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Abstract: The mineralization of soil organic carbon (SOC) is generally stimulated under global
warming, known as temperature sensitivity (Q10), which is critical for predicting terrestrial C-climate
feedback. However, how Q10 varies in different elevations, particularly with litter input, constraining
the establishment of accurate models remains poorly understood. Here, the soil samples of three
elevations (750, 950, and 1150 m) were collected from the transition zone of subtropical and warm
temperate forests in China for incubation. Soils were incubated with and without 13C-labeled
Cunninghamia lanceolata litter at 15 ◦C and 17.4 ◦C for 97 days. Incubation process was divided into
two stages (0–37 days and 38–97 days) according to the dynamics of CO2 emission. The results
showed that Q10 did not change significantly with elevation in the first stage, but Q10 at 950 m was
significantly higher than that at 1150 m in the second stage. The variations in Q10 with elevation were
regulated by pH in the first stage, while soil C/N was the primary factors that regulated Q10 in the
second stage. Q10 showed no response to litter input at 750 m, while it decreased at 950 m in both
stages. Following litter input, Q10 at 1150 m increased in the first stage but kept stable in the second
stage. The change in Q10 with litter input was mainly affected by the restriction of soil P availability.
Overall, our findings emphasized the importance of vertical spatial heterogeneity of Q10 of SOC
mineralization in order to improve the prediction accuracy of C dynamics in terrestrial ecosystems.

Keywords: SOC mineralization; temperature sensitivity; vertical heterogeneity; litter input; global warming

1. Introduction

The mineralization of soil organic carbon (SOC) is the second-largest carbon (C) flux
in terrestrial ecosystem [1], releasing 98 ± 12 Pg C every year, thus its tiny changes may
greatly affect the concentration of CO2 in the atmosphere [2,3]. Under the global warming
scenario, the accelerated mineralization of SOC and ultimately releasing the largest amount
of CO2 from soils to the atmosphere. This feedback was termed as Q10 quantified, a factor
by which the rate of SOC mineralization is multiplied when temperature rises by 10 ◦C [4,5].
Furthermore, there has been promoted plant growth by warming, increasing the amount
of litter imported into the soil. The increase of litter input mainly changed Q10 through
nutrient changes and microbial community composition and activity [3,6]. However,
soil nutrients and microbial community composition and activity may differ along the
elevation gradient. Thus, there has been considerable uncertainties in the response of
Q10 to litter input, especially over different spatial gradients. Therefore, it is necessary
to determine the vertical heterogeneity of Q10 and its response to litter input, in order
to improve the prediction of the magnitude and direction of soil C-climate feedback in
terrestrial ecosystems.

Q10 has been widely studied in terrestrial ecosystems [6,7], yet great uncertainties in the
spatial heterogeneity of Q10 constrain the establishment of accurate C-climate models [8].
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So far, most studies concerning the spatial distribution of Q10 focus on the horizontal
pattern [7–9]. In contrast, less attention paid to the vertical variations in Q10. However, a
growing body of studies demonstrated that the Q10 of SOC mineralization varies greatly
along vertical spatial gradient, with significant increases [10], decreases [11] or no change in
Q10 with elevation [12]. In addition, the critical role of soil properties, microbial community
composition and activity in regulating Q10 have been emphasized in previous studies,
however, the mechanism and regulatory factors of the vertical heterogeneity of Q10 are not
clear [12,13].

In this field, the Q10 of SOC mineralization is closely associated with substrate avail-
ability, which could be impacted by litter input [14]. Generally, litter input stimulates the
mineralization of SOC by stimulating soil microbial activity, which is termed as priming
effect [15]. However, whether litter input affects the Q10 of SOC mineralization remains
unclear [16,17]. Labile organic carbon (LOC) is enriched [18,19] and nutrient availability is
altered [20] following litter input, affecting soil extracellular enzyme activity [21], which
may lead to changes in Q10 [22]. For instance, some recent studies found that litter was re-
calcitrant to soil microorganisms and thus reduces Q10 value [23,24]. Moreover, litter input
was affected by differences in microbial community composition at different elevations.
Consequently, it is a complicated task to understand the response of Q10 to litter input,
particularly along elevation gradients. In particular, it is not clear how Q10 will react to
garbage input at different elevations.

