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Abstract: Dike-pond is a unique agricultural landscape type in the Pearl River Delta region of China,
which has significance for the maintenance of ecological balance. In recent years, urbanization
in China has developed rapidly, and dike-ponds have been extensively occupied, reducing their
ecological regulation ability and threatening regional ecological security. Taking the Shunde District
of Foshan as an example, based on remote sensing images from 1979 to 2020, using a CA-Markov
model with the multi-criteria evaluation method (MCE), firstly the spatial and temporal evolution
characteristics of the dike-pond landscape pattern were analyzed, then the dike-pond landscape
in 2030 was simulated. At last, the spatio-temporal evolution of ecosystem service value (ESV) in
Shunde was visualized. The results show that: (1) In the past four decades, the landscape types
in Shunde have changed significantly. This mainly manifested as dike-pond, cultivated land, and
forest land transforming into construction land. (2) At the class level, the degree of dike-pond
landscape fragmentation increased, and the degree of dominance and agglomeration decreased.
At the landscape level, the regional degree of dominance showed an upward trend, whereas the
overall landscape showed an unbalanced trend distribution. It is predicted that from 2020 to 2030,
the landscape pattern of dike-pond will not change significantly, and the overall landscape richness
will increase. (3) The ESV in Shunde decreased continuously from 1979 to 2020. The dike-pond ESV
accounts for the largest proportion and is the main landscape type that maintains ecological balance.
It is predicted that the ESV decline will slow in the future. (4) The optimized MCE-CA-Markov model
has greater precision and produces better simulations. The dike-pond development model proposed
in this study can provide a scientific basis for delimiting the scope of regional ecological protection
and sustainable development.

Keywords: dike-pond; spatio-temporal evolution; landscape pattern; spatial metrics; CA-Markov
model; ecosystem service valuation

1. Introduction

Over the past four decades, China has made great achievements in its economy and
urbanization [1]; however, excessive urban expansion and population growth have resulted
in large areas of natural land being occupied by construction land, thereby damaging
the regional environment [2]. The abundant, spreading Pearl River system nourishes
the people of the Pearl River Delta and gives rise to a unique land type, the dike-pond.
This is a large area composite agricultural production system composed of fishponds and
pond foundations, which promotes the development and prosperity of the agricultural
economy in the Pearl River Delta [3,4]. The dike-pond is a natural–artificial composite
wetland ecosystem, which is conducive to maintaining the regional ecological balance [4].
After thousands of years of artificial reclamation and natural evolution, dike-ponds have
become a unique vernacular landscape [5]. In 2020, the dike-ponds of Foshan, Guangdong
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were recognized as an important Chinese agricultural cultural heritage site, and the most
concentrated area of dike-ponds, “Sangyuanwei”, became a World Irrigation Heritage [6].

Research on dike-ponds was first recorded in The Introduction of Sericulture in Guang-
dong, in which traditional dike-pond agricultural techniques were analyzed [7]. In the 1980s,
Zhong described dike-pond systems as natural–artificial ecosystems, and studied their
structure, function, and ecological and economic benefits [8]. Following this, Korn et al.
conducted in-depth studies on the ecosystem cycle of dike-pond systems in China [9], and
Hill et al. studied the ecological engineering problems of the dike-pond system in the Pearl
River Delta and noted the ecological effects of the system [10]. In recent years, with the
rapid development of urbanization, the transformation of different land use types in the
Pearl River Delta has resulted in significant shrinkage of dike-pond areas; dike-pond land-
scapes have become fragmented and isolated, and the regional ecological environmental
quality has declined [11]. Simultaneously, the agricultural production function of dike-pond
systems has been greatly degraded, partially because of modern intensive agriculture [12],
which suggests that the dike-pond’s single agricultural production function should be
transformed into more ecological and social functions [13]. Research on the ecological
environment of dike-ponds in the Pearl River Delta has become a hot topic [14,15]. For
example, Ding analyzed the current situation of the dike-pond system in the context of
urbanization through field research and found that recycling development of the dike-pond
system must be carried out in a sustainable manner [16]. Furthermore, Nie investigated
and analyzed the reasons for and mechanism of dike-pond system degradation in Shunde
District and proposed a feasible method to restore certain degraded dike-pond systems
and apply the principles of food chains and ecological niches [17].

Changes in land use and land cover (LUCC) can change regional landscape pat-
terns, which can affect regional ecological processes and environmental quality [18]. Cur-
rently, the evolution and simulation of landscape patterns have been examined at multiple
scales, including countries [19,20], regions [21,22], cities [23,24], and counties [25], mostly
covering all landscape types in the area. Some focus on particular landscapes, such as
watersheds [26,27], forests [28], and wetlands [29]. With the wide application of 3S technol-
ogy, spatial analysis has been applied to dike-pond research. Using Landsat TM remote
sensing image data from 1990, 2000, and 2006, Ye extracted the landscape of dike-ponds in
the Pearl River Delta and discussed changes in the spatial patterns. Ye divided the Pearl
River Delta into four categories, according to the comprehensive expansion coefficient of
the dike-pond: strong expansion, weak expansion, relatively stable, and shrinking [30]. Liu
used three remote sensing images from 1988, 1998, and 2006 to analyze the changing spatial
patterns of dike-ponds, and then analyzed their spatial evolution in combination with the
land use change transfer matrix, which showed that the traditional dike-pond system is
gradually dying out in the Pearl River Delta [31]. Han analyzed the changes in dike-pond
patterns in Shunde District in the context of rapid urbanization using the landscape index
and simulated five “city–dike-pond” landscape ecological security patterns [32].

