Duration of Climate Change Mitigation Benefits from Increasing Boreal Forest Harvest Age by 10 Years
Abstract
:1. Introduction
2. Methods and Materials
2.1. Carbon Curve Equations
2.2. Mitigation Benefit Profiles with Increasing Harvest Age
2.3. Composite Yield Curves and Areas of Mitigation Opportunity
3. Results
4. Discussion
4.1. Duration of Mitigation Benefits
4.2. Computational Approaches
4.3. Direct and Indirect Effects of Harvest Age Adjustment
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemprière, T.C.; Kurz, W.A.; Hogg, E.H.; Schmoll, C.; Rampley, G.J.; Yemshanov, D.; McKenney, D.W.; Gilsenan, R.; Beatch, A.; Blain, D.; et al. Canadian boreal forests and climate change mitigation. Environ. Rev. 2013, 21, 293–321. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Roe, S.; Streck, C.; Beach, R.; Busch, J.; Chapman, M.; Daioglou, V.; Deppermann, A.; Doelman, J.; Emmet-Booth, J.; Engelmann, J.; et al. Land-based measures to mitigate climate change: Potential and feasibility by country. Glob. Chang. Biol. 2021, 27, 6025–6058. [Google Scholar] [CrossRef] [PubMed]
- Austin, K.G.; Baker, J.S.; Sohngen, B.L.; Wade, C.M.; Daigneault, A.; Ohrel, S.B.; Ragnauth, S.; Bean, A. The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change. Nat. Commun. 2020, 11, 5946. [Google Scholar] [CrossRef] [PubMed]
- Bastin, J.F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Fradette, O.; Marty, C.; Faubert, P.; Dessureault, P.L.; Paré, M.; Bouchard, S.; Villeneuve, C. Additional carbon sequestration potential of abandoned agricultural land afforestation in the boreal zone: A modelling approach. For. Ecol. Manag. 2021, 499, 119565. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed]
- Smyth, C.E.; Stinson, G.; Neilson, E.; Lemprière, T.C.; Hafer, M.; Rampley, G.J.; Kurz, W.A. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 2014, 11, 3515–3529. [Google Scholar] [CrossRef]
- Drever, C.R.; Cook-Patton, S.C.; Akhter, F.; Badiou, P.H.; Chmura, G.L.; Davidson, S.J.; Desjardins, R.L.; Dyk, A.; Fargione, J.E.; Fellows, M.; et al. Natural climate solutions for Canada. Sci. Adv. 2021, 7, eabd6034. [Google Scholar] [CrossRef] [PubMed]
- Nunery, J.S.; Keeton, W.S. Forest carbon storage in the northeastern United States: Net effects of harvesting frequency, post-harvest retention, and wood products. For. Ecol. Manag. 2010, 259, 1363–1375. [Google Scholar] [CrossRef]
- Paradis, L.; Thiffault, E.; Achim, A. Comparison of carbon balance and climate change mitigation potential of forest management strategies in the boreal forest of Quebec (Canada). For. Int. J. For. Res. 2019, 92, 264–277. [Google Scholar] [CrossRef]
- Perez-Garcia, J.; Lippke, B.; Comnick, J.; Manriquez, C. An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci. 2005, 37, 140–148. [Google Scholar]
- Harmon, M.E.; Marks, B. Effects of silvicultural practices on carbon stores in Douglas-fir western hemlock forests in the Pacific Northwest, USA: Results from a simulation model. Can. J. For. Res. 2002, 32, 863–877. [Google Scholar] [CrossRef]
- Hennigar, C.R.; MacLean, D.A.; Amos-Binks, L.J. A novel approach to optimize management strategies for carbon stored in both forests and wood products. For. Ecol. Manag. 2008, 256, 786–797. [Google Scholar] [CrossRef]
- Gutsch, M.; Lasch-Born, P.; Kollas, C.; Suckow, F.; Reyer, C.P. Balancing trade-offs between ecosystem services in Germany’s forests under climate change. Environ. Res. Lett. 2018, 13, 045012. [Google Scholar] [CrossRef]
- Kaipainen, T.; Liski, J.; Pussinen, A.; Karjalainen, T. Managing carbon sinks by changing rotation length in European forests. Environ. Sci. Policy 2004, 7, 205–219. [Google Scholar] [CrossRef]
