Advances in Biosynthesis and Pharmacological Effects of Cinnamomum camphora (L.) Presl Essential Oil
Abstract
:1. Introduction
2. Chemical Constituents of CCEO
3. Biosynthesis Pathway of CCEO
4. Genes Involved in CCEO Biosynthesis Pathway
4.1. Genes Encoding Key Enzymes in MVA Pathway
4.2. Genes Encoding Key Enzymes in MEP Pathway
4.3. Genes Encoding the Prenyltransferase (PTS)
4.4. Genes Encoding Terpenoid Synthase (TPS)
5. Pharmacological Activity of CCEO
5.1. Antibacterial and Bacteriostatic Activity
5.2. Anti-Inflammatory Action
5.3. Anti-Tumor Effect
5.4. Antioxidant Activity
5.5. Parasite Control and Insecticidal Activity
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.; Sun, Y. Inhibition Activity of cinnamon oil. J. Jilin Agric. Univ. 2013, 35, 402–405. (In Chinese) [Google Scholar]
- Su, Y.B.; Li, Q.B.; Yao, C.Y.; Lu, Y.H.; Hong, J.Q. Antitumor action of ethanolic extractives from camphor leaves. Chem. Ind. Eng. Prog. 2006, 2, 200–204. (In Chinese) [Google Scholar]
- Lee, H.J.; Hyun, E.A.; Yoon, W.J.; Kim, B.H.; Rhee, M.H.; Kang, H.K.; Cho, J.Y.; Yoo, E.S. In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J. Ethnopharmacol. 2006, 103, 208–216. [Google Scholar] [CrossRef]
- Zhou, H.X.; Li, Z.H.; Fu, X.J.; Zhang, H. Study on subcritical fluid extraction of essential oil from Cinnamomum camphora and its antibacterial activity. J. Chin. Med. Mater. 2016, 39, 1357–1360. (In Chinese) [Google Scholar]
- Xiao, S.S.; Yu, H.; Xie, Y.F.; Guo, Y.H.; Fan, J.J.; Yao, W.R. Evaluation of the analgesic potential and safety of Cinnamomum camphora chvar. Borneol essential oil. Bioengineered 2021, 12, 9860–9871. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.X.; Zhang, Q.; Guo, X.L.; Gong, S.J.; Jiang, X.M.; Fu, Y.X.; Luo, L.P. Multivariate analyses of volatile chemical composition in leaves of different Cinnamomum camphora chemotypes. Chin. Bull. Bot. 2014, 49, 161–166. (In Chinese) [Google Scholar]
- Bottoni, M.; Milani, F.; Mozzo, M.; Radice Kolloffel, D.A.; Papini, A.; Fratini, F.; Maggi, F.; Santagostini, L. Sub-Tissue localization of phytochemicals in Cinnamomum camphora (L.) J. Presl. growing in northern Italy. Plants 2021, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Qi, H.; Luan, X.; Xu, W.; Yu, F.; Zhong, Y.; Xu, M. The chromosome-level genome sequence of the camphor tree provides insights into Lauraceae evolution and terpene biosynthesis. Plant Biotechnol. J. 2022, 20, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Chaw, S.M.; Liu, Y.C.; Wu, Y.W.; Wang, H.Y.; Lin, C.I.; Wu, C.S.; Ke, H.M.; Chang, L.Y.; Hsu, C.Y.; Yang, H.T.; et al. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat. Plants 2019, 5, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.L.; Hu, D.N.; Zhou, Z.L.; Liu, S.; Chen, S.Y.; Liu, J. Transcriptome sequencing of linalool leaf and expression analysis of genes involved in terpene synthesis. J. Southwest For. Univ. (Nat. Sci.) 2021, 41, 49–57. (In Chinese) [Google Scholar]
