Detection of Eucalyptus Leaf Disease with UAV Multispectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Framework
2.3. Data Collection
2.3.1. UAV Multispectral Data
2.3.2. Eucalyptus Tree Samples of Health Status
2.4. Identification of Optimal Variables Using a Mutual Information–Based Feature Selection Method
2.5. Detection of Eucalyptus Tree Health Conditions
2.6. Accuracy Assessment and Mapping of Eucalyptus Health Conditions
3. Results
3.1. Identification of Optimal Spectral Bands and Vegetation Indices Based on MI Scores
3.2. Accuracy Assessment of Eucalyptus Health Conditions Detection Results
3.3. Spatial Distribution of Eucalyptus Trees with Different Health Conditions
4. Discussion
4.1. The Importance of UAV Data and Feature Selection in Tree Disease Detection
4.2. The Necessity to Select a Suitable Algorithm to Detect Tree Disease Levels
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, R.; Castilla, G.; White, J.; Cooke, B.; Skakun, R. Remote sensing of forest pest damage: A review and lessons learned from a Canadian perspective. Can. Entomol. 2016, 148, S296–S356. [Google Scholar] [CrossRef]
- Qi, X.; Cao, Z.; Liu, J.; Chen, F.; Zhuang, W. Research progress in the monitoring of forest disease, insect, and pests based on satellite remote sensing image. For. Resour. Manag. 2020, 2, 181–186. (In Chinese) [Google Scholar]
- Cotrozzi, L. Spectroscopic detection of forest diseases: A review (1970–2020). J. For. Res. 2021, 33, 21–38. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Megat Mohamed Nazir, M.N.; Terhem, R.; Norhisham, A.R.; Razali, S.M.; Meder, R. Early monitoring of health status of plantation-grown eucalyptus pellita at large spatial scale via visible spectrum imaging of canopy foliage using unmanned aerial vehicles. Forests 2021, 12, 1393. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding forest health with remote sensing-Part I—A review of spectral traits, processes and remote-sensing characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef]
- Stone, C.; Mohammed, C. Application of remote sensing technologies for assessing planted forests damaged by insect pests and fungal pathogens: A review. Curr. For. Rep. 2017, 3, 75–92. [Google Scholar] [CrossRef]
- Male, E.J.; Pickles, W.L.; Silver, E.A.; Hoffmann, G.D.; Lewicki, J.L.; Apple, E.M.; Repasky, K.S.; Burton, E.A. Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana. Environ. Earth Sci. 2010, 60, 251–261. [Google Scholar] [CrossRef]
- Fensholt, R.; Huber, S.; Proud, S.R.; Mbow, C. Detecting canopy water status using shortwave infrared reflectance data from polar orbiting and geostationary platforms. IEEE J. Sel. Top. Appl. 2010, 3, 271–285. [Google Scholar] [CrossRef]
- Meigs, G.W.; Kennedy, R.E.; Gray, A.N.; Gregory, M.J. Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific northwest region, USA. For. Ecol. Manag. 2015, 339, 71–86. [Google Scholar] [CrossRef]
- Murfitt, J.; He, Y.; Yang, J.; Mui, A.; De Mille, K. Ash Decline Assessment in Emerald Ash Borer Infested Natural Forests Using High Spatial Resolution Images. Remote Sens. 2016, 8, 256. [Google Scholar] [CrossRef]
- Ortiz, S.M.; Breidenbach, J.; Kändler, G. Early detection of bark beetle green attack using terrasar-x and rapideye data. Remote Sens. 2013, 5, 1912–1931. [Google Scholar] [CrossRef]
- Meng, R.; Dennison, P.E.; Zhao, F.; Shendryk, I.; Rickert, A.; Hanavan, R.P.; Cook, B.D.; Serbin, S.P. Mapping canopy de-foliation by herbivorous insects at the individual tree level using bi-temporal airborne imaging spectroscopy and lidar measurements. Remote Sens. Environ. 2018, 215, 170–183. [Google Scholar] [CrossRef]