- Santaniello, F.; Djupström, L.B.; Ranius, T.; Weslien, J.; Rudolphi, J.; Sonesson, J. Simulated long-term effects of varying tree retention on wood production, dead wood and carbon stock changes. J. Environ. Manag. 2017, 201, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Holm, S.O.; Englund, G. Increased ecoefficiency and gross rebound effect: Evidence from USA and six European countries 1960–2002. Ecol. Econ. 2009, 68, 879–887. [Google Scholar] [CrossRef]
- Brandão, M.; Levasseur, A. Assessing Temporary Carbon Storage in Life Cycle Assessment and Carbon Footprinting; Report JRC 63225; Publications Office of the European Union: Luxembourg, 2011; ISBN 978-92-79-20350-3.
- OMNDMNRF—Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry. State of Ontario’s Natural Resources—Forests 2021; Queen’s Printer for Ontario: Sault Ste. Marie, ON, Canada. Available online: https://www.ontario.ca/page/state-ontarios-natural-resources-forest-2021 (accessed on 4 July 2022).
- Statutes of Ontario. Crown Forest Sustainability Act, Revised. 1994. Available online: https://www.ontario.ca/laws/statute/94c25 (accessed on 4 July 2022).
- Chen, J.; Ter-Mikaelian, M.T.; Ng, P.Q.; Colombo, S.J. Ontario’s managed forests and harvested wood products contribute to greenhouse gas mitigation from 2020 to 2100. For. Chron. 2018, 43, 269–282. [Google Scholar]
- Heath, L.S.; Nichols, M.C.; Smith, J.E.; Mills, J.R. FORCARB2: An Updated Version of the US Forest Carbon Budget Model; General Technical Report NRS-67; USDA Forest Service, Northern Research Station: Newtown Square, PA, USA, 2010. [Google Scholar]
- Chen, J.; Colombo, S.J.; Ter-Mikaelian, M.T.; Heath, L.S. Carbon budget of Ontario’s managed forests and harvested wood products, 2001–2100. For. Ecol. Manag. 2010, 259, 1385–1398. [Google Scholar] [CrossRef]
- Chen, J.; Colombo, S.J.; Ter-Mikaelian, M.T.; Heath, L.S. Carbon profile of the managed forest sector in Canada in the 20th century: Sink or source? Environ. Sci. Technol. 2014, 48, 9859–9866. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ter-Mikaelian, M.T.; Yang, H.; Colombo, S.J. Assessing the greenhouse gas effects of harvested wood products manufactured from managed forests in Canada. For. Int. J. For. Res. 2018, 91, 193–205. [Google Scholar] [CrossRef]
- Smith, J.E.; Heath, L.S.; Jenkins, J.C. Forest Volume-to-Biomass Models and Estimates of Mass for Live and Standing Dead Trees of US Forests; NE-GTR-298; USDA Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2003. [Google Scholar]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 2011, 21, 1189–1201. [Google Scholar] [CrossRef]
- Neff, J.C.; Harden, J.W.; Gleixner, G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can. J. For. Res. 2005, 35, 2178–2187. [Google Scholar] [CrossRef]
- De Groot, W.J.; Pritchard, J.M.; Lynham, T.J. Forest floor fuel consumption and carbon emissions in Canadian boreal forest fires. Can. J. For. Res. 2009, 39, 367–382. [Google Scholar] [CrossRef]
- Weber, M.G.; Wagner, C.V.; Hummel, M. Selected parameters of fire behavior and Pinus banksiana Lamb. regeneration in eastern Ontario. For. Chron. 1987, 63, 340–346. [Google Scholar] [CrossRef]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar]
- Russell, M.B.; Weiskittel, A.R. Assessing and modeling snag survival and decay dynamics for the primary species in the Acadian forest of Maine, USA. For. Ecol. Manag. 2012, 284, 230–240. [Google Scholar] [CrossRef]
- Huggard, D.; Kremsater, L. Quantitative synthesis of rates for projecting deadwood in BC forests. Tech. Rep. For. Sci. Proj. S 2007, 84000. Available online: https://www.for.gov.bc.ca/hfd/library/FIA/2009/FSP_S094200.pdf (accessed on 4 July 2022).
