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Abstract: Soil heterotrophic respiration (Rh) is an important pathway of carbon (C) dioxide release
from terrestrial soils to the atmosphere. It is often measured using sieved soil in a laboratory,
but the uncertainty of how it is influenced by soil sieving persists, which limits the accuracy of
predicting soil organic C dynamics in C models. To address how soil sieving during laboratory
incubation affects Rh and its response to increased carbon availability, we investigated Rh in sieved
and intact soil cores and its response to 13C-glucose addition. This was conducted through a 27-day
laboratory incubation in four forests, including two ectomycorrhizal-dominated (ECM) forests and
two arbuscular mycorrhizal-dominated forests. The significant influence of soil sieving on Rh in all
forests was not observed during incubation when glucose was not added. After adding glucose,
the Rh in the sieved soils on the 5th day of incubation was averaged 27.2% lower than that in intact
soils in ECM forests. On the 27th day it was 22.1% lower in the Pinus massoniana forest, but 78.0%
higher in the Castanea mollissima forest. Strong relationships were detected between Rh in sieved
and intact soils (r2 = 0.888), and in soils both with and without the addition of glucose (r2 = 0.827).
The measured soil variables explained 74.7% and 49.7% of the variation in Rh on the 5th and 27th
day of incubation, and the role of soil nutrients and microbial PLFA groups in regulating Rh varied
temporally. Our findings suggest that plant mycorrhizal types influenced the role of increased C
availability to microbes in regulating the response of Rh to sieving in forest ecosystems.

Keywords: soil heterotrophic respiration; soil sieving; intact soil core; carbon sequestration; microbial
community; plant functional type

1. Introduction

Globally, soils contain 1500 Pg of organic carbon (C) in the 1 m depth, which is
approximately 60% of C stocks in terrestrial ecosystems [1]. Thus, any small change in
soil C flux will have a great influence on atmospheric carbon dioxide (CO2) concentration
and the feedback to global climate change [2]. Soil respiration, the second largest C flux
between terrestrial ecosystem and atmosphere, has been estimated to be 60–100 Pg C yr−1,
more than all anthropogenic sources combined [3]. More than half of soil respiration is from
heterotrophic respiration (Rh) produced by the microbial decay of soil organic C (SOC) [3,4].
Therefore, measuring soil Rh is important for quantifying the CO2 flux from soils to the
atmosphere and enhancing the accuracy of the SOC dynamics predicted by C models [5].

As a common practice, soil sieving is usually conducted prior to laboratory incubation
when researching soil C and N cycles, including soil Rh [6–9]. However, sieving disrupts
the soil’s physical structure such as soil aggregates and porosity [10]. This increases the
exposure of SOC physically protected within aggregates and the oxygen availability to
microbes [11–13], thereby affecting soil Rh. Therefore, Rh derived from sieved soils may
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not be representative of true values occurring in field conditions. In comparison to sieved
soils, using intact field-moist soil cores for determining soil Rh has been suggested to better
reflect the actual field conditions [4]. However, there is still no consistent conclusion on
the influence of soil Rh sieving relative to intact soil cores. This indicated that sieved soils
had higher [12,14,15], similar to, or lower soil Rh than intact soils [11,16–18], and most of
them were conducted in cropland and grassland. This indicated that predicting the effects
of sieving on soil Rh may be very difficult. Thus, the influence of sieving on soil Rh needs
to be more clearly defined in forest ecosystems.

Given that soil Rh is mostly the activity of soil microbes and is strongly limited by C
availability to soil microbes [19–21], the conflicting responses of soil Rh to sieving in the
above-mentioned studies may be explained by differences in C availability. Carbon addition
has been widely used to increase soil C availability, and has significantly changed the micro-
bial activity (e.g., respiration and enzyme activity) and community composition [8,22,23].
Although the effects of C or substrate addition on soil Rh or SOC decomposition using
sieved soils were widely investigated [8,13,24,25], their changes caused by C addition in
sieved soil cores and intact soil cores were less explored. Stenger et al. [18] found that
added glucose-C decomposition in intact soils was similar to that in sieved soils, but they
did not investigate how the interaction of sieving and glucose addition affected Rh. Thus, it
is less clear how increased C availability to soil microbes through glucose addition in soils
mediates the response of Rh to sieving through directly and/or indirectly changing soil
microbial activity and community composition.

