Effect of Climate on Carbon Storage Growth Models for Three Major Coniferous Plantations in China Based on National Forest Inventory Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.1.1. Forest Inventory Data
2.1.2. Climate Data
2.2. Model Development
2.2.1. Basic Carbon Storage Growth Model
2.2.2. Climate-Sensitive, Variable-Parameter Carbon Storage Growth Model
2.3. Model Evaluation and Comparison
2.4. Inflection Point Age of Model
3. Results
3.1. Fitting and Comparisons for Stand Carbon Storage Growth Model
3.2. Climate-Sensitive, Variable-Parameter Carbon Storage Growth Model
3.3. Carbon Sequestration Capacity of the Three Plantations Types
3.4. Effect of Climate on Carbon Sequestration Capacity in the Three Plantation Types
3.4.1. Larix spp. Plantation
3.4.2. P. massoniana Plantation
3.4.3. P. tabuliformis Plantation
4. Discussion
4.1. Performance of Carbon Storage Growth Models
4.2. Climate Effects on Carbon Storage Growth Models
4.3. Carbon Sequestration Capacity and the Effect of Climate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dixon, R.K.; Brown, S.; Houghton, R.A.; Solomon, A.M.; Trexler, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.; Fang, J.; Houghton, R.; Kauppi, P.; Kurz, W.; Phillips, O.; Shvidenko, A.; Lewis, S.; Canadell, J.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, G.; Wang, Q.; Zhang, Y. Huge carbon sequestration potential in global forests. J. Resour. Ecol. 2012, 3, 193–201. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Fang, J.; Yu, G.; Liu, L.; Hu, S.; Chapin, F.S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.; Buongiorno, J.; Nepal, P.; Prestemon, J.P. From source to sink: Past changes and model projections of carbon sequestration in the global forest sector. J. For. Econ. 2019, 34, 47–72. [Google Scholar] [CrossRef]
- Liu, G.; Fu, B.; Fang, J. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta Ecol. Sin. 2000, 20, 733–740. [Google Scholar]
- He, H.; Ge, R.; Ren, X.; Zhang, L.; Chang, Q.; Xu, Q.; Zhou, G.; Xie, Z.; Wang, S.; Wang, H.; et al. Reference carbon cycle dataset for typical Chinese forests via colocated observations and data assimilation. Sci. Data 2021, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Hu, H.; Kato, T.; Muraoka, H.; Son, Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Chang. Biol. 2014, 20, 2019–2030. [Google Scholar] [CrossRef]
- Yu, G.; Li, X.; Wang, Q.; Li, S. Carbon storage and its spatial pattern of terrestrial ecosystem in China. J. Resour. Ecol. 2010, 1, 97–109. [Google Scholar]
- Xu, B.; Guo, Z.; Piao, S.; Fang, J. Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships. Sci. China Life Sci. 2010, 53, 776–783. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, H.; Tao, S.; Chi, X.; Li, P.; Jiang, L.; Ji, C.; Zhu, J.; Tang, Z.; Pan, Y.; et al. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 2017, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, G.; Wang, Q.; Zhang, Y.; Xu, Z. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass. Sci. China Life Sci. 2014, 57, 1218–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- State Council. Action Plan on Carbon Emission Peak Pre-2030. 2021. Available online: http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm (accessed on 16 March 2022).