Most previous studies on Q10 mainly focused on subtropical zone and warm temperate
zone [25,26]. In addition, transition zones are more sensitive to changes in global change,
due to their relatively unstable composition. However, few studies concerned the C
dynamics in transition zone with greater vegetation and microbial diversity under global
change. Thus, soil C cycling and their responses to climate might be different from those in
subtropical zones and warm temperate zones. In this study, soils from three elevations in
the transition zone of subtropical and warm temperate forests were collected and incubated
with and without 13C-labelled litter at 15 ◦C and 17.4 ◦C, respectively. The main objectives
of this study were: (1) to reveal the spatial pattern of Q10 of SOC mineralization at different
elevations; (2) to clarify the response of Q10 to litter input at different elevations.

2. Materials and Methods
2.1. Site Description and Soil Sampling

The soil used in this experiment was collected at the Mazongling experimental forestry
station in Anhui province (115◦31′~115◦50′ E, 31◦10′~31◦20′ N). The climate type is a
subtropical humid monsoon climate, with a mean annual temperature (MAT) that range
from 13–15 ◦C and a mean annual precipitation (MAP) of about 1510 mm. The soils of three
elevations (750; 950; 1150 m) are sandy loam, loamy sandy and loam, respectively, with
distinct soil properties (Table 1). Cunninghamia lanceolata is the dominant species.

The soil samples were collected at a layer of 0–20 cm from four 20× 20 m plots at three
elevations after removing the litter on the soil surface. Twenty soil cores were randomly
collected from each plot using a metal sampler and mixed as composite samples. Fresh
soil samples were stored in sealed bags and immediately transported to the laboratory and
sieved through a 2 mm mesh after removing visible organic debris, roots, and stones. There
are four samples with spatially independent samples from each elevation, respectively. In
total, 12 soil samples were collected in our study. Part of the soil samples were air-dried
naturally for analysis of physical and chemical properties, and the other part was stored in
a refrigerator at 4 ◦C. Samples for PLFA were freeze-dried and stored at −20 ◦C prior to
lipid extraction.
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Table 1. Properties of soils at different elevations. The data are expressed as the means ±SE (n = 4).
Different letters followed data in the same row denote significant difference at p < 0.05.

Soil Properties
Elevation (m)

750 950 1150

SOC (g kg−1) 48.56 ± 6.03 b 37.86 ± 2.54 b 70.67 ± 1.9 a
TN (g kg−1) 3.60 ± 0.27 b 2.97 ± 0.19 b 5.28 ± 0.20 a

C/N 13.36 ± 0.67 a 12.75 ± 0.14 a 13.41 ± 0.15 a
TP (mg kg−1) 0.14 ± 0.01 b 0.29 ± 0.03 a 0.12 ± 0.01 b

Available P (mg kg−1) 39.66 ± 4.63 b 56.85 ± 4.60 a 10.22 ± 1.33 c
Mineral N (mg kg−1) 13.34 ± 4.22 b 6.94 ± 0.34 b 26.90 ± 4.18 a

LOC (mg kg−1) 12.22 ± 2.35 b 9.49 ± 0.52 b 18.43 ± 0.58 a
DOC (mg kg−1) 1.22 ± 0.24 b 0.95 ± 0.06 b 1.85 ± 0.06 a

pH 5.07 ± 0.01 a 5.25 ± 0.12 a 5.26 ± 0.11 a
K+ (mg kg−1) 141.90 ± 34.36 a 111.31 ± 23.63 a 201.12 ± 47.44 a

Mg2+ (mg kg−1) 57.06 ± 24.06 a 37.92 ± 10.03 a 70.41 ± 26.47 a
Ca2+ (g kg−1) 1.23 ± 0.48 a 0.72 ± 0.13 a 1.18 ± 0.34 a

Na+ (mg kg−1) 5.74 ± 4.08 a 4.26 ± 1.42 a 6.42 ± 2.68 a
Sand content (%) 64.90 ± 4.91 b 81.51 ± 1.38 a 47.53 ± 2.71 c
Silt content (%) 23.12 ± 3.56 b 11.61 ± 1.32 c 41.49 ± 2.57 a