Plant functional types (e.g., mycorrhizal type) may affect soil C availability to microbes
because litters from arbuscular mycorrhizal-associated (AM) trees have a lower C:N and
faster decomposition rate than ectomycorrhizal-dominated(ECM) trees [26,27]. Thus, we
speculated that the effects of C addition on the responses of soil Rh to sieving would differ
in ECM and AM forests. In this study, in order to explore how increasing C availability
influenced the responses of Rh to soil sieving in forest ecosystems, we collected soil cores
from two ECM forests and two AM forests in subtropical China. We used the laboratory
incubation method to measure Rh in both sieved and intact soil cores, and then assessed the
influence of soil sieving, glucose addition and their interaction on Rh. We further measured
soil nutrients and microbial properties based on phospholipid acids (PLFAs) to reveal the
underlying mechanisms of the influence of soil sieving and glucose addition on soil Rh.
Given that sieving disrupts the soil’s physical structure and increases substrate accessibility
and oxygen availability to microbes [11,13], we hypothesized that sieving would stimulate
soil Rh, but that the stimulatory degree would be different in ECM and AM forests. Glucose,
a readily available substrate, may be preferentially used by microbes relative to the native
SOC [28], so we hypothesized that increasing C availability by adding glucose would
decrease the influence of sieving on soil Rh.

2. Materials and Methods
2.1. Site Description and Soil Collection

This study was conducted at the Huitong National Research Station of Forest Ecosys-
tem (26◦40′ N, 109◦26′ E) in southern China. In this region, the altitude ranges from
300–1000 m. Soils that had developed from grayish-green slate parent materials are clas-
sified as Ultisol according to the second edition of the U.S. Soil Taxonomy [8]. The mean
annual temperature was 16.5 ◦C, and the mean annual rainfall was 1200 mm over the
past 20 years. The mean minimum and maximum temperature occurs in January and July,
respectively. The native forests are subtropical, evergreen broadleaved forests with the
dominant understory vegetation species being Rubus rosifolius, Pteridium aquilinum, Maesa
japonica, Parathelypteris chinensis, and Microlepia marginata, but most have been destroyed
and replaced by other forests.

We collected soil cores from two ECM pure forests (i.e., Castanea mollissima and Pinus
massoniana) and two AM pure forests (i.e., Schima superba and Cunninghamia lanceolata). For
each forest type, we selected three forest stands with about 0.3 ha for each forest stand as
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3 replications, and in each forest stand we established 3 plots with 10 m × 10 m. In each
plot, we sampled 9 intact soil cores (with a 5 cm inner diameter and a 10 cm depth) using
PVC cylinders, and immediately took them into the laboratory. After collection, 5 of the
9 soil cores from the plot in each forest were sieved through a 2 mm screen and mixed
completely. Among the sieved soils, 4 of them were refilled into PVC cylinders to maintain
their original bulk densities (all materials were also repacked). These were referred as
sieved cores, and the remaining one was used for measuring soil chemical properties and
water content. The remaining 4 of 9 intact soil cores were referred as intact cores. The base
of each cylinder was sealed with plastic film to prevent any leaching losses. Both the sieved
cores and intact cores were pre-incubated for 7 days at 25 ◦C to minimize the “pulse effect”
of sieving on CO2 release.

