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Abstract: Homologs of Larix kaempferi DEFICIENS-AGAMOUS-LIKE 1 (LaDAL1) promote flowering
in Arabidopsis. However, their functional role in the whole life-cycle is limited. Here, we analyzed the
phenotypes and transcriptomes of Arabidopsis plants over-expressing LaDAL1. With respect to the
defined life-cycle stage of Arabidopsis based on the meristem state, the results showed that LaDAL1
promoted seed germination, bolting, flower initiation, and global proliferative arrest, indicating that
LaDAL1 accelerates the meristem reactivation, the transitions of vegetative meristem to inflorescence
and flower meristem, and meristem arrest. As a marker gene of meristem, TERMINAL FLOWER 1
was down-regulated after LaDAL1 over-expression. These results reveal that LaDAL1 accelerates the
life-cycle progression in Arabidopsis by promoting the transition of meristem fate, providing more
and novel functional information about the conifer age-related gene DAL1.

Keywords: AGL6; gymnosperm; life-cycle; lifetime; MADS-box; reproductive development

1. Introduction

In the life cycle of plants, seedlings start vegetative growth after seed germination. As
time goes on, they enter the reproductive phase and can flower and produce seeds. The life
cycle recurs in the next generation (Figure 1). In Larix kaempferi (Japanese larch), ~10 years
are needed for one life cycle, and ~20 years in Picea abies. The timing of life-cycle events is
important for forestry, because it determines the efficiency of breeding and seed production.
So, studying the mechanisms underlying life-cycle progression is of great relevance and
economic value.

Comparative transcriptomic analysis has been performed in L. kaempferi, Pinus tab-
uliformis Carri. and Pinus koraiensis Sieb. & Zucc. to reveal the molecular basis of the
conifer reproductive phase change [1–3]. Differentially expressed genes have been identi-
fied, and a regulatory network model has been proposed for L. kaempferi based on these
genes [3]. Among them, L. kaempferi DEFICIENS-AGAMOUS-LIKE 1 (LaDAL1, also named
LaAGL2-1, GenBank accession number: MN790744), a MADS-box transcription factor and
a homolog of Arabidopsis thaliana (L.) Heynh. AGL6, is controlled by age [3,4], because its
transcript level is low before 5 years and then maintained at a high level after 5 years of
age. This age-dependent pattern is conserved in P. abies [5], P. koraiensis [2] and P. tabuli-
formis [1], indicating that at ~5 years, some conserved and unknown life-cycle events occur
in these trees [3]. Furthermore, over-expression of P. abies (L.) H.Karst. DAL1 (PaDAL1) [5],
Cryptomeria japonica (Thunb. ex L.f.) D.Don CjMADS14 (a homolog of DAL1) [6], and P.
tabuliformis DAL1 (PtDAL1) [1] in A. thaliana results in early flowering. These data indicate
that LaDAL1 and its homologs may be regulators of life-cycle progression, but whether
they can regulate other life-cycle events in addition to flowering is still unknown.
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Compared with perennial plants (Figure 1a), the life cycle revolves faster in A. thali-
ana and life-cycle events are easily recorded with meristem fate transition (Figure 1b). 
Specifically, rosette leaves develop in a specific order with the activity of vegetative meri-
stem. When rosette leaves reach a certain number, the vegetative meristem transforms 
into inflorescence meristem, and a stem-like structure named the inflorescence axis is pro-
duced. This process is often called bolting. After bolting, cell division in shoot apical me-
ristem (SAM) in the inflorescence axis keeps going and results in the inflorescence axis 
growing upward [7–10]. Axillary meristem exists at the axil of the cauline leaf, and its 
activity leads to the growth of lateral branches. In the growth process of the inflorescence 
axis and lateral branches, inflorescence meristem develops into flower meristem, and 
flower meristem subsequently develops into flowers. After the formation of a specific 
number of siliques, cell division in the SAM is arrested, and flower meristem is not pro-
duced and finally turns into silique [11]. This phenomenon is defined as global prolifera-
tive arrest (GPA) [12–15]. The whole plant senesces and dries up, silique dehiscence oc-
curs, and seeds fall. At this point, one life cycle is over, and the next one recurs in offspring 
with seed germination (Figure 1b). 

