The Spatial Pattern and Spillover Effect of the Eco-Efficiency of Regional Tourism from the Perspective of Green Development: An Empirical Study in China
Abstract
:1. Introduction
2. Literature Review
3. Research Design
3.1. Calculation Models for the Eco-Efficiency of Tourism
3.2. Spatial Autocorrelation Model
3.3. Spatial Econometric Model
- 1.
- The spatial autoregressive model (SAR), indicates that the explained variable in the region is affected by the explained variable in adjacent regions. Therefore, the explained variable in adjacent region is input into the model as an explanatory variable in the following form:
- 2.
- The spatial error model (SEM), indicates that the spatial autocorrelation is reflected in the error term with spatial spillover effect. It is displayed as Formulas (10) and (11).
- 3.
- The spatial Durbin model (SDM), which is the general form of the spatial econometric model. It includes both spatial dependences of explained variables and explanatory variables and can relieve the endogenous bias due to a lack of significant variables, so it is commonly used to analyze the spatial spillover effect of influencing factors. It is expressed as follows:
3.4. Variable Selection and Data Source
3.4.1. Selection of Input and Output Variables
3.4.2. Selection of Influencing Factor Variables
3.4.3. Data Source and Description
4. Empirical Results and Analysis
4.1. Analysis on Results of the Eco-Efficiency of Tourism
4.1.1. Analysis of Overall Features
4.1.2. Analysis of Relaxation Rates of Inputs and Outputs
4.1.3. Analysis of Decomposition Efficiencies
4.2. Spatial Autocorrelation Patterns of the Eco-Efficiency of Tourism
4.3. Spatial Spillover Effect of the Eco-Efficiency of Tourism
5. Conclusions and Suggestions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, J.; Su, K.; Chang, Y.; Wen, Y. Formation of environmentally friendly tourist behaviors in ecotourism destinations in China. Forests 2021, 12, 424. [Google Scholar] [CrossRef]
- Ren, T.; Luo, T.Y.; Li, S.X.; Xiang, S.; Xiao, H.L.; Xing, L.N. Knowledge based ant colony algorithm for cold chain logistics distribution path optimization. Control. Decis. 2022, 37, 545–554. (In Chinese) [Google Scholar] [CrossRef]
- Report in World Economic Forum. Towards a Low Carbon Travel & Tourism Sector. Available online: https://www.printfriendly.com/p/g/T5tkWk (accessed on 15 September 2009).
- Baumgartner, R.J. Sustainable development goals and the forest sector—A complex relationship. Forests 2019, 10, 152. [Google Scholar] [CrossRef]
- Chen, S.; Yao, S. Evaluation of Forestry Ecological Efficiency: A Spatiotemporal Empirical Study Based on China’s Provinces. Forests 2021, 12, 142. [Google Scholar] [CrossRef]
- Schaltegger, S.; Sturm, A. Ökologische rationalität: Ansatzpunkte zur ausgestaltung von ökologieorientierten managementinstrumenten. Die Unternehm. 1990, 44, 273–290. Available online: https://www.jstor.org/stable/24180467 (accessed on 25 March 2022).