2.2. Soil Chemical and Microbial Analysis

Air-dried soils were ground to sieve through a 0.25 mm mesh, and then SOC and
total N concentrations were determined using a C/N analyzer. Fresh soil ammonium
(NH4

+-N) and nitrate nitrogen (NO3-N) concentrations were extracted using 2 mol L−1

KCl solution and determined by colorimetry, and their sum was a mineral N. Soil available
phosphorus (P) was colorimetrically determined using the molybdate blue method after
soil was extracted with a 1 mol L−1 NH4F solution. Soil pH was determined with a pH
meter from soil slurry with a 1:2.5 ratio of soil and deionized water (weight:volume). Soil
bulk density was measured using soil core that was dried in an oven to a constant weight
(105 ◦C). The standard laboratory analysis methods were seen in Lu [29]. Some of the soil
key properties are presented in Table 1. Soil microbial biomass and community composition
was assessed using phospholipid acids according to the method described by White and
Ringelberg [30]. Methyl nonadecanoate (19:0) was added as the internal standard for
quantifying the PLFAs. The assignment of PLFA to different main microbial groups was
according to the method of Joergensen [31] and is listed in Table S1.

Table 1. The soil physico-chemical properties in four forests before incubation.

Forest SOC
(g kg −1)

Total N
(g kg−1) C:N NH4-N

(mg kg−1)
NO3-N

(mg kg−1)
AP

(mg kg−1) pH BD
(g cm3)

CM 12.9 c 1.33 b 9.7 c 29.5 c 7.1 c 9.5 b 4.28 b 1.28 a
PM 36.5 a 2.47 a 14.5 b 34.7 bc 23.5 a 10.3 b 4.07 b 1.02 c
SS 34.7 a 2.62 a 23.3 a 55.4 a 6.8 c 4.61 c 4.27 b 1.12 bc
CL 20.9 b 1.62 b 12.9 b 38.6 b 17.0 b 39.5 a 4.70 a 1.19 b

SOC, AP and BD represent soil organic carbon, available P and bulk density, respectively. CM, PM, SS and CL
denote Castanea mollissima, Pinus massoniana, Schima superba and Cunninghamia lanceolata forests, respectively.
Letters followed data in the same column denote significant difference among forests.

2.3. Soil Incubation

After pre-incubation of both the sieved and intact cores, the uniformly labelled 13C-
glucose as a water solution (2 mL) was added into a half of the sieved and intact cores
using asyringe to increase C availability. An equal amount of deionized water was added
into the remaining soil cores. The amount of added glucose (δ13C = 299.8‰) was equal
to the 2% of the SOC content. All soil cores were placed into 1000 mL Mason jars with
airtight lids, with two small pores to avoid too high a CO2 concentration during incubation.
They were incubated for 27 days at 16.0 ◦C, which reflected the average temperature of
topsoil (at a 5 cm depth). During incubation, the soil water content was maintained at 60%
of the water-holding capacity through adding deionized water at intervals. The gas in the
Mason jars was collected on the 1st, 3rd, 5th, 10th, 17th and 27th day of incubation. The
amount of respired CO2 and its 13C value was analyzed using a stable isotope-ratio mass
spectrometer. Before collection, the gas in the Mason jars was replaced by air without CO2
and then sealed for 8–12 h. On the 5th day of incubation, half of the sieved and intact soil
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cores with and without glucose addition were harvested in order to determine the soil
mineral N, available P and PLFAs.

2.4. Data Calculation and Statistic Analysis

To calculate the amount of CO2 derived from soil Rh (i.e., SOC decomposition) in soils
with glucose addition, we used the equation [8]:

CRh = CT (δG − δT)/(δG − δS)

In the equation, CT and CRh are the total amount of CO2 and the amount of CO2
derived from soil Rh during the considered time interval, respectively. δT, δG and δS are
the isotopic composition of the total CO2, added glucose and SOC, respectively.