- Bull, E.L. Longevity of snags and their use by woodpeckers. In Proceedings of the Symposium: Snag Habitat Management 1983, Flagstaff, AZ, USA, 7–9 June 1983; General Technical Report GTR-RM-99. Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1983. [Google Scholar]
- Dunn, C.J.; O’Connor, C.D.; Reilly, M.J.; Calkin, D.E.; Thompson, M.P. Spatial and temporal assessment of responder exposure to snag hazards in post-fire environments. For. Ecol. Manag. 2019, 441, 202–214. [Google Scholar] [CrossRef]
- Everett, R.; Lehmkuhl, J.; Schellhaas, R.; Ohlson, P.; Keenum, D.; Riesterer, H.; Spurbeck, D. Snag dynamics in a chronosequence of 26 wildfires on the east slope of the Cascade Range in Washington State, USA. Int. J. Wildland Fire 1999, 9, 223–234. [Google Scholar] [CrossRef]
- Lyon, L.J. Attrition of Lodgepole Pine Snags on the Sleeping Child Burn, Montana; Research Note INT-219; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1977.
- Vanderwel, M.C.; Malcolm, J.R.; Smith, S.M. An integrated model for snag and downed woody debris decay class transitions. For. Ecol. Manag. 2006, 234, 48–59. [Google Scholar] [CrossRef]
- Cain, M.D. Hardwood snag fragmentation in a pine-oak forest of southeastern Arkansas. Am. Midl. Nat. 1996, 136, 72–83. [Google Scholar] [CrossRef]
- Fassnacht, K.S.; Steele, T.W. Snag dynamics in northern hardwood forests under different management scenarios. For. Ecol. Manag. 2016, 363, 267–276. [Google Scholar] [CrossRef]
- Boulanger, Y.; Sirois, L. Postfire dynamics of black spruce coarse woody debris in northern boreal forest of Quebec. Can. J. For. Res. 2006, 36, 1770–1780. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Gower, S.T. Decomposition and fragmentation of coarse woody debris: Re-visiting a boreal black spruce chronosequence. Ecosystems 2008, 11, 831–840. [Google Scholar] [CrossRef]
- Tyrrell, L.E.; Crow, T.R. Dynamics of dead wood in old-growth hemlock–hardwood forests of northern Wisconsin and northern Michigan. Can. J. For. Res. 1994, 24, 1672–1683. [Google Scholar] [CrossRef]
- Johnson, E.A.; Greene, D.F. A method for studying dead bole dynamics in Pinus contorta var. latifolia-Picea engelmannii forests. J. Veg. Sci. 1991, 2, 523–530. [Google Scholar] [CrossRef]
- Alban, D.H.; Pastor, J. Decomposition of aspen, spruce, and pine boles on two sites in Minnesota. Can. J. For. Res. 1993, 23, 1744–1749. [Google Scholar] [CrossRef]
- Laiho, R.; Prescott, C.E. The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Can. J. For. Res. 1999, 29, 1592–1603. [Google Scholar] [CrossRef]
- Herrmann, S.; Prescott, C.E. Mass loss and nutrient dynamics of coarse woody debris in three Rocky Mountain coniferous forests: 21 year results. Can. J. For. Res. 2008, 38, 125–132. [Google Scholar] [CrossRef]
- Wei, X.; Kimmins, J.P.; Peel, K.; Steen, O. Mass and nutrients in woody debris in harvested and wildfire-killed lodgepole pine forests in the central interior of British Columbia. Can. J. For. Res. 1997, 27, 148–155. [Google Scholar] [CrossRef]
