Whole-Plant Seedling Functional Traits Suggest Lianas Also Support “Fast-Slow” Plant Economics Spectrum
Abstract
:1. Introduction
- (1)
- Which traits or trait sets make lianas, as a whole, different from trees at the seedling stage?
- (2)
- Are lianas, as a whole, represented by species with a higher resource acquisition strategy and alternatively, are tree species associated with a more conservative resource acquisition strategy?
- (3)
- Do similar trait continuums exist among leaf, stem, and root traits?
2. Materials and Methods
2.1. Study site
2.2. Species Selection
2.3. Trait Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Direct Traits Comparison between Lianas and Trees
4.2. Pattern of Biomass Allocation between Clusters
4.3. Pattern of Dry Matter Content and per Dry Mass Unit Investment between Clusters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gentry, A.H. The Distribution and Evolution of Climbing Plants; Cambridge University Press: Cambridge, MA, USA, 1991; pp. 3–48. [Google Scholar]
- Schnitzer, S.A.; Bongers, F. Increasing liana abundance and biomass in tropical forests: Emerging patterns and putative mechanisms. Ecol. Lett. 2011, 14, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, O.L.; Martinez, R.V.; Mendoza, A.M.; Baker, T.R.; Vargas, P.N. Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 2005, 86, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
- Malhi, Y.; Wright, J. Late twentieth-century patterns and trends in the climate of tropical forest regions. In Tropical Forests and Global Atmospheric Change; Oxford Scholarship Online: Oxford, UK, 2005. [Google Scholar]
- Laurance, W.F.; Goosem, M.; Laurance, S.G.W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 2009, 24, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.J. The future of tropical forests. Ann. N. Y. Acad. Sci. 2010, 1195, 1–27. [Google Scholar] [CrossRef]
- Schnitzer, S.A. A mechanistic explanation for global patterns of liana abundance and distribution. Am. Nat. 2005, 166, 262–276. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.; Tobin, M.F.; Mangan, S.A.; Schnitzer, S.A. Unique competitive effects of lianas and trees in a tropical forest understory. Oecologia 2015, 177, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Schnitzer, S.A.; Carson, W.P. Lianas suppress tree regeneration and diversity in treefall gaps. Ecol. Lett. 2010, 13, 849–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Heijden, G.M.F.; Powers, J.S.; Schnitzer, S.A. Effect of lianas on forest-level tree carbon accumulation does not differ between seasons: Results from a liana removal experiment in Panama. J. Ecol. 2019, 107, 1890–1900. [Google Scholar] [CrossRef] [Green Version]
- Van der Heijden, G.M.F.; Powers, J.S.; Schnitzer, S.A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl. Acad. Sci. USA 2015, 112, 13267–13271. [Google Scholar] [CrossRef] [Green Version]
- Putz, F.E. Liana biomass and leaf area of a «Tierra Firme» forest in the Rio Negro Basin, Venezuela. Biotropica 1983, 15, 185–189. [Google Scholar] [CrossRef]
- Givnish, T.J.; Vermeij, G.J. Sizes and Shapes of Liane Leaves. Am. Nat. 1976, 110, 743–778. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E. Contrasting leaf chemical traits in tropical lianas and trees: Implications for future forest composition. Ecol. Lett. 2012, 15, 1001–1007. [Google Scholar] [CrossRef]
- Zhu, S.; Cao, K. Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol. 2009, 204, 295–304. [Google Scholar] [CrossRef]