However, fully capturing and simulating landscape pattern changes remains chal-
lenging [33]. In recent years, researchers have attempted to explore the complexity and
uncertainty of landscape changes using various models, most often quantitative and spatial
simulation models [34]. A quantitative simulation model is based on statistical analysis of
variables, including logistic regression statistics [35], system dynamics analysis [36], and
Markov chain [37]. Spatial simulations include spatial allocation capability, such as the CA
model [38], FLUS model [39], and GeoSOS model [40]. Currently, very few single models
can capture all the complex features of landscape pattern changes; therefore, improved
models coupled with quantitative and spatial models have become the main trend in study-
ing simulated landscape patterns [41]. The CA-Markov model combines the ability of the
CA model to simulate spatial changes within a complex system. It takes advantage of the
Markov model for long-term predictions, which can effectively simulate the quantitative
and spatial changes in landscape pattern [42]. In addition, the MCE-CA-Markov model
uses the multi-criteria evaluation (MCE) method to quantify all influencing factors and sup-
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plement the transformation rules of the CA model in order to increase model accuracy [43].
Previous studies mostly considered bottom-up influencing factors, such as natural factors
(slope and elevation) and social factors (population and GDP) [44]. Top-down policy factors,
such as restricted or prohibited development zones and ecological protection zones are
rarely considered. Furthermore, when considering the driving factor of distance from
the road, researchers generally consider all levels of road as a single factor [45]; however,
different road levels can drive landscape pattern changes to a different extent.

Landscape pattern regulation can change the structure of regional ecosystems and
affect ecological processes, thereby changing the service value of an ecosystem [46]. Ecosys-
tem service value (ESV) refers to the products and services obtained by humans directly
or indirectly through the structure, processes, and functions of an ecosystem [47]. ESV
assessment is important for formulating reasonable regional development strategies, eco-
logical protection policies, and realizing regional sustainable development [48]. Most
existing studies focus on ecosystem service classification, quantitative evaluation of value,
trade-offs, and synergies [49,50]. Research methods include InVEST model analysis, value
scale estimation, and principal component analysis [51]. Dike-pond is recognized as a
natural–artificial wetland ecosystem, which is of great significance for maintaining regional
ecological stability. The service functions and value of wetland ecosystems, including
dike-ponds, is well known [52]. Although some studies focus on the impact of land use
change on the ecosystem services of dike-ponds [53], few have examined the change in
their ESV from the perspective of landscape pattern evolution.

Therefore, this study selected Shunde District, which has the most concentrated dike-
pond landscape in the Pearl River Delta as the study area, to analyze changes in the
landscape pattern of dike-ponds over the past four decades (1979–2020), to explore the
influence mechanism, and to simulate the landscape pattern in 2030. The spatial and
temporal evolution characteristics of the dike-pond landscape pattern at the landscape and
class levels were analyzed. Finally, the temporal and spatial evolution characteristics of
the ESV were explored. This study provides a theoretical reference for the optimization of
dike-ponds in this region and provides a scientific basis for the ecological protection and
territorial space planning of the Pearl River Delta.

2. Materials and Methods
2.1. Study Area

Shunde, Foshan, is located in the middle of the Pearl River Delta estuary plain, south of
Guangdong Province in China. It covers 806 km2 and has a permanent resident population
of approximately 3.22 million, consisting of four streets and seven towns. Most of the
study area is located in the south of the Tropic of Cancer and has a south subtropical
maritime monsoon climate, so it is always warm and humid, with an annual precipitation
of >1600 mm [54]. In addition, most of Shunde District belongs to the estuarine delta plain,
which is formed by an alluvial river system. The rivers crisscross one another forming an
interwoven water network, and dike-ponds are widely distributed throughout (Figure 1).
It has some of the most concentrated and complete dike-pond landscapes in the Pearl River
Delta region [55]. Dike-pond agriculture used to be the main source of income for Shunde
District residents, and the large areas of dike-ponds maintained the ecological balance of
the region. In recent years, with rapid urbanization, the dike-pond areas in Shunde have
shrunk, and their production function has been significantly degraded [56]. Therefore, it
is necessary to explore the changing pattern of the dike-pond landscape in Shunde and
simulate the future landscape pattern of dike-pond.

