Effect of Leptographium terebrantis on Foliage, New Root Dynamics, and Stemwood Growth in a Loblolly Pine (Pinus taeda L.) Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Design
2.2. Minirhizotron Tube Installation
2.3. Inoculation Method
2.4. Stem and Root Growth Measurement
2.5. Leaf Area, Sapwood Area, and Tissue Moisture Content Measurements
2.6. Data Analysis
3. Results
3.1. Precipitation and Temperature at the Study Site
3.2. DBH, Total Tree Height, Stemwood Volume, and Relative Radial Stem Growth
3.3. Leaf and Sapwood Areas and Foliage Moisture Content
3.4. Root Growth
4. Discussion
4.1. Stemwood Response to L. terebrantis
4.2. Mechanism of Stemwood Growth Loss and Decline
4.3. Importance to Forest Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shultz, R.P. Loblolly pine, the ecology and culture of loblolly pine (Pinus taeda L.). In Agriculture Handbook 713; U.S.D.A. Forest Service, U.S. Department of Agriculture: Washington, DC, USA, 1997; pp. 1–16. [Google Scholar]
- McNabb, K.; Enebak, S. Forest tree seedling production in the southern United States: The 2005–2006 planting season. Tree Plant. Notes 2008, 53, 47–56. [Google Scholar]
- Haase, D.L.; Pike, C.; Enebak, S.; Mackey, L.; Ma, Z.; Silva, C.; Warren, J. Forest Nursery Seedling Production in the United States Fiscal Year 2020. Tree Plant. Notes 2021, 64, 108–114. [Google Scholar]
- Huggett, R.; Wear, D.N.; Li, R.; Coulston, J.; Liu, S. Forecasts of forest conditions. In The Southern Forest Futures Project: Technical Report; Wear, D.N., Greis, J.G., Eds.; General Technical Report SRS-178; U.S.D.A. Forest Service, Southern Research Station: Asheville, NC, USA, 2013; pp. 73–102. [Google Scholar]
- Eckhardt, L.; Sayer, M.A.S.; Imm, D.W. State of Pine Decline in the Southeastern United States. South. J. Appl. For. 2010, 34, 138–141. [Google Scholar] [CrossRef] [Green Version]
- Manion, P.D. Tree Disease Concepts, 2nd ed.; Prentice Hall Inc.: Engewood Cliffs, NJ, USA, 1991; p. 402. [Google Scholar]
- Manion, P.D.; Lachance, D. Forest Decline Concepts; APS Press: St. Paul, MN, USA, 1992; p. 233. [Google Scholar]
- Sinclair, W.; Hudler, G. Tree Declines: Four Concepts of Causality. Arboric. Urban For. 1988, 14, 29–35. [Google Scholar] [CrossRef]
- Auclair, A.N.D.; Worrest, R.C.; Lachance, D.; Martin, H.C. Climatic perturbation as a general mechanism of forest dieback. In Forest Decline Concepts; Manion, P.D., Lachance, D., Eds.; APS Press: St. Paul, MN, USA, 1992; pp. 38–58. [Google Scholar]
- Houston, D.R. A Host-Stress-Saprogen Model for Forest Dieback-Decline Diseases. For. Decline Concepts 1992, 3–25. Available online: https://www.gutenberg.org/files/50584/50584-h/50584-h.htm (accessed on 6 August 2021).