- Smigaj, M.; Gaulton, R.; Barr, S.L.; Suárez, J.C. UAV-borne thermal imaging for forest health monitoring: Detection of disease induced canopy temperature increase. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 349–354. [Google Scholar] [CrossRef]
- López-López, M.; Calderón, R.; González-Dugo, V.; Zarco-Tejada, P.J.; Fereres, E. Early detection and quantification of almond red leaf blotch using high-resolution hyperspectral and thermal imagery. Remote Sens. 2016, 8, 276. [Google Scholar] [CrossRef]
- Rullán-Silva, C.D.; Olthoff, A.; De La Mata, J.D.; Pajares, J.A. Remote monitoring of forest insect defoliation—A review. For. Syst. 2013, 22, 377–391. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Dube, T. Separability of coffee leaf rust infection levels with machine learning methods at sentinel-2 MSI spectral resolutions. Precis. Agric. 2016, 18, 859–881. [Google Scholar] [CrossRef]
- Kumbula, S.T.; Mafongoya, P.; Peerbhay, K.Y.; Lottering, R.T.; Ismail, R. Using sentinel-2 multispectral images to map the occurrence of the cossid moth (coryphodema tristis) in eucalyptus nitens plantations of Mpumalanga, South Africa. Remote Sens. 2019, 11, 278. [Google Scholar] [CrossRef]
- Oumar, Z.; Mutanga, O. Using worldview-2 bands and indices to predict bronze bug (thaumastocoris peregrinus) damage in plantation forests. Int. J. Remote Sens. 2012, 34, 2236–2249. [Google Scholar] [CrossRef]
- Wang, Q.; Tenhunen, J.; Dinh, N.Q.; Reichstein, M.; Vesala, T.; Keronen, P. Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a scots pine forest in Finland. Remote Sens. Environ. 2004, 93, 225–237. [Google Scholar] [CrossRef]
- Vogelmann, E.J.; Rock, B.N. Use of thematic mapper data for the detection of forest damage caused by the pear thrips. Remote Sens. Environ. 1989, 30, 217–225. [Google Scholar] [CrossRef]
- Wu, H.; Qiao, Y.; Chen, L. Remote sensing detection of dynamic changes of stand needle biomass in Masson’s pine of western Zhejiang mountain areas. J. Nat. Resour. 1998, 13, 72–76. (In Chinese) [Google Scholar]
- Donovan, S.D.; MacLean, D.A.; Zhang, Y.; Lavigne, M.B.; Kershaw, J.A. Evaluating annual spruce budworm defoliation using change detection of vegetation indices calculated from satellite hyperspectral imagery. Remote Sens. Environ. 2020, 253, 112204. [Google Scholar] [CrossRef]
- Adamczyk, J.; Osberger, A. Red-edge vegetation indices for detecting and assessing disturbances in Norway spruce dominated mountain forests. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 90–99. [Google Scholar] [CrossRef]
- Lausch, A.; Pause, M.; Doktor, D.; Preidl, S.; Schulz, K. Monitoring and assessing of landscape heterogeneity at different scales. Environ. Monit. Assess. 2013, 185, 9419–9434. [Google Scholar] [CrossRef]
- Lausch, A.; Pause, M.; Merbach, I.; Zacharias, S.; Doktor, D.; Volk, M.; Seppelt, R. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape. Environ. Monit. Assess. 2012, 185, 1215–1235. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C. Early detection of bark beetle infestation in Norway spruce (Picea abies L.) using worldview-2 data. Photogramm. Fernerkund. Geoinf. 2014, 5, 351–367. [Google Scholar] [CrossRef]
- Lausch, A.; Heurich, M.; Gordalla, D.; Dobner, H.-J.; Gwillym-Margianto, S.; Salbach, C. Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. For. Ecol. Manag. 2013, 308, 76–89. [Google Scholar] [CrossRef]