- Caiado, R.G.G.; de Freitas Dias, R.; Mattos, L.V.; Quelhas, O.L.G.; Leal Filho, W. Towards sustainable development through the perspective of eco-efficiency—A systematic literature review. J. Clean. Prod. 2017, 165, 890–904. [Google Scholar] [CrossRef]
- Ren, T.; Jia, B.B.; Xu, H.B.; Zhang, J.W. Research on the mechanism and path of multiple co-governance of eco-environment in Xiangjiang River Basin. J. Cent. South Univ. For. Technol. 2021, 15, 47–52. (In Chinese) [Google Scholar] [CrossRef]
- John, I.; Kwofie, E.M.; Ngadi, M. Two decades of eco-efficiency research: A bibliometric analysis. Environ. Sustain. 2020, 3, 155–168. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, J. Sustainable development evaluation of the society–Economy–Environment in a resource-based city of China: A complex network approach. J. Clean. Prod. 2020, 263, 121510. [Google Scholar] [CrossRef]
- Stergiou, E.; Kounetas, K. Heterogeneity, spillovers and eco-efficiency of European industries under different pollutants’ scenarios. Is there a definite direction? Ecol. Econ. 2022, 195, 107377. [Google Scholar] [CrossRef]
- Romano, G.; Molinos-Senante, M. Factors affecting eco-efficiency of municipal waste services in Tuscan municipalities: An empirical investigation of different management models. Waste Manag. 2020, 105, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Xiao, H.; Zhou, Z.; Zhang, X.; Xing, L.; Wang, Z.; Cui, Y. The iterative scheme and the convergence analysis of unique solution for a singular fractional differential equation from the eco-economic complex system’s co-evolution process. Complexity 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Yin, P.; Chu, J.; Wu, J.; Ding, J.; Yang, M.; Wang, Y. A DEA-based two-stage network approach for hotel performance analysis: An internal cooperation perspective. Omega 2020, 93, 102035. [Google Scholar] [CrossRef]
- Ning, Y.; Liu, Z.; Ning, Z.; Zhang, H. Measuring eco-efficiency of state-owned forestry enterprises in northeast China. Forests 2018, 9, 455. [Google Scholar] [CrossRef]
- Li, S.D.; Li, S.X.; Zhong, Y.D.; Ren, T.; Xiao, H.L.; Jia, B.B. Research on efficiency of regional tourism resources allocation based on DEA model. Control. Decis. 2022, 37, 1945–1954. (In Chinese) [Google Scholar] [CrossRef]
- Lado-Sestayo, R.; Fernández-Castro, Á.S. The impact of tourist destination on hotel efficiency: A data envelopment analysis approach. Eur. J. Oper. Res. 2019, 272, 674–686. [Google Scholar] [CrossRef]
- Joun, H.J.; Kim, H. Productivity Evaluation of Tourism and Culture for Sustainable Economic Development: Analyzing South Korea’s Metropolitan Regions. Sustainability 2020, 12, 2912. [Google Scholar] [CrossRef]
- Lin, X.; Zhu, X.; Han, Y.; Geng, Z.; Liu, L. Economy and carbon dioxide emissions effects of energy structures in the world: Evidence based on SBM-DEA model. Sci. Total Environ. 2020, 729, 138947. [Google Scholar] [CrossRef]
- Li, X.; Shi, P.; Han, Y.; Deng, A.; Liu, D. Measurement and spatial variation of green total factor productivity of the tourism industry in China. Int. J. Environ. Res. Public Health 2020, 17, 1159. [Google Scholar] [CrossRef]
- Chen, H.S.; Tsai, B.K.; Liou, G.B.; Hsieh, C.M. Efficiency assessment of inbound tourist service using data envelopment analysis. Sustainability 2018, 10, 1866. [Google Scholar] [CrossRef]
