Tree Cover Improved the Species Diversity of Understory Spontaneous Herbs in a Small City
Abstract
:1. Introduction
2. Study Site and Methods
2.1. Study Site
2.2. Plant Survey and Identification
2.3. Data Analysis
- (1)
- Average species richness of each trait type
- (2)
- Frequency
- (3)
- Species association
3. Results
3.1. Species Composition
3.1.1. Species Richness
3.1.2. Vulnerable and Endemic Species
3.2. Species Richness of Each Functional Trait Type
3.2.1. Perennial/Annual
3.2.2. Tall/Dwarf Growth Forms
3.2.3. Dispersal Mode
3.3. Species Association in Habitats with/without Tree Cover
3.3.1. Overview of Species Associations
3.3.2. Paired Species Associations of Each Life-Form Combination
3.3.3. Paired Species Association of Each Growth-Form Combination
3.3.4. Paired Species Association of Each Dispersal Mode Combination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manage. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Mestre, L.; Toro-Manríquez, M.; Soler, R.; Huertas-Herrera, A.; Martínez-Pastur, G.; Lencinas, M.V. The influence of canopy-layer composition on understory plant diversity in southern temperate forests. For. Ecosyst. 2017, 4, 6. [Google Scholar] [CrossRef]
- Pilon, N.A.; Durigan, G.; Rickenback, J.; Pennington, R.T.; Dexter, K.G.; Hoffmann, W.A.; Abreu, R.C.; Lehmann, C.E. Shade alters savanna grass layer structure and function along a gradient of canopy cover. J. Veg. Sci. 2021, 32, e12959. [Google Scholar] [CrossRef]
- Gong, C.; Tan, Q.; Liu, G.; Xu, M. Impacts of tree mixtures on understory plant diversity in China. For. Ecol. Manage. 2021, 498, 119545. [Google Scholar] [CrossRef]
- Zangy, E.; Kigel, J.; Cohen, S.; Moshe, Y.; Ashkenazi, M.; Fragman-Sapir, O.; Osem, Y. Understory plant diversity under variable overstory cover in Mediterranean forests at different spatial scales. For. Ecol. Manage. 2021, 494, 119319. [Google Scholar] [CrossRef]
- Woods, K.D.; Hicks, D.J.; Schultz, J. Losses in understory diversity over three decades in an old-growth cool-temperate forest in Michigan, USA. Can. J. For. Res. 2012, 42, 532–549. [Google Scholar] [CrossRef]
- Tinya, F.; Ódor, P. Congruence of the spatial pattern of light and understory vegetation in an old-growth, temperate mixed forest. For. Ecol. Manag. 2016, 381, 84–92. [Google Scholar] [CrossRef]
- Germany, M.S.; Bruelheide, H.; Erfmeier, A. Limited tree richness effects on herb layer composition, richness and productivity in experimental forest stands. J. Plant Ecol. 2017, 10, 190–200. [Google Scholar] [CrossRef]
- Brudvig, L.A.; Mabry, C.M.; Mottl, L.M. Dispersal, not Understory Light Competition, Limits Restoration of Iowa Woodland Understory Herbs. Restor. Ecol. 2011, 19, 24–31. [Google Scholar] [CrossRef]
- Cervelli, E.W.; Lundholm, J.T.; Du, X. Spontaneous urban vegetation and habitat heterogeneity in Xi’an, China. Landsc. Urban Plan. 2013, 120, 25–33. [Google Scholar] [CrossRef]
- Bonthoux, S.; Voisin, L.; Bouché-Pillon, S.; Chollet, S. More than weeds: Spontaneous vegetation in streets as a neglected element of urban biodiversity. Landsc. Urban Plan. 2019, 185, 163–172. [Google Scholar] [CrossRef]
- Prach, K.; Pyšek, P.; Bastl, M. Spontaneous vegetation succession in human-disturbed habitats: A pattern across seres. Appl. Veg. Sci. 2001, 4, 83–88. [Google Scholar] [CrossRef]