The timing of A. thaliana life-cycle events such as bolting and flowering has been 
widely studied and controlled genetically [16]. For this reason, A. thaliana is often used to 
determine the functions of genes from woody perennial plants [1,17]. Here, we over-ex-
pressed LaDAL1 in A. thaliana and provided morphological and genetic evidence that 
LaDAL1 accelerates life-cycle progression by promoting the transition of meristem fate. 

 
Figure 1. The life-cycle progression model in perennials and annuals. (a) The life-cycle progression 
in perennials such as Larix kampferi. (b) The life-cycle progression in annuals such as Arabidopsis 
thaliana. VM, vegetative meristem; IM, inflorescence meristem; FM, flower meristem; GPA, global 
proliferative arrest. Vertical dotted lines indicate times of meristem formation and activtiy. 

2. Materials and Methods 
2.1. Plant Materials and Growth Conditions 

The seeds of A. thaliana ecotype Columbia (Col-0) saved in our laboratory were dis-
infected in 0.9% NaClO solution and then inoculated onto 1/2 Murashige and Skoog me-
dium. After being kept at 4 °C for 3 days, seeds were grown under a 16 h photoperiod at 
22 °C with 40% relative humidity. When the seedlings had 2–3 true leaves, some were 
sown in 1:1 mixed roseate and nutrient soil and some were sampled for genomic DNA 
and total RNA extraction. All of the samples were immediately frozen in liquid nitrogen 
and then stored at −80 °C. 

  

Figure 1. The life-cycle progression model in perennials and annuals. (a) The life-cycle progression in
perennials such as Larix kampferi. (b) The life-cycle progression in annuals such as Arabidopsis thaliana.
VM, vegetative meristem; IM, inflorescence meristem; FM, flower meristem; GPA, global proliferative
arrest. Vertical dotted lines indicate times of meristem formation and activtiy.

Compared with perennial plants (Figure 1a), the life cycle revolves faster in A. thaliana
and life-cycle events are easily recorded with meristem fate transition (Figure 1b). Specif-
ically, rosette leaves develop in a specific order with the activity of vegetative meristem.
When rosette leaves reach a certain number, the vegetative meristem transforms into in-
florescence meristem, and a stem-like structure named the inflorescence axis is produced.
This process is often called bolting. After bolting, cell division in shoot apical meristem
(SAM) in the inflorescence axis keeps going and results in the inflorescence axis growing
upward [7–10]. Axillary meristem exists at the axil of the cauline leaf, and its activity leads
to the growth of lateral branches. In the growth process of the inflorescence axis and lateral
branches, inflorescence meristem develops into flower meristem, and flower meristem
subsequently develops into flowers. After the formation of a specific number of siliques,
cell division in the SAM is arrested, and flower meristem is not produced and finally turns
into silique [11]. This phenomenon is defined as global proliferative arrest (GPA) [12–15].
The whole plant senesces and dries up, silique dehiscence occurs, and seeds fall. At this
point, one life cycle is over, and the next one recurs in offspring with seed germination
(Figure 1b).

The timing of A. thaliana life-cycle events such as bolting and flowering has been
widely studied and controlled genetically [16]. For this reason, A. thaliana is often used
to determine the functions of genes from woody perennial plants [1,17]. Here, we over-
expressed LaDAL1 in A. thaliana and provided morphological and genetic evidence that
LaDAL1 accelerates life-cycle progression by promoting the transition of meristem fate.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

The seeds of A. thaliana ecotype Columbia (Col-0) saved in our laboratory were disin-
fected in 0.9% NaClO solution and then inoculated onto 1/2 Murashige and Skoog medium.
After being kept at 4 ◦C for 3 days, seeds were grown under a 16 h photoperiod at 22 ◦C
with 40% relative humidity. When the seedlings had 2–3 true leaves, some were sown in
1:1 mixed roseate and nutrient soil and some were sampled for genomic DNA and total
RNA extraction. All of the samples were immediately frozen in liquid nitrogen and then
stored at −80 ◦C.
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2.2. Plasmid Construction and Genetic Transformation