2.2. Data Source and Preprocessing

The data in this study consisted of five categories: land-use/land-cover (LULC),
natural environmental data, socioeconomic data, road distribution data, and local master
plan data. LULC data were obtained from supervised classification of Landsat multispectral
remote sensing images. First, to avoid the influence of clouds on classification accuracy,
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five remote sensing images of the study area with <5% cloud cover were downloaded from
USGS Earth Explorer (http://www.usgs.gov/ (accessed on 12 December 2020); Table 1).
TM images from 2001 and 2010 as well as OLI images from 2020 were collected from the
pre-monsoon period. Since the MSS and TM images from 1990 have no pre-monsoon data
with <5% cloud cover, the post-monsoon images were used, and we checked that the study
area was less affected by monsoons in 1979 and 1990, according to The Shunde Statistical
Yearbook. However, the MSS image resolution was 60 m, so it was resampled. Potential
resampling methods included nearest-neighbor interpolation, bilinear interpolation, and
cubic convolution interpolation. Referring to previous research [57], the nearest neighbor
method was chosen to resample the MSS image resolution to 30 m as this scale is efficient,
simple, and more suitable for land-use classification. The images were preprocessed for
atmospheric correction, radiation correction, and tailoring.

Figure 1. Location of the study area.

Table 1. Remote sensing image information.

Collecting Time Satellite Sensor Spatial Resolution (m) Path/Row

6 November 1979 Landsat3 MSS 60 131–44
13 October 1990 Landsat5 TM 30 122–44

1 March 2001 Landsat5 TM 30 122–44
6 March 2010 Landsat5 TM 30 122–44

18 February 2020 Landsat8 OLI 30 122–44

Finally, the Shunde landscape types were divided into dike-pond, forest, water, farm-
land, construction land, and unused land through SVM supervision classification and
visual interpretation, referring to The National Standard of Land Use Classification (GB/T21010-
2017) and combining the characteristics of the Shunde landscape type and considering the
research purpose and image spatial resolution (Table 2). There is little grassland scattered
over a large area of forest and a few gardens scattered across a large area of farmland.
However, because these scattered grassland and garden patches are too small to be accu-
rately identified and extracted at 30 m spatial resolution, the grassland was categorized

http://www.usgs.gov/
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as forest and the gardens as arable land. The scattered landscape foundation dike-ponds
within the green space on construction land were not extracted separately. For the visual
discrimination of remote sensing images with reference to Local Space Viewer, 240 points
were randomly sampled to verify the accuracy of the classification. The overall accuracy of
the five periods (Table 1) was 90.2, 88.3, 91.7, 92.7, and 92.1%, and the Kappa coefficients
were 0.87, 0.84, 0.84, 0.89, 0.90, and 0.90, respectively; the accuracy of the classification
results met the requirements.

Table 2. Classification and basis of landscape types in the study area.

Serial Number Landscape Type Land Use Types and Codes Included

1 Dike-pond Pit-pond water (1104), Garden (0201–0204)
2 Forest Woodland (0301–0307), Grassland (0401–0404)
3 Water Water area (1101–1103, 1105–1108, 1110)
4 Farmland Farmland (0101–0103)

5 Construction

Commercial service land (0501–0507), Industrial
and mining storage land (0601–0604), Residential
land (0701–0702), Public management and public

service land (0801–0810), Special use of land
(0901–0906), Transportation land (1001–1009),
Hydraulic construction land (1109), Facility

agricultural land (1202),
6 Unused Other land (1201, 1203, 1204–1207)

The natural environmental data included elevation and slope. The elevation was
derived from ASTER GDEM 30 m resolution digital data from the Geospatial Data Cloud
Platform (http://www.gscloud.cn/ (accessed on 8 December 2020). The slope data were
calculated using the Slope Module of ArcGIS 10.8 based on the DEM. The socioeconomic
data, including GDP and population, were derived from the WorldPop 100 resolution raster
map (https://www.worldpop.org/ (accessed on 22 December 2020) and corrected using
The Shunde Statistical Yearbook. The GDP and population data were also resampled using
the nearest-neighbor method. Road distribution data were downloaded from the Open
Street Map (https://www.openstreetmap.org/ (accessed on 28 December 2020), and the
data were classified as railway, highway, primary road, secondary road, tertiary road, and
other roads. The local master planning data included prohibited and restricted construction
areas, historical protection areas, and built-up areas, which were extracted according to The
Master Plan of Shunde District of Foshan City (2009–2020) and The Master Plan of Territorial
Space of Foshan City (2020–2035).