- Fahey, T.J. Nutrient dynamics of aboveground detritus in lodgepole pine (Pinus contorta ssp. latifolia) ecosystems, southeastern Wyoming. Ecol. Monogr. 1983, 53, 51–72. [Google Scholar] [CrossRef]
- Foster, J.R.; Lang, G.E. Decomposition of red spruce and balsam fir boles in the White Mountains of New Hampshire. Can. J. For. Res. 1982, 12, 617–626. [Google Scholar] [CrossRef]
- Graham, R.L.; Cromack, K., Jr. Mass, nutrient content, and decay rate of dead boles in rain forests of Olympic National Park. Can. J. For. Res. 1982, 12, 511–521. [Google Scholar] [CrossRef]
- Graham, R.L.L. Biomass Dynamics of Dead Douglas-Fir and Western Hemlock Boles in Mid-Elevation Forests of the Cascade Range. 1981. Available online: https://ir.library.oregonstate.edu/downloads/qr46r369t (accessed on 4 July 2022).
- Forrester, J.A.; Mladenoff, D.J.; Gower, S.T.; Stoffel, J.L. Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps. For. Ecol. Manag. 2012, 265, 124–132. [Google Scholar] [CrossRef]
- Gough, C.M.; Vogel, C.S.; Kazanski, C.; Nagel, L.; Flower, C.E.; Curtis, P.S. Coarse woody debris and the carbon balance of a north temperate forest. For. Ecol. Manag. 2007, 244, 60–67. [Google Scholar] [CrossRef]
- Miller, W.E. Decomposition rates of aspen bole and branch litter. For. Sci. 1983, 29, 351–356. [Google Scholar]
- Trofymow, J.A.; Moore, T.R.; Titus, B.; Prescott, C.; Morrison, I.; Siltanen, M.; Smith, S.; Fyles, J.; Wein, R.; Camiré, C.; et al. Rates of litter decomposition over 6 years in Canadian forests: Influence of litter quality and climate. Can. J. For. Res. 2002, 32, 789–804. [Google Scholar] [CrossRef]
- Prescott, C.E.; Zabek, L.M.; Staley, C.L.; Kabzems, R. Decomposition of broadleaf and needle litter in forests of British Columbia: Influences of litter type, forest type, and litter mixtures. Can. J. For. Res. 2000, 30, 1742–1750. [Google Scholar] [CrossRef]
- Prescott, C.E.; Blevins, L.L.; Staley, C.L. Effects of clear-cutting on decomposition rates of litter and forest floor in forests of British Columbia. Can. J. For. Res. 2000, 30, 1751–1757. [Google Scholar] [CrossRef]
- Taylor, B.R.; Prescott, C.E.; Parsons, W.J.F.; Parkinson, D. Substrate control of litter decomposition in four Rocky Mountain coniferous forests. Can. J. Bot. 1991, 69, 2242–2250. [Google Scholar] [CrossRef]
- Yavitt, J.B.; Fahey, T.J. Litter decay and leaching from the forest floor in Pinus contorta (lodgepole pine) ecosystems. J. Ecol. 1986, 74, 525–545. [Google Scholar] [CrossRef]
- Magill, A.H.; Aber, J.D. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 1998, 203, 301–311. [Google Scholar] [CrossRef]
- Harmon, M.E.; Silver, W.L.; Fasth, B.; Chen, H.U.A.; Burke, I.C.; Parton, W.J.; Hart, S.C.; Currie, W.S.; Lidet. Long-term patterns of mass loss during the decomposition of leaf and fine root litter: An intersite comparison. Glob. Change Biol. 2009, 15, 1320–1338. [Google Scholar] [CrossRef]
- Prescott, C.E.; Reid, A.; Wu, S.Y.; Nilsson, M.C. Decomposition rates of surface and buried forest-floor material. Can. J. For. Res. 2017, 47, 1140–1144. [Google Scholar] [CrossRef]