LaDAL1 was cloned in our previous work [4]. In this study, its full-length coding se-
quence was cloned into the binary vector pCAMBIA1305.1, resulting in the CaMV35S::LaDAL1
vector, and then this vector was transformed into A. thaliana ecotype Col-0 with the floral
dip method mediated by the Agrobacterium tumefaciens strain GV3101. T1 transformants
were selected on kanamycin (50 mg/L, Sigma, Saint Louis, MO, USA) Luria-Bertani culture
plates. T2 transgenic plants before bolting were sampled for RNA-seq. Homozygous T3
transgenic plants were analyzed by polymerase chain reaction (PCR) and quantitative
reverse transcription PCR (qRT-PCR) and then used for phenotypic observation.

2.3. The Extraction of Nucleic Acid, PCR, and qRT-PCR

Genomic DNA was extracted from A. thaliana using the Plant Genomic DNA Kit (TIAN-
GEN, Beijing, China). The transgenic T3 seedlings were analyzed by PCR with the specific
primers 5′-ATGGGGCGGGGGCGAGTCCAGC-3′ and 5′-AATCCACCAGCCTTGCATGTAT
TGG-3′. The transgenic T3 seedlings were also analyzed by qRT-PCR. Total RNA was ex-
tracted using the EasyPure RNA Kit (TransGen Biotech, Beijing, China) according to the
manufacturer’s instructions. A 2.5 µg aliquot of total RNA was reverse-transcribed into
cDNA with the TransScript II One-step gDNA Removal and cDNA Synthesis SuperMix Kit
(TransGen Biotech, Beijing, China), and subsequently diluted for gene expression analysis.
qRT-PCR analysis was performed on a Bio-Rad CFX96 PCR system, using a TB Green®

Premix Ex Taq™ (Tli RNase H Plus) (Takara, Shiga, Japan). Each reaction was carried
out on 2 µL of diluted cDNA sample, in a total reaction system of 25 µL. The following
program was used: 30 s 95 ◦C, 40 cycles (5 s 95 ◦C, 30 s 60 ◦C). The specific primers 5′-
AACGCAGGTGATGCTAGACC-3′ and 5′-CCAAGGCCCGTTAGTACCAG-3′ were used
for LaDAL1. AtUBQ1 (AT3G52590) was used as an internal control [18] with the specific
primers 5′-GCCAAGATCCAAGACAAAGAAG-3′ and 5′-CTGATTGTACTTACGAGCAAG
C-3′. The relative gene expression levels were calculated from 2−∆∆Ct values. qRT-PCR
was performed with three biological replicates, and data are shown as the mean ± SD.

2.4. Phenotypic Observation and Statistical Analysis

Several phenotypic indexes were measured in wild-type and transgenic A. thaliana
plants, including the germination rate, the bolting time, first flowering time, the time of
formation of the last flower in the principal inflorescence axis, the number of siliques, the
number of rosette leaves and branches, and the length of the inflorescence axis. Thirty
seeds were used in each line for the germination rate analysis. At least 15 independent
individuals in each line were used, and a repeat experiment was conducted. GraphPad
Prism 9 and the R packages ggplot2, ggsignif, ggpubr, and RColorBrewer were used for the
statistical analysis and graphics. The significance of differences between LaDAL1 transgenic
lines and wild-type A. thaliana were analyzed by Student’s t-tests.