2.3. Research Methods
2.3.1. Derivation of Spatial Metrics

Spatial metrics refers to a simple quantitative index that can highly concentrate land-
scape pattern information, reflecting its structural composition and certain characteristics of
spatial configuration [58–60]. Based on the principle of landscape ecology, nine spatial met-
rics were selected using FRAGSTATS (V4.2, Kevin McGarigal & Eduard Ene, Amherst, MA,
USA). At the class level, the largest patch index (LPI), mean patch size (MPS), area-weighted
mean patch fractal dimension (AWMPFD), and patch cohesion index (COHESION) were
calculated. At the landscape level, the number of patches (NP), contagion index (CONTAG),
LPI, area-weighted mean patch fractal dimension (AMPFD), and Shannon diversity index
(SHDI) were calculated. Details of the spatial metrics are presented in Table 3.

http://www.gscloud.cn/
https://www.worldpop.org/
https://www.openstreetmap.org/
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Table 3. Spatial metrics selected in this study.

Metrics Abbreviation Description

Largest Patch Index LPI The proportion of total landscape that is made up by
the largest patch.

Mean Patch Size MPS The area occupied by a particular patch type divided
by a number of patches of that type.

Area-Weighted Mean Patch Fractal Dimension AWMPFD
The sum of the perimeters and area ratios of each

patch in a patch type multiplied by the sum of their
area weights under the fractal dimension theory.

Patch Cohesion Index COHESION

It characterizes the connectedness of patches
belonging to class i. It can be used to assess if patches

of the same class are located aggregated or rather
isolated and thereby COHESION gives information

about the configuration of the landscape.
Number of Patches NP Total number of patches in the landscape.

Contagion Index CONTAG The degree of agglomeration or extension of different
patch types in the landscape.

2.3.2. CA-Markov Model

1. Cell automata

The cellular automata (CA) model is a dynamic system that is discrete in terms of time
and space. A cell is the basic unit of the system. The state of a cell at t + 1 depends on the
state of itself and its neighbors at t. The CA model can effectively explain and define spatial
variables, plot interactions, and driving forces in the process of landscape change, and
represent the state transition rules of cellular unit interactions [61], expressed as follows:

C(t+1) = f (St, N) (1)

where t and t + 1 are the before and after moments of the cell, C(t+1) is the state of the cell at
time t + 1, f is the cellular transformation rule, St is the set of states of the cells at time t,
and N is the cell’s neighborhood.

2. Markov chain

The Markov chain is used to predict the occurrence probability of events based on the
Markov process theory. It is often used to predict geographical events without aftereffects.
Landscape evolution is a Markov process and landscape types correspond to the “possible
state” within the Markov process, while the area and proportion of the transformation
between landscape types are the transition probability, which is often expressed as a
transition matrix [62]. This is expressed as follows:

T(t+1) = Pij × St

Pij =


P11 P12 · · · P1n
P21 P22 · · · P2n
· · · · · · · · · · · ·
Pn1 Pn2 · · · Pnn

 (2)

(
0 ≤ Pij < 1,

n

∑
j=1

Pij = 1(i, j = 1, 2, · · · , n)

)
(3)

where t and t + 1 are the before and after moments of the landscape type, T(t+1) is the state
at time t + 1, i is the i landscape type, j is the j landscape type, St is the state set of landscape
types at time t, and Pij is the transition probability matrix between i and j.
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2.3.3. Multi-Criteria Evaluation

The conversion rule is central to the CA model. Multi-criteria evaluation (MCE)
can transform various drivers into a transfer suitability atlas and then drive the transfer
of cells, making the simulation more realistic. The accurate selection of the drivers of
landscape pattern changes is key to the simulation. According to previous experience
combined with regional development characteristics [63–65], 15 factors in four categories
were selected as drivers of landscape pattern change (Table 4). Bottom-up drivers include
natural, socioeconomic, and accessibility factors, whereas top-down policy factors include
extracting prohibited construction areas, restricted construction areas, historical protected
areas, and built-up areas, according to the upper planning text.

Table 4. Driving factors of the suitability atlas for multi-criteria evaluation.

Driving Form Type of
Driving Factor Data Unit

Bottom-up

Natural
Slope degree

Altitude m

Socioeconomic
Population pp/km2

GDP 100 million

Accessibility

Distance from the city center m
Distance from highways m

Distance from the primary roads m
Distance from the secondary roads m

Distance from the tertiary roads m
Distance from the other roads m

Distance from railways m

Top-down Policy

Prohibited construction areas km2

Restricted construction areas km2

Historical protected areas km2

Built-up areas km2

2.3.4. Evaluating Correlation

We computed Pearson’s correlation coefficients between the 11 top-down driving
factors to evaluate their concordance. The Pearson’s correlation coefficient is calculated as
follows [66]:

P =
n(∑ xy)− (∑ x)(∑ y)√[

n∑ x2 − (∑ x2)2
][

n∑ y2 − (∑ y)2
] (4)

where P is the Pearson’s correlation coefficient between x and y, n is the number of pairs of
variables, ∑xy is the sum of the products of the paired variables, ∑x is the sum of x, ∑y is
the sum of y, ∑x2 is the sum of x-squared, and ∑y2 is the sum of y-squared. The Pearson’s
correlation coefficients range from −1 to 1. A value of −1 indicates a strong negative
relationship, 0 indicates no relationship, and 1 indicates a strong positive relationship.