Assumptions regarding the normality and homogeneity of the variances were checked,
and the soil Rh and microbial biomass were natural log-transformed where necessary. The
student’s t-test was used to detect the influences of soil sieving and glucose addition on
the soil Rh in each forest and the significant differences between mycorrhizal fungi types.
The response of the soil microbial groups to sieving or glucose addition were calculated
as the ratio of Rh in sieved soils to Rh in intact soils or the ratio of Rh in soils with glucose
addition to Rh in soils without glucose addition, respectively. The relationships between
the soil Rh, soil nutrients and microbial properties were assessed by Pearson’s correlation
analysis. The significance was at the probability level of p < 0.05, and the analyses were
conducted using SPSS 19.0 for Windows. To further explore the relative importance of
factors influencing the soil Rh, the random forest model analysis was conducted using the
randomForest package in R 3.3.3 with default parameters [32].

3. Results
3.1. Responses of Rh to Soil Sieving and Glucose Addition

When no glucose was added across all forests, the average Rh was 5.94 mg C kg−1

soil d−1 and 4.03 mg C kg−1 soil d−1 in sieved soils on the 5th and 27th day of incubation,
and 6.11 and 4.82 mg C kg−1soil d−1 in intact soils, respectively (Figure S1). No significant
difference in Rh between sieved and intact soils was observed in each forest (Figure 1).
Glucose addition significantly affected the Rh in the C. mollissima and P. massoniana forests
on the 5th and 27th day of incubation (Figure 1a,b,e,f) and in the C. lanceolata forest on
the 27th day of incubation (Figure 1h). After the glucose addition, the Rh in the sieved
soils was 28.0% and 26.3% lower than that in intact soils in both of the ECM forests on
the 5th day of incubation (Figure 1a,b), and was 22.1% lower than that in intact soils in
the P. massoniana forest (Figure 1e) but 78.0% higher in the C. mollissima forest on the 27th
day of incubation (Figure 1f). However, glucose addition had no effect on soil Rh in the
two AM forests (i.e., the S. superb and C. lanceolata forests) (Figure 1c,d,g,h). The above
results suggest that glucose addition modified the influence of soil sieving on Rh in the
ECM forests, but not in the AM forests.

When pooling all of the data together, significant and strong correlations between
Rh in sieved and intact soils were observed (r = 0.888, p < 0.01) (Figure 2a). Similarly, the
soil Rh in soils with and without glucose addition had significant correlations (r = 0.826,
p < 0.01) (Figure 2b), and most data points were above the 1:1 line, suggesting that glucose
addition significantly increased soil Rh.
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on bars denote significant effects of glucose addition on Rh for sieved or intact soils, and the asterisk 
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3.2. Soil Microbial Responses to Sieving and Glucose Addition 

In soils without glucose addition, sieving had less effect on the soil microbial bio-

mass and community composition on the 5th day of incubation (Figure 3a), but signifi-

Figure 1. Effects of soil sieving(S) and glucose addition (G) on soil heterotrophic respiration (Rh)
on the 5th (a–d) and 27th day (e–h) of incubation in four forests. Data flowing S, G and S*G were
at the significance level (p values). a and e for C. mollissima, b and f for P. massoniana, c and g for S.
superba, and d and h for C. lanceolata forests. Error bars denote standard deviation (n = 3). Different
letters on bars denote significant effects of glucose addition on Rh for sieved or intact soils, and the
asterisk *, ** denotes significant effects of sieving on Rh for CT or glucose-added soils at p < 0.05, 0.01,
respectively.
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3.2. Soil Microbial Responses to Sieving and Glucose Addition