2.5. Transcriptome Analysis

cDNA library construction and RNA-seq were performed by Sangon Biotech (Shanghai,
China) following standard protocols and sequenced on an Illumina HiSeq 2000 platform;
150-bp paired-end reads were generated. FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc, accessed on 16 March 2020) and Trimmomatic v.0.30 [19] were used
for initial quality control, and the raw reads were filtered to remove reads consisting of
adapters, reads containing runs of poly-Ns (unknown bases) and low-quality reads to
give clean reads. At the same time, the Q20 and Q30 scores, the GC-contents, and the
level of sequence duplication in the clean data were calculated for each sample. All clean
reads were aligned to the reference genome of A. thaliana (A. thaliana TAIR 10 genome).
Fragments Per Kilobase of transcript per Million mapped reads was calculated to evaluate
the transcriptional levels of genes [20].

Differential expression analysis between wild-type and transformed A. thaliana was per-
formed using DESeq2 v1.26 [21]. Genes with |log2FoldChange| ≥ 1 and q value < 0.05 [22]

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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were identified as differentially expressed genes (DEGs). The annotations of DEGs were ob-
tained from TAIR (https://www.arabidopsis.org/, accessed on 16 March 2020). Heatmaps
were used to show the change of expression levels using TBtools [23]. Log scales and row
scales were used to display the change of pattern between groups.

3. Results and Discussion
3.1. Successful Transformation of LaDAL1 into A. thaliana

In total, 12 T1 transgenic A. thaliana lines were obtained, seven of which (D3, D4,
D5, D7, D8, D9, and D10) were randomly selected for further experiments. To verify the
insertion of LaDAL1 in the A. thaliana genome, we purified genomic DNA and carried out
PCR amplification. Genomic DNA from wild-type A. thaliana was also extracted and used
as control. We detected LaDAL1 in these seven transgenic lines and not in the wild-type
(Figure 2a), indicating that LaDAL1 was successfully integrated into the genome of A. thaliana.
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To detect the expression of LaDAL1, total RNA was extracted and qRT-PCR was
carried out. We detected transcripts of LaDAL1 in these seven transgenic lines and not in
the wild-type A. thaliana (Figure 2b). Based on these results, these seven lines were used for
morphological observation and phenotypic analysis.

https://www.arabidopsis.org/
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3.2. LaDAL1 Over-Expression Accelerates the Reactivation of Meristem

LaDAL1 over-expression increased the germination rate of A. thaliana seeds (Figure 3),
because on the fourth day after 4 ◦C treatment, 83.8% of transgenic seeds germinated,
while only 46.7% of wild-type seeds germinated (Figure 3b), indicating that the meristem
reactivation from dormancy is promoted by LaDAL1 over-expression.
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Figure 3. Germination rate of wild-type and LaDAL1 over-expressing Arabidopsis thaliana. (a) Images
of wild-type and transgenic plants. Bar 1 cm. (b) Germination rate of wild-type and transgenic plants
on the fourth day after 4 ◦C treatment. Thirty seeds were used in each line. When two cotyledons
were visible, germination was counted.

3.3. LaDAL1 Over-Expression Accelerates the Transition of Meristem Fate

After measuring the bolting time and the number of rosette leaves in both transgenic
and wild-type A. thaliana, we found that bolting was promoted by over-expression of
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LaDAL1 (Figure 4a), because the bolting time of transgenic A. thaliana was reduced. For
the wild-type, ~17.0 days were needed to bolt, while for transgenic A. thaliana, ~10.8 days
were needed (Figure 4b). In addition, fewer rosette leaves were produced in transgenic
A. thaliana (Figure 4c). In conclusion, transgenic A. thaliana had a shorter bolting time
and fewer rosette leaves than the wild-type, indicating that the transition from vegetative
meristem into inflorescence meristem is promoted by LaDAL1 over-expression.
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Student’s t-test.
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To evaluate the initiation of flower meristem, we counted the time of first flower
formation. It took the wild-type ~19 days to produce the first flower, while it took transgenic
A. thaliana 14–17 days (Figure 5a,b), indicating that transgenic A. thaliana started flowering
earlier than the wild-type, and LaDAL1 over-expression results in the early initiation of
flower meristem.
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Figure 5. Flowering time of wild-type and LaDAL1 over-expressing Arabidopsis thaliana. (a) Images of
wild-type and transgenic plants. Bar 1 cm. (b) First flower formation time in wild-type and transgenic
plants. At least 15 independent individuals in each line were used. Error bars, SE. *** p ≤ 0.001,
Student’s t-test.