- Chen, H.B.; Dong, K.; Wang, F.F.; Emmanuel, C.A. The spatial effect of tourism economic development on regional ecological efficiency. Environ. Sci. Pollut. Res. 2020, 27, 38241–38258. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, J.; Lu, L.; Tang, G.; Yan, B.; Xiao, X.; Han, Y. Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan National Park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Su, L.; Ji, X. Spatial-temporal differences and evolution of eco-efficiency in China’s forest park. Urban For. Urban Green. 2021, 57, 126894. [Google Scholar] [CrossRef]
- Castilho, D.; Fuinhas, J.A.; Marques, A.C. The impacts of the tourism sector on the eco-efficiency of the Latin American and Caribbean countries. Socio-Econ. Plan. Sci. 2021, 78, 101089. [Google Scholar] [CrossRef]
- Khairunnisa, A.R.; Yusof, M.Z.M.; Salleh, M.N.M.; Leman, A.M. The development of energy efficiency estimation system (EEES) for sustainable development: A proposed study. Energy Procedia 2015, 79, 513–519. [Google Scholar] [CrossRef]
- Li, G.; Liu, J.G.; Li, T.Q. Regional differences of energy eco-efficiency in manufacturing industry under consideration of undesirable output based on the SBM-Tobit two-stage model. Chin. J. Manag. Sci. 2019, 27, 76–87. (In Chinese) [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Zhu, L.; Hu, J.; Zhou, B.H.; Xu, Y.; Chen, G.L.; Li, Y.N. Measurement of China’s provincial forest parks tourism developing efficiency and its space-time evolution. Resour. Environ. Yangtze Basin 2017, 26, 2003–2011. (In Chinese) [Google Scholar] [CrossRef]
- Ruan, W.; Li, Y.; Zhang, S.; Liu, C.H. Evaluation and drive mechanism of tourism ecological security based on the DPSIR-DEA model. Tour. Manag. 2019, 75, 609–625. [Google Scholar] [CrossRef]
- Peng, H.S.; Zhang, J.H.; Han, Y.; Tang, G.R.; Zhang, Y. Measurement and empirical analysis of eco-efficiency in tourism destinations based on a Slack-based Measure-Data Envelopment Analysis model. Acta Ecol. Sin. 2017, 37, 628–638. (In Chinese) [Google Scholar] [CrossRef]
- Guo, J.L.; Li, C.; Peng, H.S.; Zhong, S.E.; Zhang, J.H.; Yu, H. Tourism eco-efficiency at the provincial level in China in the context of energy conservation and emission reduction. Prog. Geogr. 2021, 40, 1284–1297. [Google Scholar] [CrossRef]
- Gössling, S.; Peeters, P.; Ceron, J.P.; Dubois, G.; Patterson, T.; Richardson, R. The eco-efficiency of tourism. Ecol. Econ. 2005, 54, 417–434. [Google Scholar] [CrossRef]
- Becken, S.; Simmons, D.G.; Frampton, C. Energy use associated with different travel choices. Tour. Manag. 2003, 24, 267–277. [Google Scholar] [CrossRef]
- Patterson, M.; McDonald, G. How Clean and Green Is New Zealand Tourism. Lifecycle and Future Environmental Impacts; Landcare Research science series, no. 24; Manaaki Whenua Press: Canterbury, New Zealand, 2004. [Google Scholar]
- Golany, B.; Roll, Y. An application procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Fu, Z. Tourism eco-efficiency of Chinese coastal cities–Analysis based on the DEA-Tobit model. Ocean. Coast. Manag. 2017, 148, 164–170. [Google Scholar] [CrossRef]
- Kim, Y.R.; Williams, A.M.; Park, S.; Chen, J.L. Spatial spillovers of agglomeration economies and productivity in the tourism industry: The case of the UK. Tour. Manag. 2021, 82, 104201. [Google Scholar] [CrossRef]
Index Category | Index | Serial Number | Unit |
---|---|---|---|
Input | Number of employees in tourism | Index 1 | Million |
Net fixed assets of tourism | Index 2 | Ten thousand yuan | |
Energy consumption of tourism | Index 3 | Tons of standard coal | |
Water consumption of tourism | Index 4 | 100 million standard cubic meters | |