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhou, G. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. For. Ecol. Manag. 2005, 207, 295–313. [Google Scholar] [CrossRef]
- Hall, G.; Wiser, S.K.; Allen, R.B.; Beets, P.N.; Goulding, C.J. Strategies to estimate national forest carbon stocks from inventory data: The 1990 New Zealand baseline. Glob. Chang. Biol. 2010, 7, 389–403. [Google Scholar] [CrossRef]
- Li, H.; Lei, Y.; Zeng, W. Forest carbon storage in China estimated using forest inventory data. Sci. Silvae Sin. 2011, 47, 7–12. [Google Scholar]
- Petersson, H.; Holm, S.; Stahl, G.; Akger, D.; Fridman, J.; Lehtonen, A.; Lundstrom, A.; Makipaa, R. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass-a comparative study. For. Ecol. Manag. 2012, 270, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Mcroberts, R.E.; Westfall, J.A. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates. For. Sci. 2014, 60, 34–42. [Google Scholar] [CrossRef]
- Zhao, H.; Lei, Y.; Fu, L. Biomass and uncertainty estimates of Pinus massoniana forest for different site classes in Jiangxi province. Sci. Silvae Sin. 2017, 53, 81–93. [Google Scholar]
- Xue, C.; Xu, Q.; Lin, L.; He, X.; Luo, Y.; Zhao, H.; Cao, L.; Lei, Y. Biomass models with breast height diameter and age for main native tree species in Guangdong province. Sci. Silvae Sin. 2019, 55, 163–171. [Google Scholar]
- Luo, Y.; Wang, X.; Ouyang, Z.; Lu, F.; Tao, J. A review of biomass equations for China’s tree species. Earth Syst. Sci. Data 2020, 12, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Wang, Y.; Jiang, Y.; Yang, Z. Estimating biomass and net primary production from forest inventory data: A case study of China’s Larix forests. For. Ecol. Manag. 2002, 69, 149–157. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, G.; Liu, A. Estimation of forest biomass and net primary production for Zhejiang province based on continuous forest resources inventory. Sci. Silvae Sin. 2009, 45, 13–17. [Google Scholar]
- Li, H.; Zhao, P.; Lei, Y.; Zeng, W. Comparison on estimation of wood biomass using forest inventory data. Sci. Silvae Sin. 2012, 48, 44–52. [Google Scholar]
- Li, H.; Ou, Q.; Zhao, J.; Yang, Y.; Quan, F. Effects of model and stand factors on the parameters to carbon accounting at the regional scale—A case study for Cunninghamia lanceolata. Sci. Silvae Sin. 2017, 53, 55–62. [Google Scholar]
- Fu, Y.; Lei, Y.; Zeng, W. Uncertainty assessment in regional-scale above ground biomass estimation of Chinese fir. Sci. Silvae Sin. 2014, 50, 79–86. [Google Scholar]
- Guo, Z.; Fang, J.; Pan, Y.; Birdsey, R. Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods. For. Ecol. Manag. 2010, 259, 1225–1231. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Zhang, X.; Ren, Y.; Poorter, H. Variation in biomass expansion factors for China’s forests in relation to forest type, climate, and stand development. Ann. Forest Sci. 2013, 70, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.B.; Domke, G.M.; Woodall, C.W.; D’Amato, A.W. Comparisons of allometric and climate-derived estimates of tree coarse root carbon stocks in forests of the United States. Carbon Balance Manag. 2015, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Duo, H.; Lei, X.; Chen, X.; Wang, X.; Pu, Y.; Zou, W. Individual tree biomass and growth models sensitive to climate variables for Larix spp. in China. Eur. J. For. Res. 2017, 136, 233–249. [Google Scholar] [CrossRef]
- Khan, D.; Muneer, M.A.; Nisa, Z.U.; Shah, S.; Amir, M.; Saeed, S.; Uddin, S.; Munir, M.Z.; Gao, L.; Huang, H. Effect of climatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia, China. Adv. Meteorol. 2019, 2019, 5692574. [Google Scholar] [CrossRef] [Green Version]
- Usoltsev, V.A.; Shobairi, S.O.R.; Tsepordey, I.S.; Chasovkikh, V.P. Modelling forest stand biomass and net primary production with the focus on additive models sensitive to climate variables for two-needled pines in Eurasia. J. Clim. Chang. 2019, 5, 41–49. [Google Scholar] [CrossRef]
- Du, X.; Chen, X.; Zeng, W.; Meng, J. A climate-sensitive transition matrix growth model for uneven-aged mixed-species oak forests in North China. Forestry 2020, 94, 258–277. [Google Scholar] [CrossRef]
- He, X.; Lei, X.; Dong, L. How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models? Ecol. Indic. 2021, 126, 107569. [Google Scholar] [CrossRef]
- Guo, H.; Lei, X.; You, L.; Zeng, W.; Lang, P.; Lei, Y. Climate-sensitive diameter distribution models of larch plantations in north and northeast China. For. Ecol. Manag. 2022, 506, 119947. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration of China. Report of Forest Resources in China (2014–2018); China Forestry Press: Beijing, China, 2019.