- Mueller-Dombois, D. A natural dieback theory, cohort senescence as an alternative to the decline disease theory. In Forest Decline Concepts; Manion, P.D., Lachance, D., Eds.; APS Press: St. Paul, MN, USA, 1992; pp. 26–37. [Google Scholar]
- Liu, H.; Williams, A.P.; Allen, C.D.; Guo, D.; Wu, X.; Anenkhonov, O.A.; Badmaeva, N.K. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Glob. Chang. Biol. 2013, 19, 2500–2510. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Bigler, C.; Bräker, O.U.; Bugmann, H.; Dobbertin, M.; Rigling, A. Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems 2006, 9, 330–343. [Google Scholar] [CrossRef] [Green Version]
- Jurskis, V. Eucalypt decline in Australia, and a general concept of tree decline and dieback. For. Ecol. Manag. 2005, 215, 1–20. [Google Scholar] [CrossRef]
- Starkey, D.; Mangini, S.; Oliveria, F.; Clarke, S.; Bruce, B.; Kertz, R.; Menard, R. Forest Health Evaluation of Oak Mortality and Decline on the Ozark National Forest, 1999; Forest Health Protection Report 2000-02-02; Forest Health Protection: Ogden, UT, USA, 2000; p. 31. [Google Scholar]
- Heitzman, E. Effects of Oak Decline on Species Composition in a Northern Arkansas Forest. South. J. Appl. For. 2003, 27, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Worrall, J.J.; Rehfeldt, G.E.; Hamann, A.; Hogg, E.H.; Marchetti, S.B.; Michaelian, M.; Gray, L.K. Recent declines of Populus tremuloides in North America linked to climate. For. Ecol. Manag. 2013, 299, 35–51. [Google Scholar] [CrossRef]
- Wong, C.M.; Daniels, L. Novel Forest Decline Triggered by Multiple Interactions among Climate, An Introduced Pathogen and Bark Beetles. Glob. Chang. Biol. 2017, 23, 1926–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaylord, M.L.; Kolb, T.E.; McDowell, N.G. Mechanisms of pinyon pine mortality after severe drought: A retrospective study of mature trees. Tree Physiol. 2015, 35, 806–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, H.D.; McDowell, W.E. Status of Loblolly Pine Die-Off on the Oakmulgee District, Talladega National Forest, Alabama; U.S.D.A. Forest Service Report No. 69-2-28; U.S.D.A. Forest Service: Washington, DC, USA, 1968. [Google Scholar]
- Eckhardt, L.G.; Weber, A.M.; Menard, R.D.; Jones, J.P.; Hess, N.J. Insect-fungal complex associated with loblolly pine decline in central Alabama. For. Sci. 2007, 53, 84–92. [Google Scholar]
- Hess, N.J.; Otrosina, W.J.; Carter, E.A.; Steinman, J.R.; Jones, J.P.; Eckhardt, L.G.; Weber, A.M.; Walkinshaw, C.H. Assessment of loblolly pine decline in central Alabama. In Proceedings of the Eleventh Biennial Southern Silvicultural Research Conference; Outcalt, K.W., Ed.; U.S.D.A. Forest Service, Southern Research Station: Asheville, NC, USA, 2002; pp. 558–564. [Google Scholar]
- Eckhardt, L.G.; Jones, J.P.; Klepzig, K.D. Pathogenicity of Leptographium Species Associated with Loblolly Pine Decline. Plant Dis. 2004, 88, 1174–1178. [Google Scholar] [CrossRef]
- Millar, C.I.; Westfall, R.D.; Delany, D.L.; Bokach, M.J.; Flint, A.L.; Flint, L.E. Forest mortality in high-elevation white bark pine (Pinus albicaulis) forests of eastern California, U.S.A.; influence of environmental context, bark beetles, climatic water deficit, and warming. Can. J. For. Res. 2012, 42, 749–765. [Google Scholar] [CrossRef]
- Hicke, J.A.; Meddens, A.J.H.; Kolden, C.A. Recent Tree Mortality in the Western United States from Bark Beetles and Forest Fires. For. Sci. 2016, 62, 141–153. [Google Scholar] [CrossRef]