- Van der Heijden, G.M.; Schnitzer, S.A.; Powers, J.S.; Phillips, O.L. Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests. Biotropica 2013, 45, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Schnitzer, S.A.; Heijden, G.M.F.v.d.; Mascaro, J.; Carson, W.P. Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology 2014, 95, 3008–3017. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.-Q.; Poorter, L.; Cao, K.-F.; Bongers, F. Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees. Ann. Bot. 2007, 100, 831–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avalos, G.; Mulkey, S.S. Photosynthetic and Morphological Acclimation of Seedlings of Tropical Lianas to Changes in the Light Environment. Am. J. Bot. 2014, 101, 2088–2096. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, J.H.C.; Diez, P.C.; Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 1996, 84, 755–765. [Google Scholar] [CrossRef]
- Umaña, M.N.; Forero-Montaña, J.; Nytch, C.J.; Thompson, J.; Uriarte, M.; Zimmerman, J.; Swenson, N.G. Dry conditions and disturbance promote liana seedling survival and abundance. Ecology 2019, 100, e02556. [Google Scholar] [CrossRef] [Green Version]
- Umaña, M.N.; Manzané-Pinzón, E.; Comita, L.S. Long-term dynamics of liana seedlings suggest decelerating increases in liana relative abundance over time. J. Ecol. 2020, 108, 460–469. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Macarthur, R.; Levins, R. Limiting similarity, convergence and divergence of coexisting species. Am. Nat. 1967, 101, 377–385. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef] [Green Version]
- Diaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C.; et al. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Freschet, G.T.; Cornelissen, J.H.C.; van Logtestijn, R.S.P.; Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 2010, 98, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Perez-Ramos, I.M.; Roumet, C.; Cruz, P.; Blanchard, A.; Autran, P.; Garnier, E. Evidence for a ‘plant community economics spectrum’ driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J. Ecol. 2012, 100, 1315–1327. [Google Scholar] [CrossRef] [Green Version]
- De la Riva, E.G.; Tosto, A.; Perez-Ramos, I.M.; Navarro-Fernandez, C.M.; Olmo, M.; Anten, N.P.R.; Maranon, T.; Villar, R. A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits? J. Veg. Sci. 2016, 27, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Tjoelker, M.G.; Walters, M.B.; Vanderklein, D.W.; Bushena, C. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct. Ecol. 1998, 12, 327–338. [Google Scholar] [CrossRef]
- Wright, I.J.; Westoby, M. Differences in seedling growth behaviour among species: Trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. J. Ecol. 1999, 87, 85–97. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Kramer-Walter, K.R.; Bellingham, P.J.; Millar, T.R.; Smissen, R.D.; Richardson, S.J.; Laughlin, D.C.; Mommer, L. Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 2016, 104, 1299–1310. [Google Scholar] [CrossRef]
- Collins, C.G.; Wright, S.J.; Wurzburger, N. Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees. Oecologia 2016, 180, 1037–1047. [Google Scholar] [CrossRef]
- Werden, L.K.; Waring, B.G.; Smith-Martin, C.M.; Powers, J.S. Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping water-use strategies. Tree Physiol. 2018, 38, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Cao, K. Contrasting cost-benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China. Oecologia 2010, 163, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Medina-Vega, J.A.; Bongers, F.; Poorter, L.; Schnitzer, S.A.; Sterck, F.J. Lianas have more acquisitive traits than trees in a dry but not in a wet forest. J. Ecol. 2021, 109, 2367–2384. [Google Scholar] [CrossRef]
- Guzman, Q.J.A.; Rivard, B.; Sanchez-Azofeifa, G.A. Discrimination of liana and tree leaves from a Neotropical Dry Forest using visible-near infrared and longwave infrared reflectance spectra. Remote Sens. Environ. 2018, 219, 135–144. [Google Scholar] [CrossRef]