- Yang, Z.R.; Xie, C.Z.; Zhan, T.; Li, L.H.; Liu, S.S.; Huang, Y.Y.; An, W.L.; Zheng, X.S.; Huang, S. Genome-wide identification and functional characterization of the trans-isopentenyl diphosphate synthases gene family in Cinnamomum camphora. Front. Plant Sci. 2021, 12, 708697. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhang, J.; Zhang, B.H.; Jin, X.F.; Zhang, H.Y.; Jin, Z.N. Transcriptional analysis of metabolic pathways and regulatory mechanisms of essential oil biosynthesis in the leaves of Cinnamomum camphora (L.) Presl. Front Genet. 2020, 11, 598714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Tong, Y.Q.; Qian, X.Y.; Li, S.L. Research progress of chemical components and pharmacological activities of Cinnamomum camphora (L.) Presl. Sci. Technol. Food Ind. 2019, 40, 320–333. (In Chinese) [Google Scholar]
- Huo, M.X.; Cui, X.R.; Xue, J.D.; Chi, G.F.; Gao, R.J.; Deng, X.M.; Guan, S.; Wei, J.Y.; Soromou, L.W.; Feng, H.H.; et al. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res. 2012, 180, 47–54. [Google Scholar] [CrossRef]
- Kladniew, B.R.; Polo, M.; Villegas, S.M.; Galle, M.; Bravo, M.G.D. Synergistic antiproliferative and anticholesterogenic effects of linalool, 1,8-cineole, and simvastatin on human cell lines. Chem.-Biol. Interact. 2014, 214, 57–68. [Google Scholar] [CrossRef]
- Xiong, Y.; Wu, X.R.; Tu, X.M.; Han, Q.M. The pharmaceutical research progress of camphor. Lab. Med. Clin. 2009, 6, 999–1001. (In Chinese) [Google Scholar]
- Ghelardinia, C.; Galeottia, N.; Mannellia, L.D.C.; Mazzantib, G.; Bartolinia, A. Local anaesthetic activity of β-caryophyllene. IL Farm. 2001, 56, 387–389. [Google Scholar] [CrossRef]
- Fu, Y.X.; Jiang, X.M.; Luo, L.P.; Zhang, T.; Guo, X.L.; He, Y.C. A GC-MS analysis of volatile oil from different types of Cinnamomum camphora leaves. J. For. Eng. 2016, 1, 72–76. (In Chinese) [Google Scholar]
- Yang, F.; Long, E.P.; Wen, J.H.; Cao, L.; Zhu, C.C.; Hu, H.X.; Ruan, Y.; Okanurak, K.; Hu, H.L.; Wei, X.X.; et al. Linalool, derived from Cinnamomum camphora (L.) Presl leaf extracts, possesses molluscicidal activity against Oncomelania hupensis and inhibits infection of Schistosoma japonicum. Parasites Vectors 2014, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.T.; Li, D.X.; Huang, X.Q.; Yang, H.X.; Qiu, Z.W.; Zou, L.T.; Liang, Q.; Shi, Y.; Wu, Y.X.; Wu, S.H.; et al. Study on antibacterial and quorum-sensing inhibition activities of Cinnamomum camphora leaf essential oil. Molecules 2019, 24, 3792. [Google Scholar] [CrossRef] [Green Version]
- Poudel, D.K.; Rokaya, A.; Ojha, P.K.; Timsina, S.; Satyal, R.; Dosoky, N.S.; Satyal, P.; Setzer, W.N. The chemical profiling of essential oils from different tissues of Cinnamomum camphora L. and their antimicrobial activities. Molecules 2021, 26, 5132. [Google Scholar] [CrossRef] [PubMed]
- De-la-Cruz Chacón, I.; Riley-Saldaña, C.A.; González-Esquinca, A.R. Secondary metabolites during early development in plants. Phytochem. Rev. 2013, 12, 47–64. [Google Scholar] [CrossRef]
- Qiu, F.Y.; Yu, L.; Hu, W.J.; Xiao, F.M.; Jiang, X.M. Correlation between growth and essential oil contents of three chemical types of Cinnamomum camphora. J. For. Eng. 2014, 28, 23–25. (In Chinese) [Google Scholar]
