Trends in Research on Forest Ecosystem Services in the Most Recent 20 Years: A Bibliometric Analysis
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Data Analysis
3. Results and Discussion
3.1. Overall Status of FES
3.1.1. Co-Citation Analysis of Authors
3.1.2. Co-Occurrence Analysis of Journals
3.1.3. Collaboration Network Analysis of Countries and Institutions
3.1.4. Co-Citation Analysis of Publications
3.2. Research Hotspots
3.3. Research Frontiers and Trends
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Uribe-Toril, J.; Ruiz-Real, J.L.; Haba-Osca, J.; Valenciano, J.D.P. Forests’ First Decade: A Bibliometric Analysis Overview. Forests 2019, 10, 72. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Velasco-Muñoz, J.F. Forest Ecosystem Services: An Analysis of Worldwide Research. Forests 2018, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Van Raan, A.F.J. Advances in bibliometric analysis: Research performance assessment and science mapping. In Bibliometrics: Use and Abuse in the Review of Research Performance; Blockmans, W., Engwall, L., Weaire, D., Eds.; Wenner-Gren International Series; Portland Press Ltd.: London, UK, 2014; pp. 17–28. [Google Scholar]
- Zhang, Y.; Yao, X.; Qin, B. A critical review of the development, current hotspots, and future directions of lake taihu research from the bibliometrics perspective. Environ. Sci. Pollut. Res. 2016, 23, 12811–12821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Y.; Liu, X.; Nguyen, T.; He, Q.; Hong, S. Global remote sensing research trends during 1991–2010: A bibliometric analysis. Scientometrics 2013, 96, 203–219. [Google Scholar] [CrossRef]
- Yu, H.; Zhi, Z.; Zhang, C.; Yang, H. Research on literature involving zirconia-based on Pubmed database: A bibliometric analysis. Curr. Sci. 2017, 112, 1134. [Google Scholar] [CrossRef]
- Aleixandre-Benavent, R.; Aleixandre-Tudó, J.L.; Castelló-Cogollos, L.; Aleixandre, J.L. Trends in scientific research on climate change in agriculture and forestry subject areas (2005–2014). J. Clean. Prod. 2017, 147, 406–418. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, J.; Li, C.; Chen, B.; Sun, Y. Using Bibliometric Analysis to Understand the Recent Progress in Agroecosystem Services Research. Ecol. Econ. 2019, 156, 293–305. [Google Scholar] [CrossRef]
- He, K.; Zhang, J.; Wang, X. A scientometric review of emerging trends and new developments in agricultural ecological compensation. Environ. Sci. Pollut. Res. Int. 2018, 25, 16522–16532. [Google Scholar] [CrossRef]
- Kull, C.A.; de Sartre, X.A. Castro-Larranaga, M. The political ecology of ecosystem services. Geoforum 2015, 61, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Romanelli, J.P.; Fujimoto, J.T.; Ferreira, M.D.; Milanez, D.H. Assessing ecological restoration as a research topic using bibliometric indicators. Ecol. Eng. 2018, 120, 311–320. [Google Scholar] [CrossRef]
- Tancoigne, E.; Barbier, M.; Cointet, J.-P.; Richard, G. The place of agricultural sciences in the literature on ecosystem services. Ecosyst. Serv. 2014, 10, 35–48. [Google Scholar] [CrossRef]
- Gong, J.; Xu, C.X.; Yan, L.L. A critical review of progresses and perspectives on ecosystem services from 1997 to 2018. Chin. J. Appl. Ecol. 2019, 30, 3265–3276. [Google Scholar]
- Song, J.; Liu, X.L. Research progress on international studies on applied ecology based on Web of Science. Chin. J. Appl. Ecol. 2019, 30, 1067–1078. [Google Scholar]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Fu, H.Z.; Wang, M.H.; Ho, Y.S. Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011. Sci. Total Environ. 2013, 443, 757–765. [Google Scholar] [CrossRef]
- Chen, C.M. Science mapping: A systematic review of the literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-Century forest cover change. Science 2013, 342, 850. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Xia, Z.; Cao, Y. A Bibliometric Analysis of Global Fine Roots Research in Forest Ecosystems during 1992–2020. Forests 2022, 13, 93. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef]