Desirable output | Total tourism revenue | Index 5 | Ten thousand yuan |
Number of tourists | Index 6 | Million | |
Undesirable output | Tourism CO2 emissions | Index 7 | Ten thousand tons |
Index 1 | Index 2 | Index 3 | Index 4 | Index 5 | Index 6 | Index 7 | |
---|---|---|---|---|---|---|---|
Index 1 | 1 | ||||||
Index 2 | 0.737 *** | 1 | |||||
Index 3 | 0.695 *** | 0.568 *** | 1 | ||||
Index 4 | 0.374 *** | 0.143 ** | 0.442 *** | 1 | |||
Index 5 | 0.708 *** | 0.550 *** | 0.715 *** | 0.609 *** | 1 | ||
Index 6 | 0.667 *** | 0.423 *** | 0.648 *** | 0.618 *** | 0.922 *** | 1 | |
Index 7 | 0.683 *** | 0.555 *** | 0.997 *** | 0.438 *** | 0.715 *** | 0.652 *** | 1 |
Region | Provinces | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | MEAN |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eastern Region | Beijing | 1.000 | 1.000 | 1.000 | 0.584 | 1.000 | 0.484 | 0.420 | 0.533 | 1.000 | 1.000 | 0.802 |
Tianjin | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
Hebei | 0.351 | 0.310 | 0.460 | 0.580 | 0.736 | 0.551 | 0.493 | 0.477 | 0.480 | 0.694 | 0.513 | |
Shanghai | 0.263 | 0.242 | 0.320 | 0.353 | 0.352 | 0.298 | 0.314 | 0.322 | 0.284 | 0.308 | 0.306 | |
Jiangsu | 0.352 | 0.349 | 0.365 | 0.398 | 0.413 | 0.337 | 0.325 | 0.340 | 0.324 | 0.299 | 0.350 | |
Zhejiang | 1.000 | 0.292 | 0.342 | 0.385 | 0.394 | 0.332 | 0.320 | 0.355 | 1.000 | 0.388 | 0.481 | |
Fujian | 0.343 | 0.319 | 0.305 | 0.324 | 0.321 | 0.266 | 0.262 | 0.301 | 0.333 | 0.368 | 0.314 | |
Shandong | 0.562 | 0.541 | 0.496 | 0.574 | 0.665 | 0.525 | 0.436 | 0.500 | 0.479 | 0.605 | 0.538 | |
Guangdong | 0.304 | 0.280 | 0.303 | 0.363 | 0.417 | 0.368 | 0.342 | 0.352 | 0.356 | 0.398 | 0.348 | |
Hainan | 0.124 | 0.107 | 0.122 | 0.143 | 0.146 | 0.121 | 0.136 | 0.142 | 0.122 | 0.132 | 0.130 | |
Liaoning | 0.431 | 0.399 | 1.000 | 1.000 | 1.000 | 0.797 | 0.542 | 0.539 | 0.512 | 0.512 | 0.673 | |
Mean | 0.521 | 0.440 | 0.519 | 0.519 | 0.586 | 0.462 | 0.417 | 0.442 | 0.535 | 0.519 | 0.496 | |
Central Region | Shanxi | 0.767 | 0.503 | 1.000 | 0.717 | 0.837 | 1.000 | 0.710 | 1.000 | 1.000 | 1.000 | 0.853 |
Jilin | 0.421 | 0.629 | 0.478 | 0.642 | 1.000 | 0.628 | 0.586 | 0.655 | 1.000 | 1.000 | 0.704 | |
Heilongjiang | 0.572 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.272 | 0.305 | 0.401 | 0.318 | 0.687 | |
Anhui | 0.431 | 1.000 | 0.383 | 0.439 | 0.464 | 0.437 | 0.400 | 0.410 | 0.465 | 0.392 | 0.482 | |
Jiangxi | 0.263 | 0.263 | 0.432 | 0.450 | 0.509 | 0.490 | 0.459 | 0.575 | 1.000 | 0.655 | 0.510 | |
Henan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
Hubei | 0.364 | 0.361 | 0.397 | 0.534 | 0.543 | 0.475 | 0.416 | 0.397 | 0.468 | 0.391 | 0.435 | |
Hunan | 0.388 | 0.303 | 0.309 | 0.426 | 0.428 | 0.403 | 0.343 | 0.357 | 0.406 | 0.375 | 0.374 | |
Mean | 0.526 | 0.632 | 0.625 | 0.651 | 0.723 | 0.679 | 0.523 | 0.587 | 0.718 | 0.641 | 0.631 | |
Western Region | Guangxi | 0.326 | 0.325 | 0.383 | 0.386 | 0.391 | 0.378 | 0.361 | 0.380 | 0.556 | 0.481 | 0.397 |
Inner Mongolia | 1.000 | 1.000 | 0.415 | 0.494 | 0.502 | 0.415 | 0.342 | 0.353 | 0.491 | 0.360 | 0.537 | |
Chongqing | 0.561 | 0.423 | 0.495 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.848 | |
Sichuan | 0.501 | 0.311 | 0.463 | 0.523 | 0.636 | 0.523 | 0.522 | 0.483 | 0.561 | 0.441 | 0.496 | |
Guizhou | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
Yunnan | 0.189 | 0.222 | 0.290 | 0.347 | 0.357 | 0.289 | 0.303 | 0.310 | 0.392 | 0.423 | 0.312 | |
Shaanxi | 1.000 | 0.636 | 0.532 | 0.550 | 1.000 | 1.000 | 0.616 | 1.000 | 0.765 | 0.755 | 0.785 | |