- Jacobsen, A.L.; Pratt, R.B.; Tobin, M.F.; Hacke, U.G.; Ewers, F.W. A global analysis of xylem vessel length in woody plants. Am. J. Bot. 2012, 99, 1583–1591. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F.; Perez-Salicrup, D.; Delamonica, P.; Fearnside, P.M.; D’Angelo, S.; Jerozolinski, A.; Pohl, L.; Lovejoy, T.E. Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 2001, 82, 105–116. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.J.; Ma, K.P.; Bongers, F.; Sterck, F.J. Fully exposed canopy tree and liana branches in a tropical forest differ in mechanical traits but are similar in hydraulic traits. Tree Physiol. 2019, 39, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Smith-Martin, C.M.; Bastos, C.L.; Lopez, O.R.; Powers, J.S.; Schnitzer, S.A. Effects of dry-season irrigation on leaf physiology and biomass allocation in tropical lianas and trees. Ecology 2019, 100, e02827. [Google Scholar] [CrossRef] [PubMed]
- Gerwing, J.J. Life history diversity among six species of canopy lianas in an old-growth forest of the eastern Brazilian Amazon. For. Ecol. Manag. 2004, 190, 57–72. [Google Scholar] [CrossRef]
- Selaya, N.G.; Anten, N.P.R. Differences in biomass allocation, light interception and mechanical stability between lianas and trees in early secondary tropical forest. Funct. Ecol. 2008, 22, 30–39. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Davies, S.J.; Bennett, A.C.; Gonzalez-Akre, E.B.; Muller-Landau, H.C.; Joseph Wright, S.; Abu Salim, K.; Almeyda Zambrano, A.M.; Alonso, A.; Baltzer, J.L.; et al. CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 2015, 21, 528–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockelman, W.Y.; Nathalang, A.; Gale, G.A. The MoSingto Forest Dynamics Plot, Khao Yai National Park, Thailand. Nat. Hist. Bull. Siam Soc. 2011, 57, 35–55. [Google Scholar]
- Poorter, L.; Wright, S.J.; Paz, H.; Ackerly, D.D.; Condit, R.; Ibarra-Manríquez, G.; Harms, K.E.; Licona, J.C.; Martínez-Ramos, M.; Mazer, S.J.; et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 2008, 89, 1908–1920. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Wells, C.E.; Yanai, R.D.; Whitbeck, J.L. Building roots in a changing environment: Implications for root longevity. New Phytol. 2000, 147, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Garnier, E.; Shipley, B.; Roumet, C.; Laurent, G. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct. Ecol. 2001, 15, 688–695. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Poorter, L.; Castilho, C.V.; Schietti, J.; Oliveira, R.S.; Costa, F.R.C. Can traits predict individual growth performance? A test in a hyperdiverse tropical forest. New Phytol. 2018, 219, 109–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birouste, M.; Zamora-Ledezma, E.; Bossard, C.; Pérez-Ramos, I.M.; Roumet, C. Measurement of fine root tissue density: A comparison of three methods reveals the potential of root dry matter content. Plant Soil 2013, 374, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Khiewbanyang, N.; Khudamrongsawat, J.; Saralamba, C.; Nathalang, A. The Relationships between Host Tree Characteristics and Liana Climbing Success at Mo Singto Forest Dynamics Plot, Khao Yai National Park, Thailand. Trop. Nat. Hist. 2017, 17, 1–10. [Google Scholar]
- Visser, M.D.; Schnitzer, S.A.; Muller-Landau, H.C.; Jongejans, E.; de Kroon, H.; Comita, L.S.; Hubbell, S.P.; Wright, S.J. Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. J. Ecol. 2018, 106, 781–794. [Google Scholar] [CrossRef] [Green Version]
- Bazzaz, F.A.; Pickett, S.T.A. Physiological Ecology of Tropical Succession: A Comparative Review. Annu. Rev. Ecol. Evol. Syst. 1980, 11, 287–310. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Chao, A.; Colwell, R.K.; Lin, S.-Y.; Norden, N.; Letcher, S.G.; Clark, D.B.; Finegan, B.; Arroyo, J.P. A novel statistical method for classifying habitat generalists and specialists. Ecology 2011, 92, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Chanthorn, W.; Hartig, F.; Brockelman, W.Y. Structure and community composition in a tropical forest suggest a change of ecological processes during stand development. For. Ecol. Manag. 2017, 404, 100–107. [Google Scholar] [CrossRef]