- Pan, Y.D.; Birdsey, R.A.; Fang, J.Y. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Engel, S.; Pagiola, S.; Wunder, S. Designing payments for environmental services in theory and practice: An overview of the issues. Ecol. Econ. 2008, 65, 663–674. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Diaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Alix-Garcia, J.M.; Shapiro, E.N.; Sims, K.R.E. Forest conservation and slippage: Evidence from Mexico’s National Payments for Ecosystem Services Program. Land Econ. 2012, 88, 613–638. [Google Scholar] [CrossRef]
- Ferraro, P.J.; Simpson, R.D. The cost-effectiveness of conservation payments. Land Econ. 2002, 78, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Aslam, U.; Termansen, M.; Fleskens, L. Investigating farmers’ preferences for alternative PES schemes for carbon sequestration in UK agroecosystems. Ecosyst. Serv. 2017, 27, 103–112. [Google Scholar] [CrossRef]
- Vorlaufer, T.; Falk, T.; Dufhues, T.; Kirk, M. Payments for ecosystem services and agricultural intensification: Evidence from a choice experiment on deforestation in Zambia. Ecol. Econ. 2017, 141, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.L.; Hu, N.; Ding, S.Y.; Liang, G.; Lu, X. Progress in terrestrial ecosystem services and biodiversity. Acta Ecol. Sin. 2016, 36, 4583–4593. [Google Scholar]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Mori, A.S.; Isbell, F.; Fujii, S.; Makoto, K.; Matsuoka, S.; Osono, T. Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecol. Lett. 2016, 19, 249–259. [Google Scholar] [CrossRef]
- Gamfeldt, L.; Snall, T.; Bagchi, R.; Jonsson, M.; Gustafsson, L.; Kjellander, P.; Ruiz-Jaen, M.C.; Froberg, M.; Stendahl, J.; Philipson, C.D.; et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 2013, 4, 1340. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, S.; Wirth, C.; Jucker, T.; van der Plas, F.; Scherer-Lorenzen, M.; Verheyen, K.; Allan, E.; Benavides, R.; Bruelheide, H.; Ohse, B.; et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 2017, 20, 1414–1426. [Google Scholar] [CrossRef] [PubMed]
- van der Plas, F.; Manning, P.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Hector, A.; Ampoorter, E.; Baeten, L.; et al. ‘Jack-of-all-trades’ effects drive biodiversity-ecosystem multifunctionality relationships in Europan forests. Nat. Commun. 2016, 7, 11109. [Google Scholar] [CrossRef] [Green Version]
- Giessen, L.; Buttoud, G. Defining and assessing forest governance. For. Policy Econ. 2014, 49, 1–3. [Google Scholar] [CrossRef]
- CBD. Sustainable Management of Non-Timber Forest Resources; Technical series; Convention on Biological Diversity: Montreal, QC, Canada, 2001; Volume 6, pp. 1–28. [Google Scholar]
- Garrelts, H.; Flitner, M. Governance issues in the Ecosystem Approach: What lessons from the Forest Stewardship Council? Eur. J. For. Res. 2011, 130, 395–405. [Google Scholar] [CrossRef]
- Barbati, A.; Corona, P.; Iovino, F.; Marchetti, M.; Menguzzato, G.; Portoghesi, L. The application of the ecosystem approach through sustainable forest management: An Italian case study. Ital. J. For. Mt. Environ. 2010, 65, 1–17. [Google Scholar] [CrossRef] [Green Version]
- FAO. Sustainable forest management and the ecosystem approach: Two concepts, one goal. In Forest Management Working Papers; Working Paper FM 25; Wilkie, M.L., Holmgren, P., Castañeda, F., Eds.; Forest Resources Development Service, Forest Resources Division—FAO: Roma, Italy, 2003. [Google Scholar]