Gansu | 0.312 | 0.403 | 0.268 | 0.360 | 0.362 | 0.385 | 0.411 | 0.503 | 1.000 | 0.392 | 0.440 | |
Qinghai | 0.270 | 0.239 | 0.252 | 0.224 | 0.323 | 0.268 | 0.257 | 0.233 | 0.225 | 0.198 | 0.249 | |
Ningxia | 0.208 | 0.169 | 0.176 | 0.176 | 0.170 | 0.168 | 0.150 | 0.149 | 0.161 | 0.152 | 0.168 | |
Xinjiang | 0.223 | 0.226 | 0.145 | 0.169 | 0.174 | 0.187 | 0.177 | 0.209 | 0.242 | 1.000 | 0.275 | |
Mean | 0.508 | 0.450 | 0.402 | 0.475 | 0.538 | 0.510 | 0.467 | 0.511 | 0.581 | 0.564 | 0.501 | |
Whole Country | Mean | 0.517 | 0.495 | 0.504 | 0.538 | 0.605 | 0.538 | 0.464 | 0.506 | 0.601 | 0.568 | 0.534 |
Region | Input | Desirable Output | Undesirable Output | ||||
---|---|---|---|---|---|---|---|
Index 1 | Index 2 | Index 3 | Index 4 | Index 5 | Index 6 | Index 7 | |
Eastern Region | 39.442% | 44.478% | 44.748% | 38.205% | 31.000% | 0.780% | 44.198% |
Central Region | 29.691% | 32.295% | 34.185% | 19.740% | 17.539% | 3.986% | 34.655% |
Western Region | 42.288% | 44.313% | 39.447% | 33.618% | 38.620% | 12.234% | 36.989% |
Whole Country | 37.885% | 41.169% | 39.987% | 31.599% | 30.204% | 5.835% | 39.010% |
Index | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|
Global Moran’s I | 0.02 | 0.086 | 0.137 | 0.197 | 0.296 | 0.206 | 0.152 | 0.16 | −0.105 | 0.094 |
Z value | 0.491 | 1.073 | 1.539 | 2.082 | 2.927 | 2.15 | 1.706 | 1.748 | −0.623 | 1.14 |
P value | 0.312 | 0.142 | 0.062 * | 0.019 ** | 0.002 *** | 0.016 ** | 0.044 ** | 0.04 ** | 0.267 | 0.127 |
Variable | Comprehensive Efficiency | Pure Technical Efficiency | Scale Efficiency |
---|---|---|---|
ln X1 | −0.023 (0.660) | 0.331 *** (0.000) | −0.327 *** (0.000) |
X2 | −0.807 *** (0.001) | −0.580 ** (0.023) | −0.472 ** (0.040) |
ln X3 | −0.209 *** (0.000) | −0.113 *** (0.004) | −0.128 *** (0.000) |
ln X4 | 0.252 *** (0.000) | 0.252 *** (0.000) | 0.025 (0.497) |
X5 | 0.031 ** (0.010) | 0.019 (0.127) | 0.014 (0.210) |
W·ln X1 | −0.126 (0.135) | −0.370 *** (0.000) | 0.217 *** (0.006) |
W·X2 | −0.378 (0.452) | −1.057 ** (0.035) | 0.457 (0.325) |
W·ln X3 | −0.345 *** (0.000) | −0.332 *** (0.000) | −0.119 (0.129) |
W·ln X4 | −0.024 (0.685) | −0.217 *** (0.000) | 0.222 *** (0.000) |
W·X5 | −0.020 (0.304) | 0.023 (0.248) | −0.029 * (0.098) |
W·ln TE | 0.197 ** (0.015) | −0.111 (0.184) | 0.185 ** (0.021) |
R2-ad | 0.130 | 0.168 | 0.246 |
Log-likelihood | −1.3506 | −6.6471 | 23.9062 |
Number of samples | 300 | 300 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Ren, T.; Jia, B.; Zhong, Y. The Spatial Pattern and Spillover Effect of the Eco-Efficiency of Regional Tourism from the Perspective of Green Development: An Empirical Study in China. Forests 2022, 13, 1324. https://doi.org/10.3390/f13081324
Li S, Ren T, Jia B, Zhong Y. The Spatial Pattern and Spillover Effect of the Eco-Efficiency of Regional Tourism from the Perspective of Green Development: An Empirical Study in China. Forests. 2022; 13(8):1324. https://doi.org/10.3390/f13081324
Chicago/Turabian StyleLi, Sidi, Teng Ren, Binbin Jia, and Yongde Zhong. 2022. "The Spatial Pattern and Spillover Effect of the Eco-Efficiency of Regional Tourism from the Perspective of Green Development: An Empirical Study in China" Forests 13, no. 8: 1324. https://doi.org/10.3390/f13081324
APA StyleLi, S., Ren, T., Jia, B., & Zhong, Y. (2022). The Spatial Pattern and Spillover Effect of the Eco-Efficiency of Regional Tourism from the Perspective of Green Development: An Empirical Study in China. Forests, 13(8), 1324. https://doi.org/10.3390/f13081324