- Xu, Y.M.; Jiang, Z.H.; Bao, C.H.; Zeng, G.T.; Long, G.Y.; Jin, F.G. Comparative studies on differences of oil contents and wood properties among five clones of camphor trees. J. Huazhong Agric. Univ. 2001, 5, 484–488. (In Chinese) [Google Scholar]
- Zhang, G.F. Study on the Variation and Selection of Main Component of Essential oil from Cinnamomum camphora. Ph.D. Thesis, FuJian Agriculture and Forests Univesity, Fuzhou, China, 2006. (In Chinese). [Google Scholar]
- Wang, L.J.; Fang, X.; Yang, C.Q.; Li, J.X.; Chen, X.Y. Biosynthesis and regulation of secondary terpenoid metabolism in plants. Sci. Sin. Vitae 2013, 43, 1030–1046. (In Chinese) [Google Scholar]
- Zhang, C.B.; Sun, H.X.; Gong, Z.J.; Zhu, Z.R. Plant terpenoid natural metabolism pathways and their synthases. Plant Physiol. J. 2007, 43, 169–176. (In Chinese) [Google Scholar]
- Zhou, F.; Pichersky, E. More is better: The diversity of terpene metabolism in plants. Curr. Opin. Plant Biol. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Muchlinski, A.; Ibdah, M.; Ellison, S.; Yahyaa, M.; Nawade, B.; Laliberte, S.; Senalik, D.; Simon, P.; Whitehead, S.R.; Tholl, D. Diversity and function of terpene synthases in the production of carrot aroma and flavor compounds. Sci. Rep. 2020, 10, 9989. [Google Scholar] [CrossRef]
- Karunanithi, P.S.; Zerbe, P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front. Plant Sci. 2019, 10, 1166. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.M.; Liu, A.H.; Li, Q.; Huang, L.Q. Research progress on biosynthesis pathways and key enzymes of plant terpenoids. J. Jiangxi Univ. Chin. Med. 2003, 15, 43–46. (In Chinese) [Google Scholar]
- Zheng, H.; Yu, M.Y.; Pu, C.J.; Chen, M.L.; Li, F.Q.; Shen, Y.; Huang, L.Q. Cloning and expression analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase (CcHMGR) genes in Cinnamomum camphora (L.) Presl. Acta Pharm. Sin. 2020, 55, 152–159. (In Chinese) [Google Scholar]
- Zheng, H.; Yu, M.Y.; Pu, C.J.; Chen, M.L.; Li, F.Q.; Shen, Y.; Huang, L.Q. Cloning and expression analysis of 5-phosphomevalonate kinase gene (CcPMK) in Cinnamomum Camphora. China J. Chin. Mater. Med. 2020, 45, 78–84. (In Chinese) [Google Scholar]
- Lange, B.M.; Croteau, R. Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: Isopentenyl monophosphate kinase catalyzes the terminal enzymatic step. Proc. Natl. Acad. Sci. USA 1999, 96, 13714–13719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.S.; Zhang, Y.Y.; Wang, Y.W.; Ma, X.J.; Song, L.; Tang, F.; Yue, Y.D.; Wang, J. Cloning and bioinformatic analysis of MK gene from Cinnamomum Camphora. Chin. J. Trop. Crops 2017, 38, 2302–2309. (In Chinese) [Google Scholar]
- Wang, X.D.; Zhang, Y.T.; Qin, Z.; Fu, C.; Yang, H.K.; Li, J. Cloning genes of MVA pathway and preliminary survey of expression pattern in Cinnamomum Camphora. J. Cent. South Univ. For. Technol. 2021, 41, 110–121. (In Chinese) [Google Scholar]
- Zhang, Y.Y.; Cao, X.S.; Liu, W.; Wang, Y.W.; Wang, J. Cloning and expression analysis of DXS gene in Cinnamomum Camphora. Genom. Appl. Biol. 2020, 39, 3570–3577. (In Chinese) [Google Scholar]