- Smith, A.C.; Bhatti, J.S.; Chen, H.; Harmon, M.E.; Arp, P.A. Modelling above-and below-ground mass loss and N dynamics in wooden dowels (LIDET) placed across North and Central America biomes at the decadal time scale. Ecol. Model. 2011, 222, 2276–2290. [Google Scholar] [CrossRef]
- Page-Dumroese, D.S.; Jurgensen, M.F.; Miller, C.A.; Pickens, J.B.; Tirocke, J.M. Wildfire alters belowground and surface wood decomposition on two national forests in Montana, USA. Int. J. Wildland Fire 2019, 28, 456–469. [Google Scholar] [CrossRef]
- Smyth, C.E.; Titus, B.; Trofymow, J.A.; Moore, T.R.; Preston, C.M.; Prescott, C.E. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing wood blocks in Canadian forests. Plant Soil 2016, 409, 459–477. [Google Scholar] [CrossRef]
- Puhlick, J.J.; Fraver, S.; Fernandez, I.J.; Weiskittel, A.R.; Kenefic, L.S.; Kolka, R.K.; Gruselle, M.C. Factors influencing organic-horizon carbon pools in mixed-species stands of central Maine, USA. For. Ecol. Manag. 2016, 364, 90–100. [Google Scholar] [CrossRef]
- Mukhortova, L.V.; Bezkorovainaya, I.N. Transformation of organic matter of the larch forest soils in the northern taiga of Nizhne-Tungusskoe Plateau, central Siberia. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 191–202. [Google Scholar] [CrossRef]
- Prescott, C.E.; Corbin, J.P.; Parkinson, D. Input, accumulation, and residence times of carbon, nitrogen, and phosphorus in four Rocky Mountain coniferous forests. Can. J. For. Res. 1989, 19, 489–498. [Google Scholar] [CrossRef]
- Simmons, J.A.; Fernandez, I.J.; Briggs, R.D.; Delaney, M.T. Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA. For. Ecol. Manag. 1996, 84, 81–95. [Google Scholar] [CrossRef]
- Mukhortova, L.V.; Sergeeva, O.V.; Krivobokov, L.V.; Osipenko, Y.S. Structure of forest litter in larch forests of Middle and Southern Siberia. In IOP Conference Series: Earth and Environmental Science; IOP: London, UK, 2021; Volume 937, p. 032112. [Google Scholar]
- Trum, F.; Titeux, H.; Cornelis, J.T.; Delvaux, B. Effects of manganese addition on carbon release from forest floor horizons. Can. J. For. Res. 2011, 41, 643–648. [Google Scholar] [CrossRef]
- Lambert, R.L.; Lang, G.E.; Reiners, W.A. Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology 1980, 61, 460–1473. [Google Scholar] [CrossRef]
- Kurz, W.A.; Dymond, C.C.; White, T.M.; Stinson, G.; Shaw, C.H.; Rampley, G.J.; Smyth, C.; Simpson, B.N.; Neilson, E.T.; Trofymow, J.A.; et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Model. 2009, 220, 480–504. [Google Scholar] [CrossRef]
- Ter-Mikaelian, M.; McKechnie, J.; Colombo, S.; Chen, J.; MacLean, H. The carbon neutrality assumption for forest bioenergy: A case study for northwestern Ontario. For. Chron. 2011, 87, 644–652. [Google Scholar] [CrossRef]
- Watkins, L. The Forest Resources of Ontario 2011; Ontario Ministry of Natural Resources, Forest Evaluation and Standards Section, Forests Branch: Sault Ste. Marie, ON, Canada, 2011; pp. 1–307. Available online: https://docs.ontario.ca/documents/3254/forest-resources-of-ontario-2011.pdf (accessed on 4 July 2022).