- Zeng, W.; Tomppo, E.; Healey, S.P.; Gadow, K.V. The national forest inventory in China: History-results-international context. For. Ecosyst. 2015, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- LY/T 2260-2014; Tree biomass models and related parameters to carbon accounting for Pinus tabuliformis. China Standard Press: Beijing, China, 2014.
- LY/T 2263-2014; Tree biomass models and related parameters to carbon accounting for Pinus massoniana. China Standard Press: Beijing, China, 2014.
- LY/T 2654-2016; Tree biomass models and related parameters to carbon accounting for Larix. China Standard Press: Beijing, China, 2016.
- Zeng, W.S. Assessment of individual tree above- and below-ground biomass models for 34 tree species in China. In New Ideas Concerning Science and Technology; Elangovan, P., Ed.; Book Publisher International: Bhanjipur, India, 2020; Volume 2, pp. 26–37. [Google Scholar]
- Bennett, A.C.; Penman, T.D.; Arndt, S.K.; Roxburgh, S.H.; Bennett, L.T. Climate more important than soils for predicting forest biomass at the continental scale. Ecography 2020, 43, 1692–1705. [Google Scholar] [CrossRef]
- Wang, T.; Wang, G.; Innes, J.L.; Seely, B.; Chen, B. ClimateAP: An application for dynamic local downscaling of historical and future climate data in Asia Pacific. Front. Agric. Sci. Eng. 2017, 4, 448–458. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, E.; Makineci, E.; Yilmaz, E.; Kumbasli, M.; Caliskan, S.; Beskardes, V.; Keten, A.; Zengin, H.; Yilmaz, H. Biomass estimation of individual trees for coppice-originated oak forests. Eur. J. For. Res. 2019, 138, 623–637. [Google Scholar] [CrossRef]
- Xue, C.; Xu, Q.; Lin, L.; He, X.; Cao, L.; Li, H. Biomass dynamic predicting for Schima superba in Guangdong based on allometric and theoretical growth equation. Sci. Silvae Sin. 2019, 55, 86–94. [Google Scholar]
- Rohner, B.; Waldner, P.; Lischke, H.; Ferretti, M.; Thürig, E. Predicting individual-tree growth of central European tree species as a function of site, stand, management, nutrient, and climate effects. Eur. J. For. Res. 2018, 137, 29–44. [Google Scholar] [CrossRef]
- Sharma, M.; Zhang, S. Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scand. J. For. Res. 2004, 19, 442–451. [Google Scholar] [CrossRef]
- Sharma, M.; Subedi, N.; Ter-Mikaelian, M.; Parton, J. Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees. For. Sci. 2015, 61, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Reid, D.E.B. Stand height/site index equations for jack pine and black spruce trees grown in natural stands. For. Sci. 2017, 64, 33–40. [Google Scholar] [CrossRef]
- Newton, P.F.; Amponsah, I.G. Comparative evaluation of five height-diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability. For. Ecol. Manag. 2007, 247, 149–166. [Google Scholar] [CrossRef]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–301. [Google Scholar] [CrossRef]
- Ratkowsky, D.A.; Reedy, T.J. Choosing near-linear parameters in the four-parameter logistic model for radioligand and related assays. Biometrics 1986, 42, 575–582. [Google Scholar] [CrossRef]
- Garcia, O. Comparing and combining stem analysis data and permanent sample plot data in site index models. For. Sci. 2005, 51, 277–283. [Google Scholar]