2.3.5. Ecosystem Services Assessment

Based on the MA framework, Xie Gaodi et al. constructed a dynamic equivalent
factor method for ESV assessment [67], which is widely used in large-scale ecosystem
service assessments. Considering the regional differences and spatial heterogeneity of
ESV, corrections were made in combination with the actual situation of Shunde District,
based on the ESV scale [68] of Foshan city and Shunde District established by previous
authors. Thus, the coefficient of ecosystem service value per unit area of Shunde District
was obtained (Table 5).
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Table 5. Ecosystem service value coefficient per unit area in Shunde District (CNY/hm2).

Service Type Service Index Dike-Pond Farmland Forest Water Construction Unused

Provisioning
service

Food production 1532.53 4150.61 582.21 2460.31 37.56 88.69
Raw material
production 785.04 2610.56 1333.45 1371.01 112.68 177.37

Water supply 8780.75 −4901.85 694.90 20,433.76 −3436.93 0.00

Regulating
service

Gas regulation 1901.89 3343.02 4413.54 5014.53 450.74 1901.89
Climate regulation 4573.80 1746.64 13,203.06 11,062.02 375.62 4573.80

Hydrological regulation 116,838.01 507.09 3737.42 17,184.64 1352.23 310.40
Purify environment 6820.02 5615.53 6592.14 237,523.62 845.14 1152.92

Supporting
service

Soil retention 2024.60 1953.23 5371.37 6085.06 525.86 753.83
Nutrient cycling 211.60 582.21 413.18 469.53 37.56 0.00

Biodiversity 3609.71 638.55 4883.07 19,569.83 488.30 1773.72

Cultural
service Aesthetic landscape 2452.80 281.72 2141.04 12,433.03 206.60 1064.23

Total 149,530.76 16,527.31 43,365.38 333,607.34 995.36 11,796.85

The dike-pond is a compound land-use type where fruit, mulberry, and sugarcane trees
are often planted on the base surface. It is classified as garden land, while massive pond
land is classified as a pit pond. A dike-pond ratio of 4:6 is common because it can provide
both economic and ecological benefits. Therefore, the dike-pond ESV coefficient in this
study was calculated by adding 40% of the garden and 60% of the pit pond ESV coefficient.

In order to analyze the impact of regional landscape type change on ESV, the ESV
was divided into five levels based on the natural breakpoint method: low, relatively low,
medium, relatively high, and high.

3. Results
3.1. Evaluation of the Correlation and Simulation Results

Pearson correlation coefficients were used to analyze the correlation between top-
down driving factors; Figure 2 shows that each correlation between the 11 driving factors
was significant, and therefore could be used for landscape pattern simulation. As shown in
Figure 2, the correlation between slope and elevation was the greatest, while the correlation
between slope and distance from tertiary roads was the lowest.

Figure 2. Correlation evaluation of driving factors. * and ** indicate significant correlations.

Using the 2010 landscape classification map of Shunde District as the initial year,
the CA-Markov model was used to simulate land use in 2020 (Figure 3b). The multi-
criteria evaluation suitability atlas (Figure 4) was also added into the MCE-CA-Markov
model to simulate land use in 2020 (Figure 3c). The simulation accuracy was evaluated
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by comparing the simulation classification results with the landscape remote sensing
interpretation classification results (Figure 3a). The Kappa index using the CA-Markov
model was 0.7711, while the index of the MCE-CA-Markov model was 0.8032, indicating
that the MCE-CA-Markov model was more accurate and feasible. The MCE suitability atlas
is sensitive to changes in construction land because it considers social and economic factors
(Figure 3(a(1),a(3),c(1),c(3))) but the transformation of built-up areas to other land use types
is restricted because of the influence of policy factors, which makes the simulation results
more realistic (Figure 3(a(2),c(2))).

Figure 3. Comparison between predicted land use classification maps for 2020 (a), CA-Markov
simulation map (b) and MCE-CA-Markov simulation map (c); a(1), a(2) and a(3) are local enlarged
images of (a); b(1), b(2) and b(3) are local enlarged images of (b); c(1), c(2) and c(3) are local enlarged
images of (c).

3.2. Spatio-Temporal Dynamics and Evolution of LUCC from 1979 to 2030
3.2.1. LUCC Process

From 1979 to 2030, the dike-pond area first increased then decreased (Table 6). Before
1990, the dike-pond area increased and spread from the central and western areas to Chen
Cun Town and Bei Jiao Town in the north, and Lun Jiao and Da Liang streets in the east.
From 2001 to 2020, the dike-pond area decreased rapidly, and construction land became the
dominant land use type. The dike-pond in the north, east, and west shrank dramatically,
leaving only sporadic distribution. By 2020, the dike-pond area was mainly distributed
throughout central Le Liu Street, Xing Tan Town, and Jun An Town in the south. The
simulated landscape pattern and data for 2030 show that the dike-pond area will continue
to decrease in the future, but at a slightly slower rate (Figure 5).
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Figure 4. Suitability atlas of the multi-criteria evaluation.
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Table 6. Area and proportion of dike-ponds in the study area from 1979 to 2030.