In soils without glucose addition, sieving had less effect on the soil microbial biomass
and community composition on the 5th day of incubation (Figure 3a), but significantly
increased soil microbial biomass on the 27th day of incubation (Figure 3b). Sieving had
increased the biomass of Ascomycota & Basidiomycota, Zygomycota and fungi than the
other PLFA groups, but less modified the GN:GP ratio. The influences of soil sieving on
microbial traits were regulated by glucose addition on the 5th day of incubation (Table 2),
showing that glucose addition decreased the degree of the effects of sieving on soil microbial
biomass (Figure 3). The results of two-way ANOVA demonstrated that the mycorrhizal
fungi type and glucose addition had interactive effects on the ratio of PLFAs in sieved soils
to that in intact soils. This demonstrated that glucose addition significantly increased the
soil microbial biomass measured by PLFAs in both sieved soils and intact soils on the 5th
day of incubation (Figure 4). However, on the 27th day of incubation, glucose addition
tended to decreased microbial biomass in the sieved soils, but increased the microbial
biomass in intact soils. The microbial community composition (e.g., F/B ratio) in sieved
and intact soils also had different responses to glucose addition.
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Figure 3. Effects of sieving on soil microbial biomass with and without glucose addition in four
forests, as indicated by response ratios of the microbial biomass of different PLFA groups in sieved
soils to that in intact soils on the 5th (a) and 27th day (b) of incubation. Error bars denote standard
deviation (n = 12). Asterisk (*) on the bars denotes significant effects of sieving on soil microbial
biomass at p < 0.05.

Table 2. Results (p values) of two-way ANOVA for soil sieving and glucose addition on soil microbial
biomass on the 5th and 27th day of incubation in four forests.

Day Total
PLFA Bacteria Fungi GN GP Actinobacteria F/B GN/GP Firmicutes AMF Ascomycota &

Basidiomycota Zygomycota

5th MFT 0.233 0.094 0.318 0.083 0.137 0.101 0.689 0.266 0.229 0.731 0.839 0.192
Glucose 0.642 0.790 0.972 0.797 0.504 0.398 0.739 0.175 0.664 0.875 0.775 0.699

MFT × G 0.011 0.033 0.034 0.042 0.033 0.273 0.355 0.944 0.019 0.237 0.973 0.033
27th MFT 0.038 0.096 0.180 0.238 0.056 0.103 0.940 0.042 0.037 0.230 0.523 0.063

Glucose 0.345 0.418 0.293 0.410 0.428 0.800 0.436 0.772 0.364 0.666 0.713 0.168
MFT × G 0.944 0.883 0.622 0.955 0.727 0.800 0.486 0.297 0.803 0.820 0.612 0.408

MFT and glucose represent mycorrhizal fungi type and glucose addition, respectively.
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Figure 4. Effects of glucose addition on soil microbial biomass in sieved and intact soils in four
forests, as indicated by response ratios of microbial biomass in soils with glucose addition to that in
soils without glucose. Error bars denote standard deviation (n = 12). Asterisk (*) on the bars denotes
significant effects of glucose addition on soil microbial biomass at p < 0.05.

3.3. Mechanism of Regulating Soil Rh

The results of the correlation analysis showed that Rh was strongly and positively
correlated with the biomass of various microbial groups measured using the PLFAs on the
5th and 27th day of incubation. However, it was not related to the ratios of fungi to bacteria
and gram-negative to -positive bacteria (Figure 5). Their correlation coefficients became
lower on the 27th day (Figure 5b) than the 5th day (Figure 5a). In addition, the soil Rh was
strongly and positively correlated with mineral N, and negatively correlated with available
P. We further conducted the random forest model analysis, and the results showed that the
measured soil variables explained 74.7% and 49.7% of the variation in soil Rh on the 5th
and 27th day. On the 5th day of incubation, the total microbial and firmicute biomasses
were more important in regulating soil Rh than the other PLFA groups, and available P
was also important (Figure 6a). The available P was the most important, and the biomass
of Ascomycota, Basidiomycota and mineral N was also more important on the 5th day of
incubation (Figure 6b). These results suggested that the roles of soil nutrients and microbial
PLFA groups in regulating soil Rh varied temporally.
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4. Discussions

Although sieving is an important pretreatment practice for most laboratory incuba-
tion experiments, the influence of sieving on soil Rh or SOC decomposition is less clear,
especially with regards to what microbial factors are controlling its effects. Compared
to previous studies [12,14,17,18], our study was the first to explore how C availability
regulates the impacts of sieving on soil Rh. We found that sieving had less influence on
Rh, but that glucose addition changed the influence of soil sieving on soil Rh in the ECM
forests but not in the AM forests. Furthermore, the roles of soil nutrients and microbial
PLFA groups in regulating soil Rh varied temporally.