- Etheridge, D.A.; Kayahara, G.J. Challenges and implications of incorporating multi-cohort management in northeastern Ontario, Canada: A case study. For. Chron. 2013, 89, 315–326. [Google Scholar] [CrossRef]
- Barton, P.S.; Pierson, J.C.; Westgate, M.J.; Lane, P.W.; Lindenmayer, D.B. Learning from clinical medicine to improve the use of surrogates in ecology. Oikos 2015, 124, 391–398. [Google Scholar] [CrossRef]
- ECCC. Environment and Climate Change Canada. 2022. 2030 Emissions Reduction Plan: Canada’s Next Steps for Clean Air and a Strong Economy. Available online: https://www.canada.ca/content/dam/eccc/documents/pdf/climate-change/erp/Canada-2030-Emissions-Reduction-Plan-eng.pdf (accessed on 4 July 2022).
- Blanco, G.; Gerlagh, R.; Suh, S.; Barrett, J.; de Coninck, H.C.; Diaz Morejon, C.F.; Mathur, R.; Nakicenovic, N.; Ofosu Ahenkora, A.; Pan, J.; et al. Drivers, Trends and Mitigation. In Climate Change 2014: Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Kallio, A.M.; Solberg, B. Leakage of forest harvest changes in a small open economy: Case Norway. Scand. J. For. Res. 2018, 33, 502–510. [Google Scholar] [CrossRef]
- Pan, W.; Kim, M.K.; Ning, Z.; Yang, H. Carbon leakage in energy/forest sectors and climate policy implications using meta-analysis. For. Policy Econ. 2020, 115, 102161. [Google Scholar] [CrossRef]
Common Name | Scientific Name | DBH (cm) | kStD (1/Year) | Location | Source |
---|---|---|---|---|---|
Softwoods | |||||
Balsam fir, red pine | Abies balsamea L. Mill., Picea rubens Sarg. | 2.5–42 | 0.0866 a | Maine, USA | [34] |
Firs, hemlocks, Norway and black spruce b | 40 | 0.0495 a | British Columbia, Canada | [35] | |
Lodgepole pine | Pinus contorta Dougl. Ex Loud. | <25 | 0.1733 c | Oregon, USA | [36] |
>25 | 0.0866 c | ||||
20 | 0.0815 a | Oregon, USA | [37] | ||
40 | 0.0660 a | ||||
3–23 | 0.0693 a | Washington, USA | [38] | ||
23–41 | 0.0462 a | ||||
NA | 0.0210 | Colorado, USA | [33] | ||
40 | 0.0433 a | British Columbia, Canada | [35] | ||
7.5–30 | 0.0760 d | Montana, USA | [39] | ||
Red pine | Pinus resinosa Ait. | NA | 0.0147 e | Ontario, Canada | [40] |
White pine | Pinus strobus L. | NA | 0.0408 e | Ontario, Canada | [40] |
Deciduous | |||||
Trembling aspen, cottonwood, and paper birch | 40 | 0.0248 a | British Columbia, Canada | [35] | |
Hardwoods (mainly oak) | 12–24 | 0.1779 | Arkansas, USA | [41] | |
>25 | 0.0528 | ||||
Hardwoods f | >10 | 0.1173 g | Wisconsin, USA | [42] | |
Red maple, white birch | Acer rubrum L., Betula papyrifera Marshall | 15 | 0.0990 | Maine, USA | [34] |
Common Name | Scientific Name | kDDW (1/Year) | Location | Source |
---|---|---|---|---|
Softwoods | ||||
Black spruce | Picea mariana (Mill.) BSP | 0.0210 | Quebec, Canada | [43] |
