Germination dimorphisms and parent–offspring conflict in seed germination. J. Theor. Biol. 1986, 123, 173–185. [Google Scholar] [CrossRef]
- Lu, J.J.; Tan, D.Y.; Baskin, J.M.; Baskin, C.C. Trade-offs between seed dispersal and dormancy in an amphi-basicarpic cold desert annual. Ann. Bot. 2013, 112, 1815–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smallwood, P.D.; Steele, M.A.; Faeth, S.H. The ultimate basis of the caching preferences of rodents, and the oak-dispersal syndrome: Tannins, insects, and seed germination. Am. Zool. 2001, 41, 840–851. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Wang, M.; Ju, M.; Yi, X. Olfaction alters spatial memory strategy of scatter-hoarding animals. Integr. Zool. 2021, 16, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.F. Adaptation of gray squirrel behavior to autumn germination by white oak acorns. Evolution 1982, 36, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Bartlow, A.W.; Curtis, R.; Agosta, S.J.; Steele, M.A. Responses of seedling growth and survival to post-germination cotyledon removal: An investigation among seven oak species. J. Ecol. 2019, 107, 1817–1827. [Google Scholar] [CrossRef]
- Gravuer, K.; von Wettberg, E.; Schmitt, J. Dispersal biology of Liatris scariosa var. novae-angliae (Asteraceae), a rare New England grassland perennial. Am. J. Bot. 2003, 90, 1159–1167. [Google Scholar] [CrossRef]
- Brandel, M. Dormancy and germination of heteromorphic achenes of Bidens frondosa. Flora Morphol. Distrib. Funct. Ecol. Plants 2004, 199, 228–233. [Google Scholar] [CrossRef]
- Dimitri, L.A.; Longland, W.S. Pilfering of western juniper seed caches by scatter-hoarding rodents varies by microsite and canopy type. Integr. Zool. 2021, 17, 192–205. [Google Scholar] [CrossRef]
- Steele, M.A.; Manierre, S.; Genna, T.; Contreras, T.A.; Smallwood, P.D.; Pereira, M.E. The innate basis of food-hoarding decisions in grey squirrels: Evidence for behavioural adaptations to the oaks. Anim. Behav. 2006, 71, 155–160. [Google Scholar] [CrossRef]
- Vozzo, J.A. Carbohydrates, lipids, and proteins in ungerminated and germinated Quercus alba embryos. For. Sci. 1978, 24, 486–493. [Google Scholar]
- Paulsen, T.R.; Colville, L.; Kranner, I.; Daws, M.I.; Högstedt, G.; Vandvik, V.; Thompson, K. Physical dormancy in seeds: A game of hide and seek? New Phytol. 2013, 198, 496–503. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yi, X. Nondormant Acorns Show Higher Seed Dispersal Effectiveness Than Dormant Ones. Forests 2022, 13, 881. https://doi.org/10.3390/f13060881
Yang Y, Yi X. Nondormant Acorns Show Higher Seed Dispersal Effectiveness Than Dormant Ones. Forests. 2022; 13(6):881. https://doi.org/10.3390/f13060881
Chicago/Turabian StyleYang, Yueqin, and Xianfeng Yi. 2022. "Nondormant Acorns Show Higher Seed Dispersal Effectiveness Than Dormant Ones" Forests 13, no. 6: 881. https://doi.org/10.3390/f13060881
APA StyleYang, Y., & Yi, X. (2022). Nondormant Acorns Show Higher Seed Dispersal Effectiveness Than Dormant Ones. Forests, 13(6), 881. https://doi.org/10.3390/f13060881