- Omar, M.; Al Sayed, N.; Barré, K.; Halwani, J.; Machon, N. Drivers of the distribution of spontaneous plant communities and species within urban tree bases. Urban For. Urban Green. 2018, 35, 174–191. [Google Scholar] [CrossRef]
- Li, X.P.; Fan, S.X.; Guan, J.H.; Zhao, F.; Dong, L. Diversity and influencing factors on spontaneous plant distribution in Beijing Olympic Forest Park. Landsc. Urban Plan. 2019, 181, 157–168. [Google Scholar] [CrossRef]
- Kohli, B.A.; Terry, R.C.; Rowe, R.J. A trait-based framework for discerning drivers of species co-occurrence across heterogeneous landscapes. Ecography 2018, 41, 1921–1933. [Google Scholar] [CrossRef]
- Petit, S.; Fried, G. Patterns of weed co-occurrence at the field and landscape level. J. Veg. Sci. 2012, 23, 1137–1147. [Google Scholar] [CrossRef]
- Cordero, R.D.; Jackson, D.A. Species-pair associations, null models, and tests of mechanisms structuring ecological communities. Ecosphere 2019, 10, e02797. [Google Scholar] [CrossRef]
- Fahmi, F.Z.; Hudalah, D.; Rahayu, P.; Woltjer, J. Extended urbanization in small and medium-sized cities: The case of Cirebon, Indonesia. Habitat Int. 2014, 42, 1–10. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2019 Revision: Population Division; Technical Report; Department for Economic and Social Affairs: New York, NY, USA, 2020. [Google Scholar]
- Bell, D.; Jayne, M. Small Cities? Towards a Research Agenda. Int. J. Urban Reg. Res. 2009, 33, 683–699. [Google Scholar] [CrossRef]
- Lopucki, R.; Kitowski, I. How small cities affect the biodiversity of ground-dwelling mammals and the relevance of this knowledge in planning urban land expansion in terms of urban wildlife. Urban Ecosyst. 2017, 20, 933–943. [Google Scholar] [CrossRef]
- Lopucki, R.; Klich, D.; Kitowski, I.; Kiersztyn, A. Urban size effect on biodiversity: The need for a conceptual framework for the implementation of urban policy for small cities. Cities 2020, 98, 102590. [Google Scholar] [CrossRef]
- Chollet, S.; Brabant, C.; Tessier, S.; Jung, V. From urban lawns to urban meadows: Reduction of mowing frequency increases plant taxonomic, functional and phylogenetic diversity. Landsc. Urban Plan. 2018, 180, 121–124. [Google Scholar] [CrossRef]
- Huang, J.; Ma, K.; Chen, B. Diversity and Geigraphic Distribution of Endemic Species of Seed Plants in China; China Higher Education Press: Beijing, China, 2014. [Google Scholar]
- Zhang, J. Plantlist: Looking Up the Status of Plant Scientific Names Based on the Plant List Database, Version 0.6.5; Available online: https://www.github.com/helixcn/plantlist (accessed on 12 October 2021).
- Qin, H.; Yang, Y.; Dong, S.; He, Q.; Jia, Y.; Zhao, L.; Yu, S.; Liu, H.; Liu, B.; Yan, Y.; et al. Threatened species list of China’s higher plants. Biodivers. Sci. 2017, 25, 696–744. [Google Scholar] [CrossRef]
- Institute for the Control of Agrochemicals of People’s Republic of China; The Japanese Society for Chemical Regulation. Chinese Colored Weed Illustrated Book; Institute for the Control of Agrochemicals of People’s Republic of China: Beijing, China, 2020. [Google Scholar]
- Liu, Q.; Bi, L.; Song, G.; Wang, Q.; Jin, G. Species-habitat associations in an old-growth temperate forest in northeastern China. BMC Ecol. 2018, 18, 20. [Google Scholar] [CrossRef]
- Zhang, J. spaa: Species Association Analysis, R Package, version 0.2.2.; 2016. Available online: https://github.com/helixcn/spaa (accessed on 1 March 2021).