- Zheng, H.; Jing, L.; Yao, N.; Yang, Q.S.; Peng, H.S.; Shen, Y.; Huang, L.Q. Cloning and expression analysis of 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene (CcDXR1) in Cinnamomum camphora (L.) Presl. Acta Pharm. Sin. 2016, 51, 1494–1501. (In Chinese) [Google Scholar]
- Qin, Z. Evolutionary and functional studies on important genes in MEP pathway of camphor tree (Cinnamomum camphora). Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2019. (In Chinese). [Google Scholar]
- Jin, L.; Zheng, H.; Yao, N.; Chen, M.L.; Shen, Y.; Huang, L.Q. Cloning and expression analysis of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase gene in Cinnamomum camphora. China J. Chin. Mater. Med. 2016, 41, 1578–1584. (In Chinese) [Google Scholar]
- Jiang, X.M.; Wu, Y.F.; Xiao, F.M.; Xiong, Z.Y.; Xu, H.N. Transcriptome analysis for leaves of five chemical types in Cinnamomum camphora. Hereditas (Beijing) 2014, 36, 58–68. (In Chinese) [Google Scholar]
- Zhang, Y.Y.; Song, L.; Liu, W.; Wang, Y.W.; Wang, J. Cloning and bioinformatic analysis of FPPS gene from Cinnamomum Camphora. Mol. Plant Breed. 2018, 16, 6276–6281. (In Chinese) [Google Scholar]
- Cao, X.S.; Zhang, Y.Y.; Wang, Y.W.; Ma, X.J.; Song, L.; Tang, F.; Yue, Y.D.; Wang, J. Cloning and bioinformatics analysis of GGPPS gene from Cinnamomum Camphora. Genom. Appl. Biol. 2018, 37, 3466–3472. (In Chinese) [Google Scholar]
- Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Luo, X.D.; Zhao, P.J.; Zheng, Y. Post-modification enzymes involved in the biosynthesis of plant terpenoids: Post-modification enzymes involved in the biosynthesis of plant terpenoids. Acta Bot. Yunnanica 2010, 31, 461–468. [Google Scholar] [CrossRef]
- Lin, Y.L.; Lee, Y.R.; Huang, W.K.; Chang, S.T.; Chu, F.H. Characterization of S-(+)-linalool synthase from several provenances of Cinnamomum Osmophloeum. Tree Genet. Genomes 2014, 10, 75–86. [Google Scholar] [CrossRef]
- Chen, C.H.; Zheng, Y.J.; Zhong, Y.D.; Wu, Y.F.; Li, Z.T.; Xu, L.A.; Xu, M. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genom. 2018, 19, 550. [Google Scholar] [CrossRef] [Green Version]
- Qiu, F.Y.; Wang, X.D.; Zheng, Y.J.; Wang, H.M.; Liu, X.L.; Su, X.H. Full-length transcriptome sequencing and different chemotype expression profile analysis of genes related to monoterpenoid biosynthesis in Cinnamomum porrectum. Int. J. Mol. Sci. 2019, 20, 6230. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.H.; Liu, S.Z.; Qiu, M.; Luo, Y.F. Analysis on components of high content o-cymene from Cinnamomum camphora essential oil. J. For. Eng. 2018, 3, 49–53. (In Chinese) [Google Scholar]
- Wu, K.G.; Lin, Y.H.; Chai, X.H.; Duan, X.J.; Zhao, X.X.; Chun, C. Mechanisms of vapor-phase antibacterial action of essential oil from Cinnamomum camphora var. linaloofera Fujita against Escherichia coli. Food Sci. Nutr. 2019, 7, 2546–2555. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.L.; Tang, C.L.; Zhang, R.F.; Ye, S.X.; Zhao, Z.M.; Huang, Y.Q.; Xu, X.J.; Lan, W.J.; Yang, D.P. Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of Cinnamomum camphora (Linn.) Presl. J. Ethnopharmacol. 2020, 253, 112652. [Google Scholar] [CrossRef]
- Wei, Q.; Li, Q.; Luo, Y.; Wu, B. Antifungal activity of leaf essential oil from Cinnamomum longepaniculatum (Gamble) N. Chao. Chin. J. Oil Crop Sci. 2006, 1, 63–66. (In Chinese) [Google Scholar]