- Lin, C.; Buongiorno, J. Fixed versus variable-parameter matrix models of forest growth: The case of maple-birch forests. Ecol. Modell. 1997, 99, 263–274. [Google Scholar] [CrossRef]
- Luo, Q.; Zeng, W.; Peng, C. Variable relative tree height curve model and its application in tree volume estimation. Sci. Silvae Sin. 1997, 33, 202–211. [Google Scholar]
- Zeng, W.; Tang, S. Modeling compatible single-tree aboveground biomass equations for masson pine (Pinus massoniana) in southern China. J. For. Res. 2012, 23, 593–598. [Google Scholar] [CrossRef]
- Tang, S.Z.; Li, Y.; Fu, L.Y. Statistical Foundation for Biomathematical Models, 2nd ed.; Higher Education Press: Beijing, China, 2015. [Google Scholar]
- Zhou, R.W.; Li, W.J.; Zhang, Y.P.; Peng, M.C.; Wang, C.Y.; Sha, L.Q.; Liu, Y.T.; Song, Q.H.; Fei, X.H.; Jin, Y.Q.; et al. Responses of the carbon storage and sequestration potential of forest vegetation to temperature increases in Yunnan province, SW China. Forests 2018, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.Y.; Lei, X.D.; Hu, Z.D.; Zeng, W.S.; Tang, S.Z.; Marshall, P.; Cao, L.; Song, X.Y.; Yu, L.; Liang, J.J. Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China. Ann. For. Sci. 2017, 74, 42. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Feng, L.; Palmer, P.I.; Yi, L.; Fang, S.; Hartmut, B.; Christopher, W.; Tang, X.; Yang, D.; Liu, L.; et al. Reply to: On the role of atmospheric model transport uncertainty in estimating the Chinese land carbon sink. Nature 2022, 603, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Ramstein, C.S.M.; Dominioni, G.; Ettehad, S.; Lam, L.; Quant, M.; Zhang, J.L.; Mark, L.; Nierop, S.; Berg, T.; Leuschner, P.; et al. State and Trends of Carbon Pricing 2019; The World Bank: Washington, DC, USA, 2019. [Google Scholar]
Plantation Types | Variables | Min. | Max. | Mean | S.D. | C.V. (%) |
---|---|---|---|---|---|---|
Larix spp. | Carbon (t/ha) | 0.10 | 129.20 | 33.80 | 25.60 | 75.90 |
Mean annual precipitation (mm) | 257 | 1223 | 569 | 194 | 34.12 | |
Mean annual temperature (°C) | 0 | 15 | 7.5 | 2.8 | 38.02 | |
Age (a) | 5 | 59 | 24.8 | 12.3 | 49.50 | |
P. massoniana | Carbon (t/ha) | 0.00 | 134.50 | 37.70 | 26.10 | 69.30 |
Mean annual precipitation (mm) | 740 | 2293 | 1338 | 328 | 24.51 | |
Mean annual temperature (°C) | 12 | 20 | 16.5 | 2.0 | 12.22 | |
Age (a) | 3 | 60 | 24.4 | 11.2 | 46.00 | |
P. tabuliformis | Carbon (t/ha) | 0.05 | 108.64 | 28.45 | 21.99 | 77.28 |
Mean annual precipitation (mm) | 297 | 1213 | 516 | 117 | 22.60 | |
Mean annual temperature (°C) | 7 | 14 | 11.6 | 1.3 | 11.13 | |
Age (a) | 3 | 68 | 33.2 | 13.1 | 39.50 |
Plantation Types | Models | Parameter Estimates | Fitting Statistics Indices | |||||
---|---|---|---|---|---|---|---|---|
Larix spp. | Equation (1) | 66.1141 | 0.05953 | 2.2248 | 0.420 | 19.55 | 3.47 | 0.56 |
Equation (2) | 51.0975 | 19.3295 | 0.1663 | 0.391 | 20.02 | 3.56 | 2.73 | |
P. massoniana | Equation (1) | 55.4460 | 0.08363 | 2.0604 | 0.287 | 22.08 | 4.05 | 0.96 |
Equation (2) | 45.5767 | 18.1671 | 0.2296 | 0.254 | 22.59 | 4.14 | 4.04 | |
P. tabuliformis | Equation (1) | 91.0381 | 0.02726 | 2.2340 | 0.423 | 16.73 | 4.13 | 0.00 |
Equation (2) | 48.6158 | 35.8971 | 0.1216 | 0.409 | 16.92 | 4.17 | 0.85 |
Plantation Types | Constant Parameters | Variable Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