4.1. Response of Soil Heterotrophic Respiration to Sieving

Unlike our expectation that sieving would promote soil Rh, no significant difference
in soil Rh between sieved and intact soils in the four forests was observed when no glucose
was added into the soils during incubation (Figures 1 and S1), suggesting that sieving has
no effect on soil Rh. This result was consistent with previous experiments that found no
significant influence of soil sieving on Rh or SOC decomposition [11,17,18,33,34], although
some experiments found sieving stimulated a short-term CO2 flux [12,14,15,35]. First,
these conflicting observations were in part explained by the methodological differences
such as the mesh size used for soil sieving. Černohlávková et al. [36] reported that the
effects of sieving on soil respiration and microbial biomass C were related to mesh size in
arable, grassland and forest soils, and higher soil respiration was observed in soils sieved
through the finer mesh [15,35]. This indicated that the sieve mesh size affected the release
of labile organic matter such as carbohydrates, because soil sieving through a smaller mesh
demands more force and the soil’s physical structure is disrupted [37]. In our study, the
lesser effect of sieving on soil Rh was related to a large mesh size (e.g., 2 mm). Another
potential reason was that the influence of sieving on soil Rh was dynamically changed with
the incubation time. The effect of sieving on soil Rh appeared to last a few days (e.g., [38]),
and was greater at the early stage of incubation rather than the later stage [39]. In our study,
sieved soils were pre-incubated for 7 days, which may reduce the effects of soil sieving
on Rh.
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4.2. Carbon Addition Mediating the Response of Soil Heterotrophic Respiration to Sieving

To our knowledge, this was the first study to explore how increasing C availability
affects the response of Rh to sieving. We found that glucose addition caused lower Rh in
sieved soils than intact soils in the ECM forests (i.e., C. mollissima and P. massoniana) but
not in the AM forests on the 5th day of incubation (Figure 1a,b), which was different from
our hypothesis that glucose addition would decrease the stimulatory effects of sieving on
soil Rh. We also found at the later incubation stage (i.e., on the 27th day of incubation) that
glucose addition had an opposite influence on the responses of Rh to soil sieving. It showed
lower Rh in the sieved soils than in the intact soils in the P. massoniana forest (Figure 1e), but
higher in the C. mollissima forest (Figure 1f) on the 27th day of incubation. These findings
suggest that the influence of glucose addition on the response of Rh to soil sieving had a
mycorrhizal type-specific in forest ecosystems. As per our observation (Figures 2b and S1),
many studies found that carbon addition accelerated soil Rh or SOC decomposition in
laboratory incubation experiments [8,13,24,25,40]. This phenomenon is usually defined as
a priming effect [41], suggesting that C availability is a primary factor in limiting microbial
processes. The stimulatory effect of C addition was in part explained by the microbial
nutrient mining hypothesis that soil microorganisms can utilizelabile C as an energy source
to decay SOC and acquire nutrients [24,42]. A decrease in the mineral N (NH4-N and
NO3-N) and available P concentrations after glucose addition during incubation, especially
on the 5th day (Figure S2), supported this opinion.

The microbial stoichiometric decomposition theory also explained why C addition
accelerated Rh in intact soils in the ECM forests. Glucose addition did not match microbial
demands for C, N and P, that is, this input unbalanced the microbial stoichiometric C, N and
P ratios. Therefore, glucose addition accelerated soil organic matter decomposition by the
domination of r-strategists [43]. This was confirmed by the increased GN:GP ratio (Figure 4)
because gram-negative bacteria preferentially decompose labile substrates, whereas gram-
positive bacteria are able to utilize more complex substrates [44]. This was supported by
our results that the mineral N and available P strongly related to soil Rh (Figure 5), and
were important factors in regulating soil Rh (Figure 6). This was in agreement with some
nutrient addition experiments that the availability of N and P plays important roles in
organic matter decomposition in tropical soils [8].