3.4. LaDAL1 Over-Expression Promotes GPA in A. thaliana

In the principal inflorescence axis, with the production of the last flower, SAM enters a
state similar to dormancy, a spherical structure is formed in the apex of the inflorescence axis
(Figure 6a), and inflorescence stays indeterminate [11]. Notably, indeterminate inflorescence
can be changed into determinate inflorescence when a terminal flower is produced. For
example, this occurs after the loss-of-function of TFL1 or over-expression of PaDAL1 and
PtDAL1 in A. thaliana [1,5,24]. However, a terminal flower was not observed in the seven A.
thaliana lines over-expressing LaDAL1 in our experiments.
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Figure 6. Formation of the last flower in the principal inflorescence axis and the last silique in
wild-type and LaDAL1 over-expressing Arabidopsis thaliana. (a) Image of the spherical structure (red
arrow) formed at the apex of the principal inflorescence axis. Bar 5 mm. (b) Last flower formation
time in the principal inflorescence axis in wild-type and transgenic plants. (c) Last silique formation
time in wild-type and transgenic plants. At least 15 independent individuals in each line were used.
Error bars, SE. *** p ≤ 0.001, * p ≤ 0.05, NS p > 0.05, Student’s t-test.

In addition, we recorded the time of formation of the last flower in the principal
inflorescence axis and found that it occurred earlier in transgenic A. thaliana. In the wild-
type, ~29 days were needed, while for transgenic A. thaliana, ~26 days were needed
(Figure 6b), indicating that LaDAL1 over-expression promotes the formation of the last
flower in the principal inflorescence axis and the entry of the SAM into arrest.
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When the number of siliques stops increasing, GPA occurs in A. thaliana [14,25]. To
assess the influence of LaDAL1 over-expression on GPA, we counted the number of siliques
every day until it did not increase. We found that it stopped increasing at ~31 days in the
wild-type and at ~28 days in transgenic A. thaliana (Figure 6c), indicating that LaDAL1
over-expression promotes GPA in A. thaliana.

3.5. LaDAL1 Over-Expression Influences the Inflorescence Architecture and Fruit Yield of A. thaliana

The architecture of A. thaliana also results from the activity of SAM. We found that fewer
branches were produced in transgenic A. thaliana. There were 1–2 branches in 90.4% transgenic
seedlings and no branches were produced in D9 and D10 lines, while 53.3% of wild-type
seedlings had 3 branches (Figure 7a). In addition, the length of the principal inflorescence
axis was shorter in 95.2% of transgenic A. thaliana (Figure 7b). The shorter inflorescence axes
with fewer branches also occurred in transgenic A. thaliana after over-expression of PaDAL1
and PtDAL1 [1,5]. These results indicated that the architecture of A. thaliana is altered by
over-expression of DAL1 homologs.
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Fruit yield is an important agronomic trait that is determined by many factors, such
as the duration of inflorescence meristem activity, branch number, and fertility. To assess
the global influence of LaDAL1 over-expression on fruit production, we analyzed the total
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number of siliques in A. thaliana. There were ~28 siliques in wild-type seedlings, while in
transgenic seedlings the number was 8–42 (mean± SD, 24.4 ± 6.5) (Figure 8), indicating that
LaDAL1 over-expression influences the production of siliques, and this influence is different
in each transgenic A. thaliana line (the number of siliques in each line was different). As to
the mechanism underlying this influence, we speculated that the duration of inflorescence
meristem activity, branch number, and fertility are involved based on our findings and those
of others [1,5]. Here, we did not check the fertility of transgenic A. thaliana, but a decrease in
fertility resulting from heteromorphosis has been reported in A. thaliana after over-expression
of PaDAL1 and PtDAL1 [1,5].
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3.6. LaDAL1 Over-Expression Changes the Expression of Genes Related to Aging