Year Foundation Pond Area (km2) Dike-Pond Area (%)

1979 368.79 45.61
1990 406.66 50.27
2001 362.39 44.80
2010 255.12 31.57
2020 219.47 27.16
2030 198.85 24.61

Figure 5. Spatial evolution of land use change from 1979 to 2020 and simulation of 2030 in Shunde District.

3.2.2. Matrix Analysis of Land Use Change

To determine the specific transformation direction and quantity of dike-ponds, a
Markov chain was used to calculate the area transfer matrix of the dike-ponds in the study
area from 1979 to 2030 (Table 7). In this period, the most obvious conversion was from
dike-pond to construction land. From 1979 to 2010, this conversion increased continuously
and from 2001 to 2010, the area that had changed from dike-pond to construction land
was the largest but this then decreased because Shunde District is at the forefront of
the Chinese economic reform and its industry (including tertiary industry) developed
vigorously from 1979 to 2001. Part of the dike-pond was used for urban construction and
industrial development. From 2001 to 2010, with the intensification of competition among
cities, Shunde began the strategic transformation of urbanization, with the rapid expansion
of construction land, which was mainly transferred from dike-pond areas. After 2010, The
Promulgate Plan for The Protection and Development of Pearl River Delta Dike-Pond Agricultural
System in Foshan, Guangdong promoted ecological civilization in Foshan, and the area of
dike-ponds converted into construction land decreased significantly.
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Table 7. Area transfer matrix of dike-pond land in the study area from 1979 to 2030.

Transfer Type Transfer Direction
Land Area Transformed within Each Time Range (km2)

1979–1990 1990–2001 2001–2010 2010–2020 2020–2030 Sum Mean

Transformation
from dike-pond

Dike-pond→Farmland −16.3 −16.6 −21.8 −15.0 −6.3 −76.0

−466.4

−3.33 /year

Dike-pond→Construction −44.7 −97.6 −126.1 −50.3 −11.0 −329.7
Dike-pond→Forest −6.7 −7.1 −9.6 −6.9 −6.5 −36.8
Dike-pond→Water −6.3 −5.8 −4.6 -3.4 −1.0 −21.1

Dike-pond→Unused −0.6 −0.8 −0.7 −0.5 −0.2 −2.8

Transformation into
dike-pond

Farmland→Dike-pond 31.9 67.6 11.2 4.7 0.3 115.7

296.5
Construction→Dike-pond 9.1 19.3 19.9 25.1 3.6 77.0

Forest→Dike-pond 62.5 6.4 4.0 5.1 1.2 79.2
Water→Dike-pond 7.7 5.6 4.5 4.1 0.5 22.4

Unused→Dike-pond 0.6 1.1 0.3 0.2 0.0 2.2

Sum 37.2 −27.9 −122.9 −36.9 −19.4 −169.9

Most land that was transformed into dike-pond from 1979 to 2030 began as farm-
land. From 1979 to 1990, a large area of forest land was transformed into dike-pond as
agriculture in the area in 1979–2001 shifted from planting to breeding, and mulberry- and
sugarcane-based dike-ponds developed vigorously and became pillars of the regional
economy. Therefore, large areas of farmland and forest have been transformed into dike-
pond in order to develop dike-pond agriculture. According to the simulation data, from
2020 to 2030, the amount of land transformed from dike-pond will slightly decrease, but the
main conversion would remain dike-pond to construction, indicating that efforts to protect
dike-ponds need to be increased. Overall, from 1979 to 2030, the total area of dike-pond is
predicted to decrease by 169.9 km2, and 3.33 km2 of dike-pond will be converted to other
land types each year.

3.3. Spatiotemporal Evolution Analysis of Landscape Patterns
3.3.1. Analysis of Spatial Metrics at the Class Scale

From 1979 to 1990, the LPI and AWMPFD of dike-pond areas showed an upward
trend, while MPS significantly decreased, indicating that dike-pond was the most dominant
landscape type. The degree of fragmentation increased sharply, indicating that, in addition
to the original dike-ponds, a large number of new dike-ponds were artificially developed
(Figure 6). Combined with Figure 4 and Table 5, farmland adjacent to dike-ponds was
transformed into dike-ponds, particularly in Chen Cun Town and Bei Jiao Town in the
northeast. From 1990 to 2001, the LPI, AWMPFD, and COHESION of dike-ponds decreased
rapidly and the MPS increased significantly, while the LPI and MPS of construction land
continued to rise. The construction land surpassed dike-ponds and became the largest
dominant landscape type, indicating that the sprawl growth of buildings broke up the
original blocks of dike-ponds, resulting in a sharp rise in fragmentation and a decline in
COHESION. AWMPFD decreased significantly because during this period some natural
dike-ponds were artificially altered to form a regular shape to improve their production
efficiency for aquaculture.