- Lidskog, R.; Sundqvist, G.; Kall, A.-S.; Sandin, P.; Larsson, S. Intensive forestry in Sweden: Stakeholders’ evaluation of benefits and risk. J. Integr. Environ. Sci. 2013, 10, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fu, B.J.; Piao, S.L.; Lü, Y.H.; Ciais, P.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Kelly, A.; Balmford, A. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett. 2010, 3, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Aragão, L.E.O.C.; Galbraith, D.; Huntingford, C.; Fisher, R.; Zelazowski, P.; Sitch, S.; McSweeney, C.; Meir, P. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. USA 2009, 106, 20610–20615. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Reich, P.B.; Knops, J.M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 2006, 441, 629–632. [Google Scholar] [CrossRef]
- Flombaum, P.; Sala, O.E. Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proc. Natl. Acad. Sci. USA 2008, 105, 6087–6090. [Google Scholar] [CrossRef] [Green Version]
- Beedlow, P.A.; Tingey, D.T.; Phillips, D.L.; Hogsett, W.E.; Olszyk, D.M. Rising atmospheric CO2 and carbon sequestration in forests. Front. Ecol. Environ. 2004, 2, 315–322. [Google Scholar]
- Reich, P.B.; Hobbie, S.E.; Lee, T.; Ellsworth, D.S.; West, J.B.; Tilman, D.; Knops, J.M.H.; Naeem, S.; Trost, J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 2006, 400, 922–925. [Google Scholar] [CrossRef]
- Zenner, E.K.; Peck, J.E.; Brubaker, K.; Gamble, B.; Gilbert, C.; Heggenstaller, D.; Hickey, J.; Sitch, K.; Withington, R. Combining ecological classification systems and conservation filters could facilitate the integration of wildlife and forest management. J. For. 2010, 108, 296–300. [Google Scholar]
- Blaix, C.; Moonen, A.C.; Dostatny, D.F.; Izquierdo, J.; Le Corff, J.; Morrison, J.; Von Redwitz, C.; Schumacher, M.; Westerman, P.R. Quantification of regulating ecosystem services provided by weeds in annual cropping systems using a systematic map approach. Weed Res. 2018, 58, 151–164. [Google Scholar] [CrossRef]
- Underwood, E.C.; Viers, J.H.; Quinn, J.F. Using topography to meet wildlife and fuels treatment objectives in fire-suppressed landscapes. Environ. Manag. 2010, 46, 809–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricketts, T.R. Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv. Biol. 2004, 18, 1262–1271. [Google Scholar] [CrossRef]
- Klein, A.M.; Vaissière, B.E.; Cane, J.H. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2017, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen-Wardell, G.; Bernhardt, P.; Bitner, R.; Burquez, A.; Buchmann, S.; Cane, J.; Cox, P.A.; Dalton, V.; Feinsinger, P.; Ingram, M.; et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 1998, 12, 8–17. [Google Scholar]
- Donaldson, J.; Nänni, I.; Zachariades, C.; Kemper, J. Effects of habitat fragmentation on pollinator diversity a plant reproductive success in Renosterveld scrublands of South Africa. Conserv. Biol. 2001, 16, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Battacharya, M.; Primack, R.B.; Gerwein, J. Are roads and railroads barriers to bumblebee movement in temperate suburban conservation area. Biol. Conserv. 2003, 109, 37–45. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop pollination from native bees at risk from agricultural intensifications. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems: A review. Agron. Sust. Dev. 2012, 33, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Abdi, A.M.; Carrié, R.; Sidemo-Holm, W.; Cai, Z.; Boke-Olén, N.; Smith, H.G.; Eklundh, L.; Ekroos, J. Biodiversity decline with increasing crop productivity in agricultural fields revealed by satellite remote sensing. Ecol. Indic. 2021, 130, 108098. [Google Scholar] [CrossRef]
- De Marc, P.J.; Coelho, F.M. Services performed by the ecosystem: Forest remnants influence agricultural cultures’ pollination and production. Biodivers. Conserv. 2004, 13, 1245–1255. [Google Scholar] [CrossRef]