- Berner, L.T.; Law, B.E.; Meddens, A.J.; Hicke, J.A. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environ. Res. 2017, 12, 065005. [Google Scholar] [CrossRef] [Green Version]
- Paine, T.D.; Raffa, K.F.; Harrington, T.C. Interactions among Scolytid Bark Beetles, Their Associated Fungi, and Live Host Conifers. Annu. Rev. Èntomol. 1997, 42, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Mensah, J.K.; Sayer, M.A.S.; Nadel, R.L.; Matusick, G.; Fan, Z.; Carter, E.A.; Eckhardt, L.G. Leptographium terebrantis inoculation and associated crown symptoms and tree mortality in Pinus taeda. Fungal Ecol. 2021, 51, 101057. [Google Scholar] [CrossRef]
- Six, D.L. Bark beetle-fungus symbioses. In Insect Symbioses, Bourtzis, K., Miller, T., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 97–114. [Google Scholar]
- Six, D.L.; Wingfield, M.J. The role of phytopathogenicity in bark beetle-fungus symbioses: A challenge to the classic paradigm. Annu. Rev. Entomol. 2011, 56, 255–272. [Google Scholar] [CrossRef] [Green Version]
- Barras, S.J.; Perry, T. Leptographium terebrantis sp. nov. associated with Dendroctonus terebrans in P. taeda. Mycopathol. Mycol. Appl. 1971, 43, 1–10. [Google Scholar] [CrossRef]
- Matusick, G.; Menard, R.D.; Zeng, Y.; Eckhardt, L.G. Root-Inhabiting Bark Beetles (Coleoptera: Curculionidae) and their Fungal Associates Breeding in Dying Loblolly Pine in Alabama. Fla. Èntomol. 2013, 96, 238–241. [Google Scholar] [CrossRef]
- Matusick, G.; Nadel, R.L.; Walker, D.M.; Hossain, M.J.; Eckhardt, L.G. Comparative behavior of root pathogens in stems and roots of southeastern Pinus species. Fungal Biol. 2016, 120, 471–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devkota, P.; Eckhardt, L.G. Variation in pathogenicity of different Leptographium terebrantis isolates to Pinus taeda L. For. Pathol. 2018, 48, e12469. [Google Scholar] [CrossRef]
- Mensah, J.K.; Sayer, M.A.S.; Nadel, R.L.; Matusick, G.; Eckhardt, L.G. Physiological response of Pinus taeda L. trees to stem inoculation with Leptographium terebrantis. Trees 2020, 34, 869–880. [Google Scholar] [CrossRef]
- Tyree, M.T.; Zimmermann, M.H. Hydraulic architecture of whole plants and plant performance. In Xylem Structure and the Ascent of Sap; Springer: Berlin, Germany, 2002; pp. 175–214. [Google Scholar]
- Hossain, M.; Veneklaas, E.J.; Hardy, G.E.S.J.; Poot, P. Tree host-pathogen interactions as influenced by drought timing: Linking physiological performance, biochemical defense and disease severity. Tree Physiol. 2018, 39, 6–18. [Google Scholar] [CrossRef]
- Schultz, J.C.; Appel, H.M.; Ferrieri, A.P.; Arnold, T.M. Flexible resource allocation during plant defense responses. Front. Plant Sci. 2013, 4, 324. [Google Scholar] [CrossRef] [Green Version]
- Viiri, H.; Annila, E.; Kitunen, V.; Niemelä, P. Induced responses in stilbenes and terpenes in fertilized Norway spruce after inoculation with blue-stain fungus, Ceratocystis polonica. Trees 2001, 15, 112–122. [Google Scholar] [CrossRef]
- Viiri, H.; Niemelä, P.; Kitunen, V.; Annila, E. Soluble Carbohydrates, Radial Growth and Vigour of Fertilized Norway Spruce after Inoculation with Blue-Stain Fungus, Ceratocystis polonica. Trees 2001, 15, 327–334. [Google Scholar] [CrossRef]
- NOAA. National Oceanic and Atmospheric Administration. National Centers for Environmental Information Climate Data Online. 2020. Available online: https://www.ncdc.noaa.gov/cdo-web/ (accessed on 6 September 2021).