From 2001 to 2010, the ecological value of dike-pond areas began to attract attention,
and their LPI, AWMPFD, and COHESION increased, while the MPS decreased. At this
stage, the dominance and COHESION of the dike-pond areas increased, and the impact of
human activities decreased. From 2010 to 2020, the four indices decreased slightly, and the
degrees of dominance, aggregation, and fragmentation decreased. In the simulation for
2020–2030, the four indexes did not change significantly, and the dominance of construction
land decreased, showing that slower-paced urbanization and regional development tends
to be stable.

3.3.2. Analysis of the Spatial Metrics at the Landscape Scale

As shown in Figure 7, landscape fragmentation in Shunde increased from 1979 to
1990 and landscape connectivity and fragmentation decreased, connectivity increased, and
spatial heterogeneity decreased. The LPI increased from 1979 to 2020, while the SHDI
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decreased, indicating that the area of the dominant landscape increased, and each type
presented an unbalanced trend distribution within the landscape. The AWMPFD showed
an overall increasing trend from 1979 to 2020, i.e., the complexity of the landscape shape
increased. Combined with the decrease in NP from 1990 to 2020, this demonstrates that
landscape fragmentation was the main cause of landscape pattern change from 1979 to
1990, and landscape shape complexity was the main cause of landscape pattern change
from 1990 to 2020. The landscape index calculated by combining the simulation results
shows that NP and SHDI increased while LPI, AWMPFD, and CONTAG decreased from
2020 to 2030, indicating that the dominance degree of the dominant landscape in the region
decreased, while the overall landscape richness improved. Anthropogenic disturbance still
increased, leading to a decrease in the degree of fragmentation and aggregation of the region.
However, compared to the previous stage, the rate of decrease was significantly slower.

Figure 6. Spatial metric evolution at the class scale from 1979 to 2030.

3.4. Spatio-Temporal Evolution of ESV

As shown in Figure 8, the dike-pond has always been the landscape type with the
highest ESV contribution, and the change trend of the dike-pond ESV is consistent with
that of the overall ESV. This indicates that the dike-pond is the main landscape type that
maintains ecological balance in the study area. From 1979 to 2020, the ESV in Shunde
showed a downward trend, with the largest decline from 2001 to 2010. Figure 9 shows the
spatial evolution of ESV in the study area from 1979 to 2030. In 1979, the spatial distribution
of ESV in Shunde District was clearly differentiated, showing a spatial pattern characteristic
of high ESV in the south and west, and low ESV in the north and east. From 1979 to 2001,
the ESV of the central and marginal areas in the south and west began to decline, and the
high ESV area spread eastward, which was due to the development of construction land in
the west and the increase in dike-pond in the east. In the following two decades, dike-pond
agriculture was replaced by modern agriculture, and the ESV of the study area decreased
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significantly. The simulation results show that from 2020 to 2030, the ESV in Shunde
declined on the whole, but at a slower rate than previous years. Simultaneously, the ESV
along the river in the northern area will improve significantly, but the ESV of the dike-pond
will continue to decrease. This means that dike-pond protection must be strengthened.

Figure 7. Landscape index changes in the study area at the landscape scale from 1979 to 2030.

Figure 8. ESV of the study area from 1979 to 2030.
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Figure 9. Spatial pattern of ESV in the study area from 1979 to 2030.

4. Discussion
4.1. Optimization of the MCE Module

In recent years, Foshan City has issued several plans and policies for dike-pond
protection. When setting the driving factors in the MCE module in this study, in addition to
the common bottom-top natural, socioeconomic, and accessibility factors [69,70], top-down
policy factors were also considered; this was implemented to make the simulation results
more realistic. In addition, the simulation results can reverse verify the completion of
upper position planning in the study area. Previous studies mostly calculated multiple
levels of roads uniformly when considering distance from roads as a driving factor [24,71].
However, different road levels often have different driving abilities for landscape pattern
changes. Therefore, this study divided roads into highways, primary roads, secondary
roads, tertiary roads, other roads, and railways. Different parameters were set for each type
of road to make the model transfer rules more realistic and effective.

4.2. Dike-Pond Development Model Based on ESV and Landscape Patterns

The dike-pond is an important part of the rural land space in Shunde and the Pearl
River Delta. Combined with the current spatial metrics and ESV, the corresponding de-
velopment mode was proposed according to the different characteristics of the dike-pond
(Figure 10):

(1) Dike-pond ecological zone. The areas of the dike-pond with high ESV are usually
distributed along the river, and the areas with high ESV are the dike-pond groups with
a low landscape fragmentation degree, high degree of agglomeration, and obvious
dominance degree. These areas can contribute high ecological value alone or in com-
bination with the surrounding water system and they play a key role in maintaining
regional ecological stability. Therefore, this zone should not be disturbed by human
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beings, and ecological protection red lines should be set to allow them to grow freely
and restore their ecology.