- Blanche, K.R.; Ludwig, J.A.; Cunningham, S.A. Proximity to rainforest enhances pollination and fruit set in orchards. J. Appl. Ecol. 2006, 43, 1182–1187. [Google Scholar] [CrossRef]
- Davies, Z.G.; Dallimer, M.; Edmondson, J.L.; Leake, J.R.; Gaston, K.J. Identifying potential sources of variability between vegetation carbon storage estimates for urban areas. Environ. Pollut. 2013, 183, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Amini Parsa, V.; Salehi, E.; Yavari, A.R. An improved method for assessing mismatches between supply and demand in urban regulating ecosystem services: A case study in Tabriz, Iran. PLoS ONE 2019, 14, e0220750. [Google Scholar] [CrossRef] [Green Version]
- Jim, C.Y.; Chen, W.Y. Ecosystem services and valuation of urban forests in China. Cities 2019, 26, 187–194. [Google Scholar] [CrossRef]
- Jones, H.P. Impact of ecological restoration on ecosystem services. In Encyclopedia of Biodiversity; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2, pp. 199–208. [Google Scholar]
- Lu, C.X.; Zhao, T.Y.; Shi, X.L.; Chao, S.X. Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J. Clean. Prod. 2018, 176, 1213–1222. [Google Scholar] [CrossRef]
- Shimamoto, C.Y.; Padial, A.A.; da Rosa, C.M.; Marques, M.C. Restoration of ecosystem services in tropical forests: A global meta-analysis. PLoS ONE 2018, 13, e0208523. [Google Scholar] [CrossRef]
- Kong, L.; Zheng, H.; Rao, E.; Xiao, Y.; Ouyang, Z.; Li, C. Evaluating indirect and direct effects of eco-restoration policy on soil conservation service in Yangtze River Basin. Sci. Total Environ. 2018, 631–632, 887–894. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Zheng, H.; Xiao, Y. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Z.; Luo, M.T.; Yue, H.; Chen, X.; Feng, C. Critical thresholds in ecological restoration to achieve optimal ecosystem services: An analysis based on forest ecosystem restoration projects in China. Land Use Policy 2018, 76, 675–678. [Google Scholar] [CrossRef]
- Halme, P.; Allen, K.A.; Auninš, A. Challenges of ecological restoration: Lessons from forests in northern Europe. Biol. Conserv. 2013, 167, 248–256. [Google Scholar] [CrossRef]
- Zhao, A.Y.; Lu, Q. Review and perspectives on both global forest policy and international cooperation in the 20th century. World For. Res. 2000, 13, 1–5. [Google Scholar]
- Low, B.; Costanza, R.; Ostrom, E.; Wilson, J.; Simon, C.P. Human-ecosystem interactions: A dynamic integrated model. Ecol. Econ. 1999, 31, 227–242. [Google Scholar] [CrossRef]
- Salk, C.F.; Chazdon, R.L.; Andersson, K.P. Detecting landscape-level changes in tree biomass and biodiversity: Methodological constraints and challenges of plot-based approaches. Can. J. For. Res. 2013, 43, 799. [Google Scholar] [CrossRef]
- Hauck, J.; Görg, C.; Varjopuro, R. Benefits and limitations of the ecosystem services concept in environmental policy and decision making: Some stakeholder perspectives. Environ. Sci. Policy 2013, 25, 13–21. [Google Scholar] [CrossRef]
- Sun, Y. Pondering over the Evaluation of Sci-tech Achievements in Agriculture and Forestry. J. Beijing For. Unversity 2004, 3, 55–59. [Google Scholar]
- Li, X.; Tian, Y.; Gao, T.; Jin, L.; Li, S.; Zhao, D.; Zheng, X.; Yu, L.; Zhu, J. Trade-Offs Analysis of Ecosystem Services for the Grain for Green Program: Informing Reforestation Decisions in a Mountainous Headwater Region, Northeast China. Sustainability 2020, 12, 4762. [Google Scholar] [CrossRef]
- Biber, P.; Felton, A.; Nieuwenhuis, M.; Lindbladh, M.; Black, K.; Bahýl’, J.; Bingöl, Ö.; Borges, J.G.; Botequim, B.; Brukas, V.; et al. Forest Biodiversity, Carbon Sequestration, and Wood Production:Modeling Synergies and Trade-Offs for Ten Forest Landscapes Across Europe. Front. Ecol. Evol. 2020, 8, 547696. [Google Scholar] [CrossRef]
Cited Frequency | Author | Research Institute | Representative Article | Rearch Topic |
---|---|---|---|---|