- Riley, C.B.; Perry, K.I.; Ard, K.; Gardiner, M.M. Asset or liability? Ecological and sociological tradeoffs of urban spontaneous vegetation on vacant land in shrinking cities. Sustainability 2018, 10, 2139. [Google Scholar] [CrossRef]
- Leong, M.; Trautwein, M. A citizen science approach to evaluating US cities for biotic homogenization. PeerJ 2019, 7, e6879. [Google Scholar] [CrossRef]
- Bossu, A.; Marco, A.; Manel, S.; Bertaudière-Montes, V. Effects of built landscape on taxonomic homogenization: Two case studies of private gardens in the French Mediterranean. Landsc. Urban Plan. 2014, 129, 12–21. [Google Scholar] [CrossRef]
- Wittig, R.; Becker, U. The spontaneous flora around street trees in cities—A striking example for the worldwide homogenization of the flora of urban habitats. Flora Morphol. Distrib. Funct. Ecol. Plants 2010, 205, 704–709. [Google Scholar] [CrossRef]
- Wheeler, M.M.; Neill, C.; Groffman, P.M.; Avolio, M.; Bettez, N.; Cavender-Bares, J.; Roy Chowdhury, R.; Darling, L.; Grove, J.M.; Hall, S.J.; et al. Continental-scale homogenization of residential lawn plant communities. Landsc. Urban Plan. 2017, 165, 54–63. [Google Scholar] [CrossRef]
- Rosas-Mejía, M.; Llarena-Hernández, C.; Núñez-Pastrana, R.; Vanoye-Eligio, V.; Serna-Lagunes, R.; García-Martínez, M.A. Value of a Heterogeneous Urban Green Space for Ant1 Diversity in a Highland City in Central Eastern Mexico. Southwest. Entomol. 2020, 45, 461–474. [Google Scholar] [CrossRef]
- Prather, H.M.; Eppley, S.M.; Rosenstiel, T.N. Urban forested parks and tall tree canopies contribute to macrolichen epiphyte biodiversity in urban landscapes. Urban For. Urban Green. 2018, 32, 133–142. [Google Scholar] [CrossRef]
- MacGregor-Fors, I.; Escobar, F.; Rueda-Hernández, R.; Avendaño-Reyes, S.; Baena, M.L.; Bandala, V.M.; Chacón-Zapata, S.; Guillén-Servent, A.; González-García, F.; Lorea-Hernández, F.; et al. City “green” contributions: The role of urban greenspaces as reservoirs for biodiversity. Forests 2016, 7, 146. [Google Scholar] [CrossRef]
- Albrecht, H.; Haider, S. Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers. Conserv. 2013, 22, 2243–2267. [Google Scholar] [CrossRef]
- Güler, B. Plant species diversity and vegetation in urban grasslands depending on disturbance levels. Biologia 2020, 75, 1231–1240. [Google Scholar] [CrossRef]
- Schippers, P.; Van Groenendael, J.M.; Vleeshouwers, L.M.; Hunt, R. Herbaceous plant strategies in disturbed habitats. Oikos 2001, 95, 198–210. [Google Scholar] [CrossRef]
- Schütz, C.; Schulze, C.H. Functional diversity of urban bird communities: Effects of landscape composition, green space area and vegetation cover. Ecol. Evol. 2015, 5, 5230–5239. [Google Scholar] [CrossRef]
- Long, L.C.; Frank, S.D. Risk of bird predation and defoliating insect abundance are greater in urban forest fragments than street trees. Urban Ecosyst. 2020, 23, 519–531. [Google Scholar] [CrossRef]
- Stagoll, K.; Lindenmayer, D.B.; Knight, E.; Fischer, J.; Manning, A.D. Large trees are keystone structures in urban parks. Conserv. Lett. 2012, 5, 115–122. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Li, S.; von Gadow, K. The Effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban For. Urban Green. 2015, 14, 1027–1039. [Google Scholar] [CrossRef]