0.0600 | Manitoba, Canada | [44] | ||
0.0500 | ||||
Eastern hemlock | Tsuga canadensis (L.) Carr | 0.0210 | Wisconsin, USA; Michigan, USA | [45] |
Engelmann spruce | Picea engelmannii Parry ex Engelm. | 0.0054 | Alberta, Canada | [46] |
0.0025 | ||||
Jack pine | Pinus banksiana Lamb. | 0.0420 | Minnesota, USA | [47] |
Lodgepole pine | Pinus contorta Dougl. ex Loud. | 0.0507 | Alberta, Canada | [48] |
0.0171 | Alberta, Canada | [46] | ||
0.0299 | ||||
0.0153 | ||||
0.0045 | ||||
0.0035 | ||||
0.0720 | Alberta, Canada | [49] | ||
0.0210 | British Columbia, Canada | [50] | ||
0.0180 | ||||
0.0120 | Wyoming, USA | [51] | ||
Red pine | Pinus resinosa Ait. | 0.0550 | Minnesota, USA | [47] |
Red spruce | Picea rubens Sarg. | 0.0330 | New Hampshire, USA | [52] |
Sitka spruce | Picea sitchensis (Bong.) Carr. | 0.0110 | Washington, USA | [53] |
Subalpine fir | Abies lasiocarpa (Hook.) Nutt. | 0.0286 | Alberta, Canada | [48] |
0.0520 | Alberta, Canada | [49] | ||
Western hemlock | Tsuga heterophylla (Raf.) Sarg. | 0.0124 | Washington, USA | [54] |
White spruce | Picea glauca (Moench) Voss | 0.0271 | Alberta, Canada | [48] |
0.0710 | Minnesota, USA | [47] | ||
0.0240 | Alberta, Canada | [49] | ||
Hardwoods | ||||
American basswood | Tilia americana L. | 0.0750 | Wisconsin, USA | [55] |
Bigtooth aspen | Populus grandidentata Michx. | 0.0900 | Michigan, USA | [56] |
Sugar maple | Acer saccharum Marsh. | 0.0750 | Wisconsin, USA | [55] |
Trembling aspen | Populus tremuloides Michx. | 0.0800 | Minnesota, USA | [47] |
0.0800 | ||||
White ash | Fraxinus americana L. | 0.0495 | Minnesota, USA | [57] |
Hardwoods a | 0.0365 b | Ontario, Canada | [40] | |
0.0330 c |
Common Name | Scientific Name | kFF (1/Year) | Years | Location | Source |
---|---|---|---|---|---|
Leaves/needles | |||||
Softwoods | |||||
Black spruce | Picea mariana (Mill.) BSP | 0.1703 | 6 | Canada a | [58] |
Douglas-fir | Pseudotsuga menziesii (Mirb.) Franco | 0.1294 | 6 | Canada a | [58] |
0.1833 | 5 | British Columbia, Canada | [59] | ||
Jack pine | Pinus banksiana Lamb. | 0.1446 | 6 | Canada a | [58] |
Lodgepole pine | Pinus contorta Dougl. ex Loud. | 0.2811 | 4 | British Columbia, Canada b | [60] |
0.2100 | 5 | British Columbia, Canada | [59] | ||
0.1316 | 3 | Alberta, Canada c | [61] | ||
0.1500 | Comp d | Wyoming, USA | [62] | ||
Red pine | Pinus resinosa Ait. | 0.2550 | 6 | Massachusetts, USA | [63] |
Tamarack | Larix laricina (Du Roi) K. Koch | 0.1223 | 6 | Canada a | [58] |
Western red cedar | Thuja plicata Donn ex D. Don | 0.1058 | 6 | Canada a | [58] |
White spruce | Picea glauca (Moench) Voss | 0.2582 | 5 | British Columbia, Canada | [59] |
0.1828 | 3 | Alberta, Canada | [61] | ||
Pine | Pinus spp. e | 0.0740 | 10 | Alaska, USA | [64] |