1185 | Costanza R Robert Costanza | Crawford School of Public Policy, Australian National University, Australia | The value of the world’s ecosystem services and natural capital | transdisciplinary integration, systems ecology, ecological economics, landscape ecology, ecological modeling, ecological design, energy analysis, environmental policy, social traps, incentive structures and institutions |
737 | Daily GC Gretchen C. Daily | Department of Biology, Stanford University, Stanford, CA | Ecosystem services in decision making: time to deliver | ecosystem services valuation, countryside biogeography, biodiversity change and conservation, agriculture development, policy and financial analysis for integrating conservation and human development |
731 | De Groot R Rudolf de Groot | Environmental Systems Analysis Group, Wageningen University, The Netherlands | A typology for the classification, description and valuation of ecosystem functions, goods and services | sustainable development; natural resource management; environmental impact assessment; biodiversity; ecology |
542 | Foley JA Jonathan A. Foley | Institute on the Environment, University of Minnesota, St. Paul, Minnesota, United States | Global consequences of land use | complex relationship between global environmental systems and human civilization, land use changes, model analyze, ecosystems and resources changes |
530 | Wunder S Sven Wunder | Center for International Forestry Research, Lima, Peru | Taking stock: a comparative analysis of payments for environmental services programs in developed and developing countries | environmental science, climate change, forest management, forest conservation, natural resource management |
495 | Tilman D David Tilman | Department of Ecology, Evolution, and Behavior, University of Minnesota, USA; Bren School of the Environment Science and Management, University of California, USA | Diversity–stability relationships: statistical inevitability or ecological consequence | ecosystem services valuation, species invasions, the evolution and maintenance of biodiversity, population ecology, theory of community dynamics and biodiversity, resource competition, biodiversity and ecosystem functioning |
476 | Myers N Norman Myers | 21st Century School, Oxford University, United Kingdom | Biodiversity hotspots for conservation priorities | |
470 | Chazdon RL Robin L. Chazdon | Department of Ecology and Evolutionary Biology, University of Connecticut, USA | Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded Lands | Tropical forest restoration is a global, high-value opportunity |
446 | Kremen C Claire Kremen | IRES and Biodiversity Research Centre, University of British Columbia, Canada | Managing ecosystem services: What do we need to know about their ecology? | Biodiversity, agricultural production, ecosystem service, agroecosystem |
432 | Laurance WF William F. Laurance | Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, Australia | Ecosystem Decay of Amazonian Forest Fragments: A 22-Year Investigation | habitat fragmentation, climate change, soil biology, surface fires, environmental protection policy, nature reserve design |
Journal | TC | Impact Factor (2018) | h-Index |
---|---|---|---|
Science | 5099 | 41.037 | 1058 |
Forest and Ecology Management | 4146 | 3.126 | 152 |
Nature | 4079 | 43.07 | 1096 |
Proceedings of the National Academy Sciences of the United States of America | 4075 | 9.58 | 699 |
Ecological Economics | 3232 | 4.281 | 174 |
Biological Conservation | 3211 | 4.451 | 173 |
Conservation Biology | 3198 | 6.194 | 201 |
Ecological Applications | 3170 | 4.378 | 193 |
BioScience | 2828 | 6.591 | 189 |
Ecology | 2820 | 4.285 | 262 |
Institutions | Freq | Burst | Degree | Centrality | Sigma |
---|---|---|---|---|---|
United States Department of Agriculture Forest Service | 464 | 22.09 | 52 | 0.07 | 4.08 |