To understand how LaDAL1 influences the life-cycle progression in A. thaliana, we
analyzed the transcriptomic response to its over-expression. Comparative transcriptomic
analysis was applied with four transgenic A. thaliana lines and wild-type seedlings. A
total of 619 DEGs were identified, among which 398 were down-regulated by LaDAL1
over-expression and 221 were up-regulated (Table S1). Based on the DEG annotation,
we identified genes associated with life-cycle events. For example, TEMINAL FLOWER
1 (TFL1), a key regulator of flowering time and the development of the inflorescence
meristem [26,27], showed almost undetectable expression levels in transgenic A. thaliana
and stronger expression in the wild-type (Figure 9); AGAMOUS-like 24 [28], AGAMOUS-like
42 [29], MYB13 [30], and ethylene response DNA-binding factor 3 [31], which regulate the floral
process, were also down-regulated in transgenic A. thaliana (Figure 9); in addition, genes
related to leaf senescence, such as senescence-associated gene [32,33], dehydration-responsive
element binding and EAR motif protein [34], were up-regulated in transgenic A. thaliana
(Figure 9). These data suggested that LaDAL1 over-expression changes the transcriptome
of A. thaliana, contributing to the acceleration of its life-cycle progression.
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3.7. LaDAL1 Over-Expression Accelerates Life-Cycle Progression in A. thaliana and Shortens Its
Lifetime, Likely by Down-Regulating TFL1 Expression

In this work, we found that several life-cycle events in addition to flowering were
promoted by LaDAL1 over-expression. The early seed germination of transgenic A. thaliana
showed that the reactivation of meristem from dormancy is promoted by LaDAL1 over-
expression. The decrease in bolting time and the number of rosette leaves showed that
the transition of vegetative meristem to florescence meristem is promoted, and this has
also been reported after over-expression of PaDAL1 and PtDAL1 [1,5]. We found early
appearance of the first flower in A. thaliana over-expressing LaDAL1, indicating that the
formation of flower meristem is also promoted. Notably, we found that the formation of
the last flower in the principal inflorescence axis and GPA are also promoted by LaDAL1
over-expression. In the annual plant A. thaliana, the occurrence of GPA means the end of its
life. So, we conclude that LaDAL1 over-expression accelerates the life-cycle progression
in A. thaliana and shortens its lifetime. Altogether, our findings present more and novel
functional information about conifer DAL1.

TFL1, a phosphatidyl ethanolamine-binding protein family gene, is a key regulator of
flowering time and plant architecture. Its over-expression delays flowering, prolongs the
length of the vegetative phase, and, in the tfl1 mutant, there is an earlier flowering time,
fewer rosette leaves and branches, and a shorter inflorescence axis with the formation of
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a terminal flower [24]. These findings indicate that TFL1 functions to maintain the fate
of vegetative meristem and maintain the juvenility of the plant. In our study, TFL1 was
down-regulated after LaDAL1 over-expression, and some phenotypes were similar to the
tfl1 mutant [27], indicating that down-regulation of TFL1 by LaDAL1 plays an important
role in the transition of meristem fate and acceleration of A. thaliana life-cycle progression.
However, whether LaDAL1 regulates TFL1 directly, and whether it also occurs in larch need
further verification.

Modulation of life-cycle progression via changing TFL1 expression with genetic trans-
formation methods has been realized in some woody perennial plants [35]. In Malus [36–39],
Pyrus [40,41], and Populus [42], the vegetative phase is markedly shortened and precocious
flowering indeed occurs by down-regulating TFL1 expression. Notably, TFL1-like genes
from P. abies [43], P. wilsonii [44], and P. tabuliformis [45] repress flowering in A. thaliana,
suggesting their roles and potential as candidate genes to modulate life-cycle progression.

4. Conclusions

Taken together, our results show that DAL1 can regulate other life-cycle events in
addition to flowering, not only giving more functional information about DAL1 with
respect to the whole life cycle, but also providing potential targets for genetic modification
to improve the reproductive traits of trees.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13060953/s1, Table S1: Differentially expressed genes after
LaDAL1 over-expression.
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