Clay content (%) 11.98 ± 1.82 a 6.88 ± 0.30 b 10.99 ± 0.56 a

2.2. Experimental Design and Soil Incubation

In this study, the elevation represents an increase of MAT, and the temperature increase
interval of 2.4 ◦C was set according to according to temperature decrease by 0.6 m for
every 100 m increase. Therefore, four treatments were set up, with four replicates at each
elevation: (1) soil without litter at 15 ◦C; (2) soil with litter added at 15 ◦C; (3) soil without
litter at 17.4 ◦C; (4) soil with litter added at 17.4 ◦C. A total of 100 g of soil (dry weight) for
each replicate of each treatment was placed in a 1 L Mason jar for incubation. The litter is
cut into a 2 mm sieve and mixed evenly with the soil. The added litter is 5% SOC Chinese
fir litter, which are labeled 13C and the abundance was 255‰. The temperature is increased
by 2.4 ◦C using a fully automatic incubator. The soil moisture is maintained at 50% of water
hold capacity during incubation. Close air compressor pump and the valve on the bottle
cap after 1 min ventilation. The Mason jar is sealed for 24 h and then air is collected. Air is
collected after 1, 4, 7, 11, 15, 21, 27, 37, 47, 57, 67, 77, 87 and 97 days of the incubation. Soil
moisture was supplemented regularly (every 15 days) to ensure that the soil water loss rate
is less than 2%.

2.3. Determination of Soil Physical and Chemical Properties

Soil texture (<53 µm, 53–250 µm, >250 µm) was measured by wet screening method [27].
The pH at a soil: water ratio of 1:2.5 (w/v) was measured using soil pH meter (PB-10C,
Sartorius, Germany). SOC and total nitrogen (N) contents were determined by elemen-
tal analyzer (Elemementar Vario ELIII, Germany). The contents of exchangeable cations
(K+, Na+, Ca2+, Mg2+) in soil, mineral N (NH4+-N and NO3

−-N), total P and available P
concentrations were determined using a continuous flow analyzer (AA3, Seal Analytical,
Germany), according to Lu (2000) [28]. LOC content was determined through KMnO4
oxidation as described by Blair et al. (1995) [29]. DOC was determined by total organic
carbon analyzer (TOC-VCPH, Shimadzu, Kyoto, Japan). Simply, soil solution was shaken
by in a shaker (300 r/min) for 30 min to filter and obtain supernatant for measurement.

2.4. 13C labeled Litter Preparation

The two-year old Chinese fir seedlings were planted in a closed incubator with constant
temperature and humidity for 5 months. During the incubation period, CO2 gas labeled
with 13C was introduced. After that, the leaves were picked, deactivation of enzymes at
105 ◦C for 2 h, and dried to constant weight at 80 ◦C. Finally, the leaves were crushed
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for subsequent incubation experiments. The basic properties of Chinese fir leaves are as
follows: total C content is 465.77 g/kg, total N content is 14.91 g/kg, C/N is 31.4, and δ13C
value is 255‰.

2.5. Partitioning CO2 Sources and Q10 Calculations

In order to calculate the amount of carbon dioxide removed from the soil organic
matter and the original organic carbon mineralization during the cultivation period, the
following formula was used:

CF = CT(δT − δS/(δF − δS) (1)

CS = CT − CF (2)

In the Equations (1) and (2), CT (CT = CL + CS) is the total amount of CO2–C during the
considered time interval and δT is the corresponding isotopic composition. δT corresponds
to the isotopic composition; CF is the carbon amount produced by fresh organic matter
(FOM); δF is the added FOM isotopic composition; CS is the carbon amount obtained from
SOC; δS is the control soil 13C abundance of exhaled CO2. To determine the temperature
sensitivity of mineralization rate of SOC, the following formula was used:

Q10 = (F1/F2)10/(T1-T2) (3)

F1 is the mineralization rate of SOC at a higher temperature [mg(C–CO2)·kg−1·h−1],
F2 is the mineralization rate of SOC at a lower temperature [mg(C–CO2)·kg−1·h −1]; T1
and T2 are the incubation temperature (◦C).

2.6. PLFA Analysis

PLFA extraction was used to determine the abundance of microbial communities, and
analyses were carried out, according to Wang et al. (2013b) [30]. In short, 5 g of freeze-dried
soil was extracted for 2 h with a chloroform:methanol:phosphate buffer (1:2:0.8), and the
phospholipids were separated from the other lipids on a silicic acid column. Samples were
analyzed on an Agilent 6890 gas chromatograph with a flame ionization detector and an
Ultra-2 column after the addition of fatty acid 19:0 as an internal standard. To identify the
peaks, we employed the fatty acid methyl ester and BAME controls. Biomarkers PLFAs were
used to access the major taxa of microorganisms and classify them according to Joergensen
(2021) [31]. The i14:0, i15:0, a15:0, i16:0, i17:0, i18, a15:0, a16:0, a17:0, a18:0 and a 19:0 PLFAs
served as markers for gram-positive (G+) bacteria, whereas the cy17:0, cy19:0, 16:1ω7,
16:1ω9, 17:1ω8 and 18:1ω7 functioned as markers for gram-negative (G-) bacteria. Besides,
fungi were designated by the letters 16:1ω5c, 18:1ω9c, 18:2ω6c and 18:3ω6,9,12 and the
10Me 16:0, 10Me, 17:0 and 10Me 18:0 PLFAs were markers for actinomycetes. The total
number of PLFA biomarkers was considered to be representative of the microbial biomass.