- Trayvick, J.C. Soil Survey of Barbour County, Alabama; USDA, Natural Resources Conservation Service (NRCS): Washington, DC, USA, 2005; p. 319. [Google Scholar]
- Ditzler, C.; Scheffe, K.; Monger, H.C. Soil Science Division Staff. Soil Survey Manual. USDA Handbook; USDA, Natural Resources Conservation Service (NRCS): Washington, DC, USA, 2017; p. 18. [Google Scholar]
- Withington, J.M.; Elkin, A.D.; Bułaj, B.; Olesiński, J.; Tracy, K.N.; Bouma, T.J.; Oleksyn, J.; Anderson, L.J.; Modrzyński, J.; Reich, P.B.; et al. The impact of material used for minirhizotron tubes for root research. New Phytol. 2003, 160, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Duwadi, S. Impact of Tree Inoculation by Leptographium terebrantis on Soil Microbial Communities in Commercial Loblolly Pine Stand. Master’s Thesis, Auburn University, Auburn, AL, USA, 2019; p. 134. [Google Scholar]
- Devkota, P.; Mensah, J.K.; Nadel, R.L.; Matusick, G.; Eckhardt, L.G. Pinus taeda L. response to differential inoculum density of Leptographium terebrantis colonized toothpicks. For. Pathol. 2019, 49, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.E.; Abrams, M.D. Basal area increment trends across age classes for two long-lived tree species in the eastern US. Trace 2009, 7, 127–134. [Google Scholar]
- Burkhart, H.E. Cubic-Foot Volume of Loblolly Pine to Any Merchantable Top Limit. South. J. Appl. For. 1977, 1, 7–9. [Google Scholar] [CrossRef]
- Spurs, S.H. Forest Inventory, 1952; Ronald Press Co.: New York, NY, USA, 1952; p. 476. [Google Scholar]
- Newman, E.I. A Method of Estimating the Total Length of Root in a Sample. J. Appl. Ecol. 1966, 3, 139. [Google Scholar] [CrossRef]
- Johnson, J.D. A rapid technique for estimating total surface-area of pine needles. For. Sci. 1984, 30, 913–921. [Google Scholar]
- Grace, J.C. Theoretical ration between “one-sided” and total surface area for pine needles. N. Z. J. For. 1987, 17, 292–296. [Google Scholar]
- Neter, J.; Wasserman, W. Applied Linear Statistical Models; Richard D. Irwin, Inc.: Homewood, IL, USA, 1974; p. 842. [Google Scholar]
- Devkota, P.; Nadel, R.L.; Eckhardt, L.G. Intraspecies variation of mature Pinus taeda in response to root-infecting ophiostomatoid fungi. For. Pathol. 2018, 48, e12415. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Hiratsuka, Y.; Maruyama, P.J. The ability of Ophiostoma clavigerum to kill mature lodgepole pine trees. For. Pathol. 1995, 25, 401–404. [Google Scholar] [CrossRef]
- Dreyer, E.; Guérard, N.; Lieutier, F. Interactions between Scots pine, Ips acuminatus (Gyll.) and Ophiostoma brunneo-ciliatum (Math.): Estimation of the critical thresholds of attack and inoculation densities and effects on hydraulic properties in the stem. Ann. For. Sci. 2000, 57, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, K. Xylem dysfunction in Yezo spruce (Picea jezoensis) after inoculation with the blue-stain fungus Ceratocystis polonica. For. Pathol. 2005, 35, 346–358. [Google Scholar] [CrossRef]
- Oliva, J.; Stenlid, J.; Martinez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: Implications for drought-induced mortality. New Phytol. 2014, 203, 1028–1035. [Google Scholar] [CrossRef] [Green Version]
- Cregg, B.M.; Dougherty, P.M.; Hennessey, T.C. Growth and wood quality of young loblolly pine trees in relation to stand density and climatic factors. Can. J. For. Res. 1988, 18, 851–858. [Google Scholar] [CrossRef]
- Albaugh, T.J.; Allen, H.L.; Dougherty, P.M.; Kress, L.W.; King, J.S. Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. For. Sci. 1998, 44, 317–328. [Google Scholar]
- Hennessey, T.C.; Dougherty, P.M.; Lynch, T.B.; Wittwer, R.F.; Lorenzi, E.M. Long-term growth and ecophysiological responses of a southeastern Oklahoma loblolly pine plantation to early rotation thinning. For. Ecol. Manag. 2004, 192, 97–116. [Google Scholar] [CrossRef]