0.0905 | 10 | Alaska, USA | [64] | ||
0.0438 | 10 | Colorado, USA | [64] | ||
0.2037 | 10 | New Hampshire, USA | [64] | ||
0.1309 | 10 | Washington, USA | [64] | ||
0.0285 | 10 | Wisconsin, USA | [64] | ||
Hardwoods | |||||
Beech | Fagus grandifolia Ehrh. | 0.1122 | 6 | Canada a | [58] |
Black oak | Quercus velutina Lam. | 0.3100 | 6 | Massachusetts, USA | [63] |
Red maple | Acer rubrum L. | 0.2250 | 6 | Massachusetts, USA | [63] |
Sugar maple | Acer saccharum Marsh. | 0.1175 | 10 | Alaska, USA | [64] |
0.1184 | 10 | Alaska, USA | [64] | ||
0.0652 | 10 | Colorado, USA | [64] | ||
0.1464 | 10 | New Hampshire, USA | [64] | ||
0.1636 | 10 | Washington, USA | [64] | ||
0.0674 | 10 | Wisconsin, USA | [64] | ||
Trembling aspen | Populus tremuloides Michx. | 0.1446 | 6 | Canada a | [58] |
0.2733 | 3 | British Columbia, Canada b | [60] | ||
0.3290 | 5 | British Columbia, Canada | [59] | ||
White birch | Betula papyrifera Marsh. | 0.1798 | 6 | Canada a | [58] |
0.2100 | 5 | British Columbia, Canada | [59] | ||
Yellow birch | Betula alleghaniensis Britt. | 0.2700 | 6 | Massachusetts, USA | [63] |
Samples from F and H horizons, surface-placed | 0.1563 | 3 | British Columbia, Canada | [65] | |
Wood stakes, surface-placed | |||||
Ramin | Gonystylus bancanus (Miq.) Kurz | 0.0408 | 10 | USA f | [66] |
Trembling aspen | Populus tremuloides Michx. | 0.0209 | 10 | Montana, USA g | [67] |
Western hemlock | Tsuga heterophylla (Raf.) Sarg. | 0.0604 | 6 | Canada h | [68] |
Wood stakes, buried | |||||
Trembling aspen | Populus tremuloides Michx. | 0.0432 | 10 | Montana, USA | [67] |
Forest floor material | |||||
Samples from F horizon, buried | 0.0424 | 4 | British Columbia, Canada | [60] | |
0.0946 | 4 | British Columbia, Canada | [60] | ||
0.0959 | 4 | British Columbia, Canada | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ter-Mikaelian, M.T.; Chen, J.; Colombo, S.J. Duration of Climate Change Mitigation Benefits from Increasing Boreal Forest Harvest Age by 10 Years. Forests 2022, 13, 1279. https://doi.org/10.3390/f13081279
Ter-Mikaelian MT, Chen J, Colombo SJ. Duration of Climate Change Mitigation Benefits from Increasing Boreal Forest Harvest Age by 10 Years. Forests. 2022; 13(8):1279. https://doi.org/10.3390/f13081279
Chicago/Turabian StyleTer-Mikaelian, Michael T., Jiaxin Chen, and Stephen J. Colombo. 2022. "Duration of Climate Change Mitigation Benefits from Increasing Boreal Forest Harvest Age by 10 Years" Forests 13, no. 8: 1279. https://doi.org/10.3390/f13081279
APA StyleTer-Mikaelian, M. T., Chen, J., & Colombo, S. J. (2022). Duration of Climate Change Mitigation Benefits from Increasing Boreal Forest Harvest Age by 10 Years. Forests, 13(8), 1279. https://doi.org/10.3390/f13081279