2.7. Enzyme Kinetics

β-glucosidase (BG), N-acetyl aminopeptidase (NAG), Cellulase (Cello), Xylanase (Xyl),
Leucine aminopeptidase (Leu) and Tyrosinase (Tyr) were determined by 96-well enzyme plate.
According to the method provided by German et al. (2011) [32] and Razavi et al. (2015) [33].
The specific steps are as follows: 1 g fresh soil was weighed in a hydrolytic flask, 50 mL
ultra-pure water was added, and the soil was shaken on a shaker for 40 min, followed by
low energy ultrasound (40 J S−1 output energy) 2 min. Then add 50 µL soil solution, 100 µL
substrate solution and 50 µL buffer solution [MES (C6H13NO4SNA0.5), (pH:6.5) for MUF
substrate, TRIZMA (C4H11NO3 HCl, C4H11NO3), (pH: 7.2) for AMC substrates]. The plate
was put into the microplate reader and measured at 0 min, 1 h and 2 h under the excitation
wavelength of 360 nm and emission wavelength of 460 nm. Enzyme activity was expressed as
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MUF or AMC release in nmol per g dry soil per hour (nmol g−1 soil h−1). The enzyme activity
was calculated by Michaelis–Menten equation, designated as formula:

V = Vmax[S]/(Km + [S])

Vmax is the maximum rate of enzyme activity. Km is the half-full sum constant, the
concentration of the substrate at 1/2 Vmax, and [S] is the concentration of the substrate.

2.8. Statistical Analysis

One-way ANOVA was used to analyze differences in soil’s physical and chemical
properties and microbial community composition among different elevations. Repeated
measurement ANOVA was used to analyze the influence of elevation, litter input and their
interaction to Q10, and Tukey’s HSD test was used to test the significance of differences at
p = 0.05 level. Pearson correlation was used to detect the relationship between Q10 and soil’s
physical and chemical properties and microbial community composition. Besides, Origin
(2021) was used to perform linear fitting of Q10 with soil’s physical and chemical properties
and Km of N enzyme, respectively, the linear fitting of SOC cumulative mineralization and
available nutrients were also carried out. SPSS Version 23.0 (SPSS Inc., Chicago, IL, USA)
was used for statistical analysis of the data.

3. Results
3.1. Soil Environmental Conditions at Different Elevations

The content of SOC, TN, mineral N, LOC and DOC were generally lower at medium
elevation (950 m) than 750 m and 1150 m (Table 1). The soil samples at medium elevation
have the highest sand content (p < 0.05). Furthermore, fungal PLFA were significantly
higher at 750 m than those at medium elevation (Table 2, p < 0.05). The gram-negative
bacteria at medium elevation were significantly lower than those at 750 m and 1150 m
(p < 0.05).

Table 2. PLFAs of soils at different elevations. The data are expressed as the means ± SE (n = 4).
Different letters followed data in the same row denote significant difference at p < 0.05.

PLFAs
Elevation (m)

750 950 1150

Fungi (nmol g−1) 7.65 ± 0.63 a 3.27 ± 1.83 b 6.13 ± 0.33 ab
Bacteria (nmol g−1) 24.67 ± 3.26 a 19.36 ± 3.97 a 21.76 ± 1.27 a

Fungi/Bacteria 0.32 ± 0.04 a 0.15 ± 0.07 b 0.28 ± 0.03 ab
Gram-positive bacteria (nmol g−1) 7.51 ± 0.86 a 7.01 ± 0.96 a 6.30 ± 0.40 a
Gram-negative bacteria (nmol g−1) 12.82 ± 0.96 a 7.48 ± 1.58 b 11.15 ± 0.32 a