- Jokela, E.J.; Dougherty, P.M.; Martin, T.A. Production dynamics of intensively managed loblolly pine stands in the southern United States: A synthesis of seven long-term experiments. For. Ecol. Manag. 2004, 192, 117–130. [Google Scholar] [CrossRef]
- Tang, Z.; Chambers, J.L.; Sword, M.A.; Barnett, J.P. Seasonal photosynthesis and water relations of juvenile loblolly pine relative to stand density and canopy position. Trees 2003, 17, 424–430. [Google Scholar] [CrossRef]
- Samuelson, L.J.; Kane, M.B.; Markewitz, D.; Teskey, R.O.; Akers, M.K.; Stokes, T.A.; Pell, C.J.; Qi, J. Fertilization increased leaf water use efficiency and growth of Pinus taeda subjected to five years of throughfall reduction. Can. J. For. Res. 2018, 48, 227–236. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Swanson, R.H.; Hiratsuka, Y. Inoculation of lodgepole pine with four blue-stain fungi associated with mountain pine beetle, monitored by a heat pulse velocity (HPV) instrument. Can. J. For. Res. 1990, 20, 31–36. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.-J.; Breuil, C. Pathogenicity of Leptographium longiclavatum associated with Dendroctonus ponderosae to Pinus contorta. Can. J. For. Res. 2006, 36, 2864–2872. [Google Scholar] [CrossRef]
- Coyle, D.R.; Klepzig, K.D.; Koch, F.H.; Morris, L.A.; Nowak, J.T.; Oak, S.W.; Otrosina, W.J.; Smith, W.D.; Gandhi, K.J. A review of southern pine decline in North America. For. Ecol. Manag. 2015, 349, 134–148. [Google Scholar] [CrossRef]
- Hacke, U.G.; Sperry, J.S.; Ewers, B.E.; Ellsworth, D.S.; Schäfer, K.V.R.; Oren, R. Influence of soil porosity on water use in Pinus taeda. Oecologia 2000, 124, 495–505. [Google Scholar] [CrossRef] [PubMed]
- King, J.S.; Albaugh, T.J.; Allen, H.L.; Buford, M.; Strain, B.R.; Dougherty, P. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytol. 2002, 154, 389–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Sword Sayer, M.A.; Chambers, J.L.; Barnett, J.P. Interactive effects of fertilization and throughtfall exclusion on the physiological responses and whole-tree carbon uptake of mature loblolly pine. Can. J. Bot. 2004, 82, 850–861. [Google Scholar] [CrossRef] [Green Version]
- Maier, C.A.; Albaugh, T.J.; Lee Allen, H.; Dougherty, P.M. Respiratory carbon use and carbon storage in mid-rotation loblolly pine (Pinus taeda L.) plantations: The effect of site resources on the stand carbon balance. Glob. Chang. Biol. 2004, 10, 1335–1350. [Google Scholar] [CrossRef]
- Samuelson, L.J.; Pell, C.J.; Stokes, T.A.; Bartkowiak, S.M.; Akers, M.K.; Kane, M.; Markewitz, D.; McGuire, M.A.; Teskey, R.O. Two-year throughfall and fertilization effects on leaf physiology and growth of loblolly pine in the Georgia Piedmont. For. Ecol. Manag. 2014, 330, 29–37. [Google Scholar] [CrossRef]
- Maggard, A.; Will, R.; Wilson, D.; Meek, C. Response of Mid-Rotation Loblolly Pine (Pinus taeda L.) Physiology and Productivity to Sustained, Moderate Drought on the Western Edge of the Range. Forests 2016, 7, 203. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Markewitz, D.; McGuire, M.A.; Samuelson, L.; Ward, E. Throughfall reduction × fertilization: Deep soil water usage in a clay rich ultisol under loblolly pine in the southeast USA. Front. For. Glob. Chang. 2020, 2, 1–13. [Google Scholar] [CrossRef]
- Ryu, S.R.; Wang, G.G.; Walker, J.L. Factors influencing loblolly pine stand health in Fort Benning, Georgia, USA. For. Sci. Technol. 2013, 9, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.G., III; Burkhardt, H.E. Growth-density relationships in loblolly pine plantations. For. Sci. 2019, 65, 250–264. [Google Scholar] [CrossRef]