- Pithon, J.A.; Duflot, R.; Beaujouan, V.; Jagaille, M.; Pain, G.; Daniel, H. Grasslands provide diverse opportunities for bird species along an urban-rural gradient. Urban Ecosyst. 2021, 24, 1281–1294. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, L.; Chang, P.; Wang, J.L.; Fan, J.X.; Gao, T. Is urban spontaneous vegetation rich in species and has potential for exploitation?-A case study in Baoji, China. Plant Biosyst. 2021, 155, 42–53. [Google Scholar] [CrossRef]
- Santiago, J.L.; Buccolieri, R.; Rivas, E.; Sanchez, B.; Martilli, A.; Gatto, E.; Martín, F. On the impact of trees on ventilation in a real street in Pamplona, Spain. Atmosphere 2019, 10, 697. [Google Scholar] [CrossRef]
- Lee, K.H.; Ehsani, R.; Castle, W.S. A laser scanning system for estimating wind velocity reduction through tree windbreaks. Comput. Electron. Agric. 2010, 73, 1–6. [Google Scholar] [CrossRef]
- Taseski, G.M.; Beloe, C.J.; Gallagher, R.V.; Chan, J.Y.; Dalrymple, R.L.; Cornwell, W.K. A global growth-form database for 143,616 vascular plant species. Ecology 2019, 100, 2614. [Google Scholar] [CrossRef]
- Liira, J.; Zobel, K.; Mägi, R.; Molenberghs, G. Vertical structure of herbaceous canopies: The importance of plant growth-form and species-specific traits. Plant Ecol. 2002, 163, 123–134. [Google Scholar] [CrossRef]
- Bonser, S.P.; Geber, M.A. Growth form evolution and shifting habitat specialization in annual plants. J. Evol. Biol. 2005, 18, 1009–1018. [Google Scholar] [CrossRef]
- Tanioka, Y.; Ida, H.; Hirota, M. Relationship between Canopy Structure and Community Structure of the Understory Trees in a Beech Forest in Japan. Forests 2022, 13, 494. [Google Scholar] [CrossRef]
- Rissanen, K.; Martin-Guay, M.O.; Riopel-Bouvier, A.S.; Paquette, A. Light interception in experimental forests affected by tree diversity and structural complexity of dominant canopy. Agric. For. Meteorol. 2019, 278, 107655. [Google Scholar] [CrossRef]
Trait Type | Overall | Top 25 Species | |||
---|---|---|---|---|---|
Habitat 1 | Habitat 2 | Habitat 1 and 2 | Habitat 1 | Habitat 2 | |
Total | 177 | 172 | 222 | 25 | 25 |
Life-form | |||||
Perennial | 105 (59.32%) | 104 (60.47%) | 135 (60.81%) | 15 (60.00%) | 16 (64.00%) |
Annual | 72 (40.68%) | 68 (39.53%) | 87 (39.19%) | 10 (40.00%) | 9 (36.00%) |
Growth-form | |||||
Dwarf | 73 (41.24%) | 66 (38.37%) | 86 (38.84%) | 11 (44.00%) | 12 (48.00%) |
Tall | 86 (48.59%) | 95 (55.23%) | 117 (52.70%) | 13 (52.00%) | 13 (52.00%) |
Liana | 18 (10.17%) | 11 (6.40%) | 19 (8.56%) | 1 (4.00%) | 0 (0.00%) |
Dispersal mode | |||||
Animal | 60 (33.90%) | 61 (35.47%) | 76 (34.23%) | 11 (44.00%) | 8 (32.00%) |
Wind | 55 (31.07%) | 50 (29.07%) | 67 (30.18%) | 6 (24.00%) | 12 (48.00%) |
Unassisted | 62 (35.03%) | 56 (32.56%) | 78 (35.14%) | 8 (24.00%) | 5 (20.00%) |
Other | 3 (1.69%) | 5 (2.91%) | 5 (2.25%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Guo, M.; Yin, F.; Zhang, M.-J.; Wei, J. Tree Cover Improved the Species Diversity of Understory Spontaneous Herbs in a Small City. Forests 2022, 13, 1310. https://doi.org/10.3390/f13081310
Ren Y, Guo M, Yin F, Zhang M-J, Wei J. Tree Cover Improved the Species Diversity of Understory Spontaneous Herbs in a Small City. Forests. 2022; 13(8):1310. https://doi.org/10.3390/f13081310
Chicago/Turabian StyleRen, Yimin, Min Guo, Fangyuan Yin, Ming-Juan Zhang, and Jiaxing Wei. 2022. "Tree Cover Improved the Species Diversity of Understory Spontaneous Herbs in a Small City" Forests 13, no. 8: 1310. https://doi.org/10.3390/f13081310
APA StyleRen, Y., Guo, M., Yin, F., Zhang, M. -J., & Wei, J. (2022). Tree Cover Improved the Species Diversity of Understory Spontaneous Herbs in a Small City. Forests, 13(8), 1310. https://doi.org/10.3390/f13081310