- Jha, N.; Tripathi, N.K.; Chanthorn, W.; Brockelman, W.; Nathalang, A.; Pélissier, R.; Pimmasarn, S.; Ploton, P.; Sasaki, N.; Virdis, S.G.P.; et al. Forest aboveground biomass stock and resilience in a tropical landscape of Thailand. Biogeosciences 2020, 17, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Burnham, R.J.; Santanna, C.V. Distribution, diversity, and traits of native, exotic, and invasive climbing plants in Michigan. Brittonia 2015, 67, 350–370. [Google Scholar] [CrossRef]
- Putz, F.E. The Natural History of Lianas on Barro Colorado Island, Panama. Ecology 1984, 65, 1713–1724. [Google Scholar] [CrossRef]
- Gallenmüller, F.; Rowe, N.; Speck, T. Development and Growth Form of the Neotropical Liana Croton nuntians: The Effect of Light and Mode of Attachment on the Biomechanics of the Stem. J. Plant Growth Regul. 2004, 23, 83–97. [Google Scholar] [CrossRef]
- Strong, D.R.; Ray, T.S. Host Tree Location Behavior of a Tropical Vine (Monstera gigantea) by Skototropism. Science 1975, 190, 804–806. [Google Scholar] [CrossRef]
- Larson, K.C. Circumnutation behavior of an exotic honeysuckle vine and its native congener: Influence on clonal mobility. Am. J. Bot. 2000, 87, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Wyka, T.P.; Zadworny, M.; Mucha, J.; Żytkowiak, R.; Nowak, K.; Oleksyn, J. Species-specific responses of growth and biomass distribution to trellis availability in three temperate lianas. Trees Struct. Funct. 2019, 33, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Bloom, A.J.; Chapin, F.S.; Mooney, H.A. Resource Limitation in Plants-An Economic Analogy. Annu. Rev. Ecol. Evol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Shipley, B.; Meziane, D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct. Ecol. 2002, 16, 326–331. [Google Scholar] [CrossRef]
- Poorter, H.; Jagodzinski, A.M.; Ruiz-Peinado, R.; Kuyah, S.; Luo, Y.; Oleksyn, J.; Usoltsev, V.A.; Buckley, T.N.; Reich, P.B.; Sack, L. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 2015, 208, 736–749. [Google Scholar] [CrossRef]
- Engelbrecht, B.M.J.; Kursar, T.A.; Tyree, M.T. Drought effects on seedling survival in a tropical moist forest. Trees Struct. Funct. 2005, 19, 312–321. [Google Scholar] [CrossRef]
- Markesteijn, L.; Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J. Ecol. 2009, 97, 311–325. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Kuzee, M.E.; Bongers, F. Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J. Ecol. 2005, 93, 1115–1125. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Cao, K.F.; Schnitzer, S.A.; Fan, Z.X.; Zhang, J.L.; Bongers, F. Water-use advantage for lianas over trees in tropical seasonal forests. New Phytol. 2015, 205, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Schnitzer, S.A.; Zhang, Y.J.; Fan, Z.X.; Goldstein, G.; Tomlinson, K.W.; Lin, H.; Zhang, J.L.; Cao, K.F. Physiological regulation and efficient xylem water transport regulate diurnal water and carbon balances of tropical lianas. Funct. Ecol. 2017, 31, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Smith-Martin, C.M.; Xu, X.T.; Medvigy, D.; Schnitzer, S.A.; Powers, J.S. Allometric scaling laws linking biomass and rooting depth vary across ontogeny and functional groups in tropical dry forest lianas and trees. New Phytol. 2020, 226, 714–726. [Google Scholar] [CrossRef] [PubMed]
- Craine, J.M.; Froehle, J.; Tilman, G.D.; Wedin, D.A.; Chapin, F.S. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 2001, 93, 274–285. [Google Scholar] [CrossRef] [Green Version]
- Schnitzer, S.A. Testing ecological theory with lianas. New Phytol. 2018, 220, 366–380. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, J.G.; Wilson, P.J.; Hunt, R.; Grime, J.P.; Thompson, K. Allocating C-S-R plant functional types: A soft approach to a hard problem. Oikos 1999, 85, 282–294. [Google Scholar] [CrossRef]
- Poorter, L.; Bongers, F.; Sterck, F.J.; Wöll, H. Beyond the regeneration phase: Differentiation of height–light trajectories among tropical tree species. J. Ecol. 2005, 93, 256–267. [Google Scholar] [CrossRef]