Chinese Academy of Science | 403 | 28 | 0.05 | 1.00 | |
Swedish University of Agricultural Sciences | 160 | 41 | 0.05 | 1.00 | |
Stanford University | 138 | 7.02 | 65 | 0.11 | 2.10 |
University of Wisconsin | 137 | 49 | 0.04 | 1.00 | |
University of Sao Paulo | 132 | 40 | 0.03 | 1.00 | |
University of Queensland | 129 | 44 | 0.05 | 1.00 | |
Universidad Nacional Autónoma de México | 127 | 36 | 0.02 | 1.00 | |
University of Copenhagen | 127 | 4.13 | 40 | 0.04 | 1.17 |
University of Florida | 125 | 52 | 0.04 | 1.00 |
Articles | Author | Year | Source | DOI |
---|---|---|---|---|
High-Resolution Global Maps of 21st-Century Forest Cover Change | Hansen MC et al. | 2013 | Science | 10.1126/science.1244693 |
Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making | de Groot RS et al. | 2010 | Ecological Complex | 10.1016/j.ecocom.2009.10.006 |
Changes in the global value of ecosystem services | Costanza R et al. | 2014 | Global Environmental Change | 10.1016/j.gloenvcha.2014.04.002 |
Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales | Nelson E et al. | 2009 | Frontiers in Ecology and the Environment | 10.1890/080023 |
Biodiversity loss and its impact on humanity | Cardinale BJ et al. | 2012 | Nature | 10.1038/nature11148 |
Defining and classifying ecosystem services for decision making | Fisher B et al. | 2009 | Ecological Economics | 10.1016/j.ecolecon.2008.09.014 |
A Large and Persistent Carbon Sink in the World’s Forests | Pan YD et al. | 2011 | Science | 10.1126/science.1201609 |
Ecosystem service bundles for analyzing tradeoffs in diverse landscapes | Raudsepp-Hearne C et al. | 2010 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.0907284107 |
Designing payments for environmental services in theory and practice: An overview of the issues | Engel S et al. | 2008 | Ecological Economics | 10.1016/j.ecolecon.2008.03.011 |
Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment | Carpenter SR et al. | 2009 | Proceedings of the National Academy of Sciences of the United States of America | 10.1073/pnas.0808772106 |
Ranking | Frequency | Keyword | Ranking | Frequency | Keyword |
---|---|---|---|---|---|
1 | 3621 | Ecosystem service | 11 | 566 | Dynamics |
2 | 2509 | Biodiversity | 12 | 533 | Vegetation |
3 | 1664 | Forest | 13 | 458 | Ecosystem |
4 | 1628 | Conservation | 14 | 454 | Land use change |
5 | 1397 | Management | 15 | 443 | biodiversity conservation |
6 | 1281 | Climate change | 16 | 420 | Carbon |
7 | 925 | Land use | 17 | 419 | Community |
8 | 810 | Impact | 18 | 400 | Tropical forest |
9 | 663 | Landscape | 19 | 396 | Pattern |
10 | 642 | Deforestation | 20 | 394 | Model |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Chen, J.; Jiang, C.; Yao, R.T.; Xue, J.; Bai, Y.; Wang, H.; Jiang, C.; Wang, S.; Zhong, Y.; et al. Trends in Research on Forest Ecosystem Services in the Most Recent 20 Years: A Bibliometric Analysis. Forests 2022, 13, 1087. https://doi.org/10.3390/f13071087
Chen S, Chen J, Jiang C, Yao RT, Xue J, Bai Y, Wang H, Jiang C, Wang S, Zhong Y, et al. Trends in Research on Forest Ecosystem Services in the Most Recent 20 Years: A Bibliometric Analysis. Forests. 2022; 13(7):1087. https://doi.org/10.3390/f13071087
Chicago/Turabian StyleChen, Shiyou, Jie Chen, Chunqian Jiang, Richard T. Yao, Jianming Xue, Yanfeng Bai, Hui Wang, Chunwu Jiang, Silong Wang, Yehui Zhong, and et al. 2022. "Trends in Research on Forest Ecosystem Services in the Most Recent 20 Years: A Bibliometric Analysis" Forests 13, no. 7: 1087. https://doi.org/10.3390/f13071087
APA StyleChen, S., Chen, J., Jiang, C., Yao, R. T., Xue, J., Bai, Y., Wang, H., Jiang, C., Wang, S., Zhong, Y., Liu, E., Guo, L., Lv, S., & Wang, S. (2022). Trends in Research on Forest Ecosystem Services in the Most Recent 20 Years: A Bibliometric Analysis. Forests, 13(7), 1087. https://doi.org/10.3390/f13071087