Different responses of soil microbial biomass and community composition (e.g., F/B
ratio) were observed in sieved and intact soils to glucose addition (Figure 4; Table 2). They
were also responsible for the modification of glucose addition to soil sieving on Rh in ECM
forests, because soil microbes are the primary drivers of soil Rh [19–21]. Glucose addition
tended to decrease the soil microbial biomass in the sieved soils, but increased the soil
microbial biomass in the intact soils on the 27th day of incubation (Figure 4), suggesting
that glucose addition changed the responses of soil microbial biomass to sieving. Sieving
soil increased microbial biomass on the 27th day of incubation, in particular in soils without
glucose addition (Figure 3). This was consistent with some previous observations [45,46],
but fewer studies assessed their responses to glucose addition in intact soils. The increase of
soil microbial biomass in the sieved soils could be explained by an increase in C availability,
resulting from a decrease in the aggregate protection for SOC [11,13,47] and the changes in
soil microbial community and functional diversity after sieving [46].

In the present study, although some important findings were discovered, we noted
that our results should be applied in other forests or regions with caution. Our findings had
some implications for future research on this issue. Firstly, we added glucose to simulate
the carbon input via plant roots, but root exudates are complex and include numerous
materials such as sugars, amino acids and organic acids [48]. That is to say, results from
added glucose in this experiment may have some differences to the results occurring in the
field. Thus, the composition of added labile substrates should be the same as root exudates
and/or litter in a future study. Secondly, some studies showed that the effects of sieving
on soil respiration were dependent on the mesh size [15,35,36], and the effects of sieving
on soil respiration varied over incubation (Figure 1) [40], suggesting that it is critical to
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choose the incubation duration and sampling time. Therefore, formulating an experimental
framework is important in order to understand the effects of soil sieving on soil respiration.
Thirdly, only four forest types were investigated and we found that in ECM forests, glucose
addition modified the effects of sieving on soil respiration. However, to obtain a general
and solid conclusion, similar experiments should be widely conducted in other biomes
in future.

5. Conclusions

Our study explored how sieving affected soil Rh, and we found the effect of soil sieving
on Rh was regulated by C addition in forest ecosystems. Our results demonstrated that
sieving had less of an influence on soil Rh, but that glucose addition made this influence
significant in two ECM forests but not in two AM forests. This suggests that the functional
plant type (e.g., mycorrhizal type) influenced the roles of the increase in C availability to
microbes in regulating the response of the soil Rh to sieving. The imbalance caused by
glucose addition between C and nutrients, in particular N, changed the responses of the
soil Rh to sieving by altering the soil microbial biomass and community in the ECM forests.
The significant and strong correlations between sieved and intact soils for Rh indicate that
sieved soils are suitable to evaluate the relative influence of forest types or management
practices on soil respiration in forest ecosystems. These findings somewhat enhanced
our understanding of the response of Rh to soil sieving in increasing C-input scenarios in
terrestrial ecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f13081263/s1, Figure S1: Average effects of soil sieving and glucose
addition on heterotrophic soil respiration (Rh) in forests. Error bars denote standard deviation
(n = 12); Figure S2: Effects of glucose addition on soil nutrients in all soils, sieved soils and intact
soils as indicated by response ratios of nutrients in soils with glucose addition to that in soils without
glucose. Asterisk on the bars denotes significant effects of glucose addition on soil nutrients at
p < 0.05. Error bars denote standard deviation (n = 12). Table S1: Assignment of phospholipid acids
to different main microbial groups according to the method of Joergensen (2022).
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