- Sun, W.J.; Lei, B.; He, Y.; Ma, S.M.; Liu, N.; Mei, Q.B.; Liu, L. Anti-Candida albicans activity and safety of Cinnamomum camphora essential oil and its components. Sci. Technol. Food Ind. 2021, 42, 199–203. (In Chinese) [Google Scholar]
- Xu, Q.P.; Wang, X.; Tang, F.D.; Xia, J.F.; Liu, J.B.; Zhao, X.J.; Pian, R.L. Inhibitory effects of 1, 8-cineol on ovalbumin-induced lung inflammation and airway hyperresponsiveness in asthmatic guinea pigs. Chin. J. Pharmacol. Toxicol. 2010, 24, 35–43. (In Chinese) [Google Scholar]
- Hao, X.C.; Sun, W.G.; Ke, C.B.; Wang, F.Q.; Xue, Y.B.; Luo, Z.W.; Wang, X.B.; Zhang, J.W.; Zhang, Y.H. Anti-Inflammatory activities of leaf oil from Cinnamomum subavenium in vitro and in vivo. Biomed. Res. Int. 2019, 2019, 1823149. [Google Scholar] [CrossRef]
- Fu, J.; Zeng, C.; Zeng, Z.L.; Wang, B.G.; Gong, D.M. Cinnamomum camphora seed kernel oil ameliorates oxidative stress and inflammation in diet-induced obese rats. J. Food Sci. 2016, 81, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.J.; Han, S.C.; Yoon, S.H.; Sim, J.Y.; Maeng, Y.H.; Kang, H.K.; Yoo, E.S. Cinnamomum camphora leaves alleviate allergic skin inflammatory responses in vitro and in vivo. Toxicol. Res. 2019, 35, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.S.; Yu, H.; Xie, Y.F.; Guo, Y.H.; Fan, J.J.; Yao, W.R. The anti-inflammatory potential of Cinnamomum camphora (L.) J.Presl essential oil in vitro and in vivo. J. Ethnopharmacol. 2021, 267, 113516. [Google Scholar] [CrossRef]
- Kaushik, N.; Oh, H.; Lim, Y.; Kumar Kaushik, N.; Nguyen, L.N.; Choi, E.H.; Kim, J.H. Screening of Hibiscus and Cinnamomum plants and identification of major phytometabolites in potential plant extracts responsible for apoptosisinduction in skin melanoma and lung adenocarcinoma cells. Front. Bioeng. Biotechnol. 2021, 9, 779393. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Yin, Z.Q.; Ye, K.C.; Wei, Q.; Jia, R.R.; Zhou, L.J.; Du, Y.H.; Xu, J.; Liang, X.X.; He, C.L.; et al. Anti-hepatoma effect of safrole from Cinnamomum longepaniculatum leaf essential oil in vitro. Int. J. Clin. Exp. Pathol. 2014, 7, 2265–2272. [Google Scholar]
- Moayedi, Y.; Greenberg, S.A.; Jenkins, B.A.; Marshall, K.L.; Dimitrov, L.V.; Nelson, A.M.; Owens, D.M.; Lumpkin, E.A. Camphor white oil induces tumor regression through cytotoxic T cell-dependent mechanisms. Mol. Carcinog. 2019, 58, 722–734. [Google Scholar] [CrossRef]
- Li, J.X.; Meng, B.B.; Zhu, K. Components and antioxidant activity of camphor leaves essential oil. Chem. Ind. Eng. Prog. 2020, 40, 84–90. (In Chinese) [Google Scholar]
- Lee, M.G.; Kuo, S.Y.; Yen, S.Y.; Hsu, H.F.; Leung, C.H.; Ma, D.L.; Wen, Z.H.; Wang, H.M. Evaluation of Cinnamomum osmophloeum Kanehira extracts on tyrosinase suppressor, wound repair promoter, and antioxidant. Sci. World J. 2015, 2015, 303415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, K.N.; Yang, B.; Dong, X.H.; Jiang, G.X.; Zhang, H.Y.; Xie, H.H.; Jiang, Y.M. Flavonoid contents and antioxidant activities from Cinnamomum species. Innov. Food Sci. Emerg. Technol. 2009, 10, 627–632. [Google Scholar] [CrossRef]