Gram-positive/Gram-negative bacteria 0.59 ± 0.05 b 1.07 ± 01.7 a 0.57 ± 0.04 b
Actinomycetes (nmol g−1) 2.77 ± 0.47 a 2.15 ± 0.51 a 2.58 ± 0.46 a

AM Fungi (nmol g−1) 1.00 ± 0.01 a 0.76 ± 0.10 a 0.81 ± 0.06 a
Total microbial PLFA (nmol g−1) 27.35 ± 5.20 a 22.23 ± 6.27 a 23.81 ± 1.97 a

3.2. The Influence of Elevations on Q10

The CO2 emission rate roughly showed a similar trend in the whole incubation period
at different elevations. It declined gradually during the first 37 days, and then remained
basically unchanged with some fluctuations (Figure 1). Hence, incubation process was
divided into two stages (0–37 days and 38–97 days), according to the dynamics of CO2
emission. The Q10 of SOC mineralization at different elevations varied from 1.92 to 4.15 in
two stages (Figure 2). Q10 kept stable with elevation in the first stage (Figure 2A), while Q10
at medium elevation was significantly higher than at high elevation during the second stage
(Figure 2B, p < 0.05). Q10 was mainly influenced by soil’s physical and chemical properties
(Figure 3). Specifically, Q10 was positively related to pH in the first stage (Figures 3 and 4A,
p < 0.05), while negatively correlated with C/N and soil fertility (SOC, TN, mineral N) in
the second stage (Figures 3 and 4B, p < 0.05).
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Figure 2. Temperature sensitivity (Q10) of SOC in the control (no litter) and treated (litter input)
soils from different elevations (750 m, 950 m, 1150 m) during the 0–37 days (A) and 37–97 days
(B) incubation period, respectively. Values are expressed as the means ± SE (n = 4). Lower case
letters and the capital letters indicate significant differences between elevations and litter, respectively
(p < 0.05).

3.3. The Influence of Litter Input on Q10 at Different Elevations

The effects of litter input on Q10 differed in soils of different elevations (Figure 2).
Specifically, Q10 at medium elevation (950 m) decreased significantly in both stages, whereas
Q10 at low elevation kept stable after litter input (Figure 2). The responses of Q10 to litter
input at high elevation changed with incubation: litter input increased Q10 in the first
stage, whereas it derived no impact on Q10 in the second stage. The response to litter
input was closely related to nutrient availability, with cumulative CO2 positively correlated
with available P, mineral N (Figure 5A,B). Besides, Km of the N-acquisition enzyme was
negatively correlated with Q10 (Figure 5C).
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N (MN), pH, clay content, Soil microorganisms include Gram-positive (G+), Gram-negative (G-),
Gram-positive / Gram-negative (G+/G−). *, ** and *** Denote significant difference at p < 0.05, 0.01
and 0.001, respectively.
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4. Discussion

In this study, a 2.4 ◦C interval of incubation temperature, which was different from the
previous experiment with 5 or 10 ◦C [33,34]. It has been evidenced that the intervals of incu-
bation temperatures significantly affect the Q10 values, mainly from substrate consumption
and microbial thermal adaptability [35] A growing number of studies have shown that
warming temperature increases microbial activity and accelerates substrate consumption,
which may reduce the Q10 of SOC mineralization [36]. On the other hand, the thermal
adaptability of microorganisms can also have a certain impact [37]. Therefore, a 2.4 ◦C
range we chose, which is based on the fact that every 100 m of elevation will decrease
by 0.6◦C, was used for the accurate assessment of Q10 values. Meanwhile, a 2.4 ◦C range
is closer to the predicted increase in the global mean temperature at the end of the 21st
century [38]. In addition, in many studies of SOC dynamics, the incubation time is less
than 100 days, such as 10 days in Li et al. (2017) [18], 14 days in Liu et al. (2021) [39] and
90 days in Zhou et al. (2021) [40]. Therefore, time is not an absolute factor, and we pay more
attention to the dynamic change of CO2. We can see the CO2 release rate has stabilized
(Figure 1). So, 100 days is not a short period of time and can be a solid result. Additionally,
longer incubation means more measurements, which is likely to introduce larger measuring
error in cumulative SOC mineralization given the large number of jars measured a time in
combination with the decrease in SOC mineralization rate. The priming effect after litter
input also influenced the selection of incubation days. Ultimately, a short-term incubation
(i.e., 97 days) was adopted in our experiment accordingly.