- Dainelli, R.; Toscano, P.; Di Gennaro, S.; Matese, A. Recent Advances in Unmanned Aerial Vehicles Forest Remote Sensing—A Systematic Review. Part II: Research Applications. Forests 2021, 12, 397. [Google Scholar] [CrossRef]
- Neupane, K.; Baysal-Gurel, F. Automatic Identification and Monitoring of Plant Diseases Using Unmanned Aerial Vehicles: A Review. Remote Sens. 2021, 13, 3841. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D. Tree Species Classification and Health Status Assessment for a Mixed Broadleaf-Conifer Forest with UAS Multispectral Imaging. Remote Sens. 2020, 12, 3722. [Google Scholar] [CrossRef]
- Duarte, A.; Acevedo-Muñoz, L.; Gonçalves, C.I.; Mota, L.; Sarmento, A.; Silva, M.; Fabres, S.; Borralho, N.; Valente, C. De-tection of Longhorned Borer Attack and Assessment in Eucalyptus Plantations Using UAV Imagery. Remote Sens. 2020, 12, 3153. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Blomqvist, M.; Lyytikäinen-Saarenmaa, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Holopainen, M. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 2018, 30, 72–83. [Google Scholar] [CrossRef]
- Wu, B.; Liang, A.; Zhang, H.; Zhu, T.; Zou, Z.; Yang, D.; Tang, W.; Li, J.; Su, J. Application of conventional UAV-based high-throughput object detection to the early diagnosis of pine wilt disease by deep learning. For. Ecol. Manag. 2021, 486, 118986. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Xie, Y.; Arnold, R.J.; Wu, Z.; Chen, S.; Du, A.; Luo, J. Advances in eucalypt research in China. Front. Agric. Sci. Eng. 2017, 4, 380–390. [Google Scholar] [CrossRef]
- Pang, Z.H. Current situation and development in trend of eucalyptus pest in China. J. Guangxi Acad. Sci. 2013, 29, 192–206. (In Chinese) [Google Scholar]
- Wu, W.; Chen, S. Distribution and damage of calonectria in eucalyptus in China. Eucalypt Sci. Technol. 2019, 36, 43–49. (In Chinese) [Google Scholar]
- Huang, S.X. Experiment on different pesticides controlling of buzura suppressaria (guenée) in eucalypt plantation. For. Prospect. Des. 2014, 1, 107–110. (In Chinese) [Google Scholar]
- Stone, C.; Coops, N. Assessment and monitoring of damage from insects in Australian eucalypt forests and commercial plantations. Aust. J. Entomol. 2004, 43, 283–292. [Google Scholar] [CrossRef]
- Stone, C.; Coops, N.; Culvenor, D. Conceptual development of a eucalypt canopy condition index using high resolution spatial and spectral remote sensing imagery. J. Sustain. For. 2000, 11, 23–45. [Google Scholar] [CrossRef]
- Coops, N.C.; Stone, C.; Culvenor, D.S.; Chisholm, L.A.; Merton, R.N. Chlorophyll content in eucalypt vegetation at the leaf and canopy scales as derived from high resolution spectral data. Tree Physiol. 2003, 23, 23–31. [Google Scholar] [CrossRef]
- Coops, N.C.; Stone, C.; Culvenor, D.S.; Chisholm, L. Assessment of crown condition in eucalypt vegetation by remotely sensed optical indices. J. Environ. Qual. 2004, 33, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Pietrzykowski, E.; Sims, N.; Stone, C.; Pinkard, L.; Mohammed, C. Predicting mycosphaerella leaf disease severity in a eu-calyptus globulus plantation using digital multi-spectral imagery. South. Hemisph. For. J. 2007, 69, 175–182. [Google Scholar] [CrossRef]
- Evans, B.J.; Lyons, T.; Barber, P.; Stone, C.; Hardy, G. Enhancing a eucalypt crown condition indicator driven by high spatial and spectral resolution remote sensing imagery. J. Appl. Remote Sens. 2012, 6, 063605. [Google Scholar] [CrossRef]
- Somersa, B.; Verbesseltb, J.; Ampea, E.M.; Simsb, N.; Verstraetena, W.W.; Coppina, P. Spectral mixture analysis to monitor defoliation in mixed-aged eucalyptus globulus labill plantations in southern Australia using landsat 5-TM and EO-1 hyperion data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 270–277. [Google Scholar] [CrossRef]