- Carrera-Martinez, R.; Aponte-Diaz, L.A.; Ruiz-Arocho, J.; Lorenzo-Ramos, A.; Jenkins, D.A. The effects of the invasive Harrisia cactus mealybug (Hypogeococcus sp.) and exotic lianas (Jasminum fluminense) on Puerto Rican native cacti survival and reproduction. Biol. Invasions 2019, 21, 3269–3284. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Heijden, G.M.F.V.D. Lianas have a seasonal growth advantage over co-occurring trees. Ecology 2019, 100, e02655. [Google Scholar] [CrossRef]
- De Guzman, M.E.; Santiago, L.S.; Schnitzer, S.A.; Alvarez-Cansino, L. Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species. Tree Physiol. 2017, 37, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Withington, J.M.; Reich, P.B.; Oleksyn, J.; Eissenstat, D.M. Comparisons of structure and life span in roots and leaves among temperate trees. Ecol. Monogr. 2006, 76, 381–397. [Google Scholar] [CrossRef]
- Laughlin, D.C.; Fule, P.Z.; Huffman, D.W.; Crouse, J.; Laliberte, E. Climatic constraints on trait-based forest assembly. J. Ecol. 2011, 99, 1489–1499. [Google Scholar] [CrossRef]
- Poorter, H.; Nagel, O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Aust. J. Plant Physiol. 2000, 27, 595–607. [Google Scholar] [CrossRef] [Green Version]
Trait | Abbr. | Unit | Equation | Ecological Relevance |
---|---|---|---|---|
Leaf area | LA | cm2 | - | Leaf temperatures and higher photosynthetic and water use efficiency under drought [13,49] |
Specific leaf area | SLA | cm2 g−1 | Potential relative growth rate [31] | |
Leaf area ratio | LAR | cm2 g−1 | Per dry mass investment in leaf, light capture, and enhanced growth [50] | |
Leaf dry matter content | LDMC | g g−1 | Cost of leaf construction and potential growth rate [51] | |
Leaf mass fraction | LMF | g g−1 | Per allocation of resources to optimize light capture [52] | |
Specific stem length | SSL | cm g−1 | Per dry mass stem investment in stem length, trade-off between stem expansion, and stability [53] | |
Stem dry matter content | SDMC | g g−1 | Stem construction cost, xylem conductance, and photosynthetic potential [54] | |
Stem mass fraction | SMF | g g−1 | Allocation of biomass to stem development and growth towards direct sunlight [52] | |
Specific root length | SRL | cm g−1 | Per dry mass root investment in root length and potential relative growth rate [33] | |
Root dry matter content | RDMC | g g−1 | Cost of root construction, a proxy of root tissue density [55], related to potential relative growth rate [35] | |
Root mass fraction | RMF | g g−1 | Extract deeper soil water and avoid drought [52] |
Cluster | Habits | Total No. | OG | SG | Generalist | Too-Rare |
---|---|---|---|---|---|---|
Tree-dominated | Tree | 77 | 58 | 9 | 5 | 5 |
Liana | 25 | 10 | 4 | 7 | 4 | |
Liana-dominated | Tree | 23 | 13 | 1 | 6 | 3 |
Liana | 28 | 17 | 0 | 6 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Prachanun, N.; Sonsuthi, A.; Chanthorn, W.; Brockelman, W.Y.; Nathalang, A.; Lin, L.; Bongers, F. Whole-Plant Seedling Functional Traits Suggest Lianas Also Support “Fast-Slow” Plant Economics Spectrum. Forests 2022, 13, 990. https://doi.org/10.3390/f13070990
Sun Z, Prachanun N, Sonsuthi A, Chanthorn W, Brockelman WY, Nathalang A, Lin L, Bongers F. Whole-Plant Seedling Functional Traits Suggest Lianas Also Support “Fast-Slow” Plant Economics Spectrum. Forests. 2022; 13(7):990. https://doi.org/10.3390/f13070990
Chicago/Turabian StyleSun, Zhenhua, Nujaree Prachanun, Arunkamon Sonsuthi, Wirong Chanthorn, Warren Y. Brockelman, Anuttara Nathalang, Luxiang Lin, and Frans Bongers. 2022. "Whole-Plant Seedling Functional Traits Suggest Lianas Also Support “Fast-Slow” Plant Economics Spectrum" Forests 13, no. 7: 990. https://doi.org/10.3390/f13070990
APA StyleSun, Z., Prachanun, N., Sonsuthi, A., Chanthorn, W., Brockelman, W. Y., Nathalang, A., Lin, L., & Bongers, F. (2022). Whole-Plant Seedling Functional Traits Suggest Lianas Also Support “Fast-Slow” Plant Economics Spectrum. Forests, 13(7), 990. https://doi.org/10.3390/f13070990