- Kallel, I.; Hadrich, B.; Gargouri, B.; Chaabane, A.; Lassoued, S.; Gdoura, R.; Bayoudh, A.; Ben Messaoud, E. Optimization of Cinnamon (Cinnamomum zeylanicum Blume) essential oil extraction: Evaluation of antioxidant and antiproliferative effects. Evid.-Based Complement. Altern. Med. 2019, 2019, 6498347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Wu, N.; Zu, Y.G.; Fu, Y.J. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 2008, 108, 1019–1022. [Google Scholar] [CrossRef]
- Tamil Selvi, M.; Thirugnanasampandan, R.; Sundarammal, S. Antioxidant and cytotoxic activities of essential oil of Ocimum canum Sims. from India. J. Saudi Chem. Soc. 2015, 19, 97–100. [Google Scholar] [CrossRef]
- Satyal, P.; Paudel, P.; Poudel, A.; Dosoky, N.S.; Pokharel, K.K.; Setzer, W.N. Bioactivities and compositional analyses of Cinnamomum essential oils from Nepal: C. camphora, C. tamala, and C. glaucescens. Nat. Prod. Commun. 2013, 8, 1777–1784. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Kim, D.S.; Park, S.H.; Park, H. Phytochemistry and applications of Cinnamomum camphora essential oils. Molecules 2022, 27, 2695. [Google Scholar] [CrossRef]
Type | Compound Name | Molecular Formula | References Bibliography | |
---|---|---|---|---|
monoterpene | Oxygenated monoterpenes | citral | C10H16O | [18] |
borneol | C10H18O | [18] | ||
linalool | C10H18O | [12,19,20] | ||
camphor | C10H16O | [19,20,21] | ||
eucalyptol | C10H18O | [12,19,20,21] | ||
α-terpineol | C10H18O | [7,12,19,20,21] | ||
safrole | C10H10O2 | [19,21] | ||
Monoterpene hydrocarbons | phellandrene | C10H16 | [12] | |
α-Pinene | C10H16 | [7,12,20,21] | ||
β-Pinene | C10H16 | [7,12,20,21] | ||
sabinene | C10H16 | [7,20] | ||
myrcene | C10H16 | [6] | ||
limonene | C10H16 | [21] | ||
camphene | C10H16 | [6] | ||
sesquiterpene | Oxygenated sesquiterpene | nerolidol | C15H26O | [12,20] |
iso-nerlidol | C15H26O | [18] | ||
spathulenol | C15H24O | [12,19] | ||
Sesquiterpene hydrocarbons | germacrene | C15H24 | [12] | |
β-caryophyllene | C15H24 | [12,18,20] | ||
elemene | C15H24 | [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Zhou, H.; Yang, L.; Jiang, L.; Chen, D.; Qiu, D.; Yang, Y. Advances in Biosynthesis and Pharmacological Effects of Cinnamomum camphora (L.) Presl Essential Oil. Forests 2022, 13, 1020. https://doi.org/10.3390/f13071020
Du Y, Zhou H, Yang L, Jiang L, Chen D, Qiu D, Yang Y. Advances in Biosynthesis and Pharmacological Effects of Cinnamomum camphora (L.) Presl Essential Oil. Forests. 2022; 13(7):1020. https://doi.org/10.3390/f13071020
Chicago/Turabian StyleDu, Yuqing, Hua Zhou, Liying Yang, Luyuan Jiang, Duanfen Chen, Deyou Qiu, and Yanfang Yang. 2022. "Advances in Biosynthesis and Pharmacological Effects of Cinnamomum camphora (L.) Presl Essential Oil" Forests 13, no. 7: 1020. https://doi.org/10.3390/f13071020
APA StyleDu, Y., Zhou, H., Yang, L., Jiang, L., Chen, D., Qiu, D., & Yang, Y. (2022). Advances in Biosynthesis and Pharmacological Effects of Cinnamomum camphora (L.) Presl Essential Oil. Forests, 13(7), 1020. https://doi.org/10.3390/f13071020