- Santos, A.; Santos, I.C.L.; Silva, N.; Zanetti, R.; Oumar, Z.; Guimarães, L.F.R.; Camargo, M.B.; Zanuncio, J.C. Mapping defo-liation by leaf-cutting ants atta species in eucalyptus plantations using the sentinel-2 sensor. Int. J. Remote Sens. 2020, 41, 1542–1554. [Google Scholar]
- Dell, M.; Stone, C.; Osborn, J.; Glen, M.; McCoull, C.; Rimbawanto, A.; Tjahyono, B.; Mohammed, C. Detection of necrotic foliage in a young Eucalyptus pellita plantation using unmanned aerial vehicle RGB photography—A demonstration of concept. Aust. For. 2019, 82, 79–88. [Google Scholar] [CrossRef]
- Coletta, L.F.; de Almeida, D.C.; Souza, J.R.; Manzione, R.L. Novelty detection in UAV images to identify emerging threats in eucalyptus crops. Comput. Electron. Agric. 2022, 196, 106901. [Google Scholar] [CrossRef]
- Duarte, A.; Borralho, N.; Cabral, P.; Caetano, M. Recent advances in forest insect pests and diseases monitoring using UAV-based data: A systematic review. Forests 2022, 13, 911. [Google Scholar] [CrossRef]
- Maes, W.H.; Huete, A.R.; Avino, M.; Boer, M.M.; Dehaan, R.; Pendall, E.; Griebel, A.; Steppe, K. Can UAV-based infrared thermography be used to study plant-parasite interactions between mistletoe and eucalypt trees? Remote Sens. 2018, 10, 2062. [Google Scholar] [CrossRef]
- Vergara, J.R.; Estévez, P.A. A review of feature selection methods based on mutual information. Neural Comput. Appl. 2013, 24, 175–186. [Google Scholar] [CrossRef]
- Gao, W.; Hu, L.; Zhang, P. Feature redundancy term variation for mutual information-based feature selection. Appl. Intell. 2020, 50, 1272–1288. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Zhu, R. Feature selection based on mutual information with correlation coefficient. Appl. Intell. 2021, 52, 5457–5474. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2014, 9, 63–105. [Google Scholar] [CrossRef]
- Yu, X.; Lu, D.; Jiang, X.; Li, G.; Chen, Y.; Li, D.; Chen, E. Examining the roles of spectral, spatial, and topographic features in improving land-cover and forest classifications in a subtropical region. Remote Sens. 2020, 12, 2907. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Sabins, F.F. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Zang, Z.; Wang, G.; Lin, H.; Luo, P. Developing a spectral angle based vegetation index for detecting the early dying process of Chinese fir trees. ISPRS J. Photogramm. Remote Sens. 2020, 171, 253–265. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; p. 348. [Google Scholar]
- Chen, Y.; Peng, Z.; Ye, Y.; Jiang, X.; Lu, D.; Chen, E. Exploring a uniform procedure to map eucalyptus plantations based on fused medium—High spatial resolution satellite images. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2021, 103, 102462. [Google Scholar] [CrossRef]
- Sandino, J.; Pegg, G.; Gonzalez, F.; Smith, G. Aerial mapping of forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence. Sensors 2018, 18, 944. [Google Scholar] [CrossRef] [PubMed]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Tetila, E.C.; Machado, B.B.; Menezes, G.K.; Oliveira, A.D.S.; Alvarez, M.; Amorim, W.P.; de Souza Belete, N.A.; Da Silva, G.G.; Pistori, H. Automatic recognition of soybean leaf diseases using UAV images and deep convolutional neural networks. IEEE Geosci. Remote. Sens. Lett. 2019, 17, 903–907. [Google Scholar] [CrossRef]