Larix spp. | 69.0409 | 0.0000 | 0.0000 | −40.9762 | 28.3544 | 0.1943 | −0.04374 | 5.2510 | 0.0000 |
P. massoniana | 53.1713 | 0.1070 | 8.6018 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | −0.3353 |
P. tabuliformis | 131.8019 | 0.01216 | 2.0412 | −30.3743 | 0.0000 | 0.01614 | 0.0000 | −0.07820 | 0.0000 |
Plantation Types | Fitting Statistics Indices | |||
---|---|---|---|---|
Larix spp. | 0.469 | 18.72 | 3.34 | 1.14 |
P. massoniana | 0.293 | 22.01 | 4.04 | 1.10 |
P. tabuliformis | 0.438 | 16.54 | 4.08 | −0.06 |
Plantation Types | Age of Inflection Point(a) | Maximum Current Annual Increment of Carbon (t/(ha·a)) |
---|---|---|
Larix spp. | 14 | 1.89 |
P. massoniana | 9 | 2.29 |
P. tabuliformis | 30 | 1.19 |
Plantation Types | Average Increment of Carbon (t/(ha·a)) | |||||
---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | Max. | |
Larix spp. | 0.65 | 1.11 | 1.37 | 1.48 | 1.50 | 1.50 |
P. massoniana | 1.21 | 1.72 | 1.85 | 1.81 | 1.69 | 1.85 |
P. tabuliformis | 0.18 | 0.37 | 0.53 | 0.66 | 0.75 | 0.94 |
Plantation Types | Climate Scenarios | Age of Inflection Point (a) | Maximum Current Annual Increment of Carbon (t/(ha·a)) | Age of Quantitative Maturity (a) | Maximum Average Increment of Carbon (t/(ha·a)) |
---|---|---|---|---|---|
Larix spp. | High-temperature and more-precipitation (CS-I) | 11 | 4.20 | 18 | 2.54 |
High-temperature and middle-precipitation (CS-II) | 18 | 2.67 | 30 | 1.82 | |
Middle-temperature and more-precipitation (CS-III) | 10 | 3.27 | 15 | 1.98 | |
Middle-temperature and middle-precipitation (CS-IV) | 13 | 2.81 | 21 | 1.92 | |
Middle-temperature and less-precipitation (CS-V) | 18 | 0.87 | 33 | 0.74 | |
Low-temperature and more-precipitation (CS-VI) | 8 | 1.79 | 13 | 1.08 | |
Low-temperature and middle-precipitation (CS-VII) | 10 | 2.36 | 16 | 1.61 | |
Low-temperature and less-precipitation (CS-VIII) | 6 | 1.82 | 11 | 1.68 | |
P. massoniana | Low-temperature (CS-IX) | 15 | 2.35 | 24 | 1.54 |
Middle-temperature (CS-X) | 11 | 2.48 | 19 | 1.78 | |
High-temperature (CS-XI) | 6 | 2.90 | 11 | 2.40 | |
P. tabuliformis | Less-precipitation (CS-XII) | 42 | 1.04 | 75 | 0.84 |
Middle- precipitation (CS-XIII) | 29 | 1.33 | 51 | 1.08 | |
More- precipitation (CS-XIV) | 22 | 1.52 | 38 | 1.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Lai, G.; Zeng, W.; Zou, W.; Yi, S. Effect of Climate on Carbon Storage Growth Models for Three Major Coniferous Plantations in China Based on National Forest Inventory Data. Forests 2022, 13, 882. https://doi.org/10.3390/f13060882
Zhang L, Lai G, Zeng W, Zou W, Yi S. Effect of Climate on Carbon Storage Growth Models for Three Major Coniferous Plantations in China Based on National Forest Inventory Data. Forests. 2022; 13(6):882. https://doi.org/10.3390/f13060882
Chicago/Turabian StyleZhang, Lianjin, Guanghui Lai, Weisheng Zeng, Wentao Zou, and Shanjun Yi. 2022. "Effect of Climate on Carbon Storage Growth Models for Three Major Coniferous Plantations in China Based on National Forest Inventory Data" Forests 13, no. 6: 882. https://doi.org/10.3390/f13060882
APA StyleZhang, L., Lai, G., Zeng, W., Zou, W., & Yi, S. (2022). Effect of Climate on Carbon Storage Growth Models for Three Major Coniferous Plantations in China Based on National Forest Inventory Data. Forests, 13(6), 882. https://doi.org/10.3390/f13060882