4.1. Q10 Response to Elevations

The Q10 values ranging from 2.04 to 4.15 in this study meet the global Q10 range
from 1.9 to 5.7 [41]. Q10 did not respond to elevation in the first stage, however, varied
significantly along the elevation gradient in the second stage (Figure 2). Elevation mainly
affects Q10 through soil’s physical and chemical properties, based on empirical results [9].
Our results are in line with this idea because soil pH is more correlated with Q10 than
other factors in the first stage (Figure 3). Previous studies reported that pH is considered
to be an important determinant of microbial activity and composition [42]. Given the
forest soils in our study are acidic (Table 1), the increase of microbial activity with soil pH
could promote SOC mineralization, so Q10 was significantly positively correlated with pH
(Figure 4A). This means that a range of soil acidification reduce the risk of C loss under
the global warming scenario. In addition, no variation was detected in Q10 among soils of
different elevation with similar pH values. In contrast, the soil C/N and clay content are
key explanatory variables to Q10 in the second stage (Figure 3). Soil C/N has long been
recognized as an indicator of soil C quality [39]. We found that Q10 was significantly and
negatively correlated with soil C quality (Figure 4B), in line with the C-quality temperature
hypothesis, which suggested that decomposition of higher quality organics has lower Q10
than that of lower quality organics [43]. Besides, given no significant variations in the C/N
ratio at different elevations, the weaker physical protection by clay particles at medium
elevation could be the primary cause of the higher Q10 [44,45]. Furthermore, SOC, TN and
Mineral N, representing soil fertility, were negatively correlated with Q10 in the second
stage. This finding indicated that the abundance of microorganisms groups (gram-positive
bacteria) in soil with distinct fertilities could regulate the risk of soil C loss in response to
global warming. Thus, soil carbon sequestration can be enhanced by improving soil fertility.

4.2. Q10 Response to Litter Input with Different Elevations

Q10 response to litter input varied along the elevation gradient (Figure 2). Specifically,
Q10 response to litter input was not observed at 750 m, while a decrease in Q10 was detected
at 950 m. These two distinct reactions may be owing to the decreased availabilities of
nutrients in soil, differentiating the responses of SOC mineralization to global warming [46].
Changes in soil nutrients and subsequent microbial community composition and activity
following litter input, result in different rates of SOC mineralization. Well supporting this



Forests 2022, 13, 1250 9 of 11

suggestion, the mineralization of SOC closely associated with soil mineral N and available
P at the second stage of incubation, with closer association between SOC mineralization and
available P (Figure 5A,B). Furthermore, decrease in the affinity of N enzyme to substrate
(increased Km of N-acquisition enzyme) makes Q10 decrease (Figure 5C), indicating that
microorganisms will increase their relative investment in enzymes that require P rather
than N following litter input in order to maintain a stable stoichiometry of microbial
nutrients [47]. Together, these findings indicated that soil P availability regulated the
response of Q10 to litter input, which was in agreement with previous studies [48,49].
Therefore, in medium elevation soil with abundant P, activated microbial community by
litter input would mine less SOC to acquire P, resulting in lower Q10 with litter input at
950 m. Compared with decreased Q10 at 950 m, Q10 at 750 m has no response to litter
input because of the lower availability of soil P (Table 1). In addition to the change of
available nutrients by litter input, soil texture may also limit microbial access to available P.
Studies have shown that sand particles have higher available P accumulation [50], and litter
input does not increase sand particles content in the short term. Furthermore, there was a
significant negative correlation between clay particles and available P (Figure 3), which
further verified that the higher the content of clay particles, the less available P content
(Table 1). As a result, microbes could not obtain more available P, and thus Q10 at 1150 m
did not significantly increase following litter input.

5. Conclusions

In this study, the vertical spatial heterogeneity between subtropical and warm temper-
ate transitional zones at different elevations was studied in laboratory. The pH and C/N are
the main factors regulating the vertical heterogeneity of Q10 in forest ecosystems. The nega-
tive C/N-Q10 correlations in the second stage imply that improving soil fertility contributed
to the enhancement of soil carbon sequestration, which partly supports the soil C-quality
temperature hypothesis. In addition, the Q10 of second stage response to litter input was
regulated by available P along the elevation gradient. Overall, our results emphasize the
importance of vertical spatial heterogeneity in Q10 of SOC mineralization. Therefore, in
order to improve the prediction of the magnitude and direction of soil C-climate feedback
in terrestrial ecosystems, it should be considered in the earth system model.
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