- Abdulridha, J.; Ampatzidis, Y.; Kakarla, S.C.; Roberts, P. Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precis. Agric. 2019, 21, 955–978. [Google Scholar] [CrossRef]
- Schoofs, H.; Delalieux, S.; Deckers, T.; Bylemans, D. Fire blight monitoring in pear orchards by unmanned airborne vehicles (UAV) systems carrying spectral sensors. Agronomy 2020, 10, 615. [Google Scholar] [CrossRef]
Name & Abbreviation | Equation |
---|---|
Normalized Difference Vegetation Index, NDVI | NDVI = (Rnir − Rr)/(Rnir + Rr) |
Green Normalized Difference Vegetation Index, GNDVI | GNDVI = (Rnir − Rg)/(Rnir + Rg) |
Normalized Difference Red Edge Index, NDREI | NDREI = (Rnir − Rre)/(Rnir + Rre) |
ChlorophyII Index-Red Edge, CIRE | CIRE = Rnir/(Rre − 1) |
ChlorophyII Index-Green, CIG | CIG = Rnir/(Rg − 1) |
Anthocyanin Reflectance Index, ARI | ARI = Rg−1 − Rre−1 |
Nitrogen Reflectance Index, NRI | NRI = (Rg − Rr)/(Rg + Rr) |
Greenness Index, GI | GI = Rg/Rr |
Optimized Soil Adjusted Vegetation Index, OSAVI | OSAVI = 1.16 (Rni − Rr)/(Rnir + Rr + 0.16) |
Ratio Vegetation Index, RVI | RVI = Rnir/Rr |
Transformed Chlorophyll Absorption and Reflectance Index, TCARI | TCARI = 3 [(Rre − Rr) − 0.2 (Rr − Rg) (Rre/Rr)] |
Data and Method | Classified Levels | Reference Data | |||||
---|---|---|---|---|---|---|---|
Healthy | Mild | Moderate | Severe | Total | UA (%) | ||
Spectral bands with RF | Healthy | 28 | 1 | 0 | 2 | 31 | 90.4 |
Mild | 1 | 12 | 1 | 1 | 15 | 80.0 | |
Moderate | 0 | 1 | 21 | 5 | 27 | 77.8 | |
Severe | 1 | 1 | 0 | 16 | 18 | 88.9 | |
Total | 30 | 15 | 22 | 24 | 91 | ||
PA (%) | 93.3 | 80 | 95.5 | 66.7 | |||
OA (%) | 84.6 | Kappa | 0.79 | ||||
Spectral bands & NRI with RF | Healthy | 30 | 1 | 0 | 0 | 31 | 96.8 |
Mild | 0 | 11 | 1 | 1 | 13 | 84.6 | |
Moderate | 0 | 1 | 21 | 3 | 25 | 84.0 | |
Severe | 0 | 2 | 0 | 20 | 22 | 90.9 | |
Total | 30 | 15 | 22 | 24 | 91 | ||
PA (%) | 100 | 73.3 | 95.5 | 83.33 | |||
OA (%) | 90.1 | Kappa | 0.87 | ||||
Spectral bands with SAM | Healthy | 20 | 2 | 2 | 0 | 24 | 83.3 |
Mild | 5 | 10 | 1 | 1 | 17 | 58.8 | |
Moderate | 5 | 2 | 16 | 4 | 27 | 59.3 | |
Severe | 0 | 1 | 3 | 19 | 23 | 82.6 | |
Total | 30 | 15 | 22 | 24 | 91 | ||
PA (%) | 66.7 | 66.7 | 72.7 | 79.2 | |||
OA (%) | 71.4 | Kappa | 0.62 | ||||
Spectral bands & NRI with SAM | Healthy | 28 | 2 | 1 | 0 | 31 | 90.3 |
Mild | 2 | 11 | 2 | 1 | 16 | 68.8 | |
Moderate | 0 | 0 | 18 | 2 | 20 | 90.0 | |
Severe | 0 | 2 | 1 | 21 | 24 | 87.5 | |
Total | 30 | 15 | 22 | 24 | 91 | ||
PA (%) | 93.3 | 73.3 | 81.8 | 87.5 | |||
OA (%) | 85.7 | Kappa | 0.81 |
Tree Health Condition | Area (m2) | Percentage of Total Eucalyptus Area (%) |
---|---|---|
Healthy | 91,533 | 33.0 |
Mildly infected | 52,274 | 18.9 |
Moderately infected | 64,463 | 23.2 |
Severely infected | 69,104 | 24.9 |
Total | 277,375 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, K.; Yang, F.; Dang, H.; Wu, Y.; Luo, K.; Li, G. Detection of Eucalyptus Leaf Disease with UAV Multispectral Imagery. Forests 2022, 13, 1322. https://doi.org/10.3390/f13081322
Liao K, Yang F, Dang H, Wu Y, Luo K, Li G. Detection of Eucalyptus Leaf Disease with UAV Multispectral Imagery. Forests. 2022; 13(8):1322. https://doi.org/10.3390/f13081322
Chicago/Turabian StyleLiao, Kuo, Fan Yang, Haofei Dang, Yunzhong Wu, Kunfa Luo, and Guiying Li. 2022. "Detection of Eucalyptus Leaf Disease with UAV Multispectral Imagery" Forests 13, no. 8: 1322. https://doi.org/10.3390/f13081322
APA StyleLiao, K., Yang, F., Dang, H., Wu, Y., Luo, K., & Li, G. (2022). Detection of Eucalyptus Leaf Disease with UAV Multispectral Imagery. Forests, 13(8), 1322. https://doi.org/10.3390/f13081322