(2) Dike-pond development zone. The median ESV area of the dike-pond was generally
distributed around the higher value area close to the construction land. These dike-
ponds have a medium degree of fragmentation and general connectivity. With little
artificial transformation, traditional dike-ponds can be transformed into high-standard
modern dike-ponds, and the economic benefits of agricultural production can be
maximized through high-tech means.

(3) Dike-pond living zone. Areas with low ESV values were distributed outside the
middle planting area or scattered within construction land, with a high degree of
fragmentation and complex patch shape. These scattered dike-ponds can be repaired
using aquatic plant communities and gentle slopes to build ecological parks or wetland
parks with the added values of recreation, science popularization, and education.

Figure 10. Spatial distribution of dike-pond ESVs in 2020.

4.3. Research Limitations and Future Development Direction

One limitation is that SVM-supervised classification is based on the spectral character-
istics of ground objects. Due to the image resolution, narrow base surface of the ponds, and
the similar spectral characteristics of the pond surface and water body, the classification
results will not differentiate between ponds and water bodies, so it is necessary to manually
adjust the classification results. In this study, nine landscape indices were used to analyze
the spatial metrics of dike-ponds, according to previous studies [72]. However, whether
these nine indices can fully grasp the characteristics of spatial metric changes within this
particular region needs to be verified.

In the past 10 years, the research on LULC driving mechanism has been gradually
deepened. At present, the methods of multiple linear regression, geographically weighted
regression (GWR), GeoDetector analysis, and Cramer’s V analysis are widely used to
quantitatively determine the explanatory power of factors on LULC [73–75]. In this paper,
Pearson correlation coefficients were used to analyze the correlation between top-down
driving factors. However, the current analysis cannot determine which factor is majorly
controlling the LULC change statistically. In our future research, we will work out an
appropriate method to quantitatively analyze the correlation between spatial metrics and
driving factors and clarify the key controlling factors for the LULC change.

Based on the ESV coefficient of Foshan City and Shunde District provided by previous
research, this study did not consider the influence of time or specific farmed animals; each
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year, the variable pond aquaculture fish market prices are responsible for the food produc-
tion index, which means the ecological deterioration of ponds leads to differences in the
food diversity index, and so on. This study analyzed the response of ESV to spatial metrics
from the perspective of spatial pattern evolution. In the future, the response degree should
be quantitatively analyzed through spatial autocorrelation analysis, clustering, and outlier
analysis in order to guide the optimization of regional landscapes and urban planning.

5. Conclusions

Based on remote sensing images and the MCE-CA-Markov model combined with a
transfer matrix and spatial metrics, the spatiotemporal evolution of dike-ponds in Shunde
was simulated, and its landscape patterns were studied. Research shows that dike-ponds
in Shunde have always been predominant, first increasing then decreasing in area. The aim
of the study was to understand the spatial and temporal evolution process of dike-pond
landscape patterns and ESV, to predict the dike-pond landscape in 2030, and to provide
references for future development of the city. The main findings can be summarized
as follows:

(1) By integrating top-down and bottom-up driving factors, and setting different parame-
ters according to different road grades, the MCE-CA-Markov model is feasible in land
use simulation with high precision and good simulation effect.

(2) In Shunde, from 1979 to 2020, in terms of LUCC, dike-pond, arable land, and forest
land were transformed into construction land. In the simulation, dike-pond area
continued to decrease until 2030, and the proportion of dike-pond converted into
construction land was the largest, but the rate of decline slowed slightly.

(3) The development of urbanization will lead to the change in dominant landscape and
the increase in fragmentation of the dike-pond landscape. The change in landscape
patterns in the study area can be divided into three stages at the class scale. From
1979 to 1990, dike-pond was the dominant landscape type in Shunde, with obvious
dominance but a high degree of fragmentation. From 1990 to 2001, with the accel-
eration of urbanization, the dominance degree of the dike-pond and the degree of
agglomeration decreased, but the degree of fragmentation and shape complexity also
decreased. From 2001 to 2020, due to rapid urbanization, the dominance degree of
dike-ponds decreased continuously, and the fragmentation degree and shape complex-
ity increased. At the landscape scale, the overall landscape exhibited an unbalanced
trend. Before 1990, landscape fragmentation dominated landscape pattern changes.
After 1990, the change in landscape patterns was reflected in the complexity of the
landscape patch shape. From 2020 to 2030, the decline rate of the fragmentation
degree and degree of aggregation slowed significantly, and the overall landscape
richness increased.

(4) For agricultural countries and regions, agroecosystem accounts for a large proportion
in regional ecosystem services. In this study, for example, dike-pond contributes
the most to ESV and is the main landscape type that maintains ecological balance in
Shunde. Over the past four decades, the ESV in Shunde has decreased significantly,
with the largest decline from 2001 to 2010. Therefore, dike-pond protection should
be further strengthened in rural planning and regional development should improve
the regional ecosystem service value and maintain the stability of rural landscapes in
the future.
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