- Hansen, E. Leptographium diseases. In Compendium of Conifer Diseases; Hansen, E.M., Lewis, K.J., Chastagner, G.A., Eds.; APS Press: St. Paul, MN, USA, 1997; pp. 8–9. [Google Scholar]
- Drake, J.; Raetz, L.M.; Davis, S.C.; DeLucia, E.H. Hydraulic limitation not declining nitrogen availability causes the age-related photosynthetic decline in loblolly pine (Pinus taeda L.). Plant Cell Environ. 2010, 33, 1756–1766. [Google Scholar] [CrossRef]
- Wertin, T.M.; McGuire, M.A.; Teskey, R.O. The influence of elevated temperature, elevated atmospheric CO2 concentration and water stress on net photosynthesis of loblolly pine (Pinus taeda L.) at northern, central and southern sites in its native range. Glob. Chang. Biol. 2010, 16, 2089–2103. [Google Scholar] [CrossRef]
- Ewers, B.E.; Oren, R.; Sperry, J.S. Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant Cell Environ. 2000, 23, 1055–1066. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, L.J.; Stokes, T.A. Transpiration and canopy stomatal conductance of 5-year-old loblolly pine in response to intensive management. For. Sci. 2006, 52, 313–323. [Google Scholar]
- Mencuccini, M.; Grace, J. Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiol. 1995, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLucia, E.H.; Maherali, H.; Carey, E.V. Climate-driven changes in biomass allocation in pines. Glob. Chang. Biol. 2000, 6, 587–593. [Google Scholar] [CrossRef]
- Togashi, H.F.; Prentice, I.C.; Evans, B.J.; Forrester, D.I.; Drake, P.; Feikema, P.; Brooksbank, K.; Eamus, D.; Taylor, D. Data from: Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: Analysis of measurements on Australian trees. Ecol. Evol. 2015, 5, 1263–1270. [Google Scholar] [CrossRef]
- Addington, R.N.; Donovan, L.; Mitchell, R.J.; Vose, J.M.; Pecot, S.D.; Jack, S.B.; Hacke, U.; Sperry, J.S.; Oren, R. Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant Cell Environ. 2006, 29, 535–545. [Google Scholar] [CrossRef]
- Klepzig, K.D.; Raffa, K.F.; Smalley, E.B. Association of an insect-fungal complex with red pine decline in Wisconsin. For. Sci. 1991, 37, 1119–1139. [Google Scholar]
- Hennessey, T.C.; Dougherty, P.M.; Cregg, B.M.; Wittwer, R.F. Annual variation in needle fall of a loblolly pine stand in relation to climate and stand density. For. Ecol. Manag. 1992, 51, 329–338. [Google Scholar] [CrossRef]
- Naidu, S.L.; Sullivan, J.H.; Teramura, A.H.; DeLucia, E.H. The effects of ultraviolet-B radiation on photosynthesis of different aged needles in field-grown loblolly pine. Tree Physiol. 1993, 12, 151–162. [Google Scholar] [CrossRef]
- Warren, J.M.; Norby, R.J.; Wullschleger, S.D. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 2011, 31, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Lorio, P.L., Jr.; Stephen, F.M.; Paine, T.D. Environment and ontogeny modify loblolly pine response to induced acute water deficits and bark beetle attack. For. Ecol. Manag. 1995, 73, 97–110. [Google Scholar] [CrossRef]
- Negrón, J.F.; McMillin, J.D.; Anhold, J.A.; Coulson, D. Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA. For. Ecol. Manag. 2009, 257, 1353–1362. [Google Scholar] [CrossRef]
- Ganey, J.L.; Vojta, S.C. Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA. For. Ecol. Manag. 2011, 261, 162–168. [Google Scholar] [CrossRef]
- Hart, S.J.; Veblen, T.T.; Eisenhart, K.S.; Jarvis, D.; Kulakowski, D. Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado. Ecology 2014, 95, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Klepzig, K.D.; Kruger, E.L.; Smalley, E.B.; Raffa, K.F. Effects of biotic and abiotic stress on induced accumulation of terpenes and phenolics in red pines inoculated with bark beetle-vectored fungus. J. Chem. Ecol. 1995, 21, 601–626. [Google Scholar] [CrossRef]
- Sampedro, L. Physiological trade-offs in the complexity of pine tree defensive chemistry. Tree Physiol. 2014, 34, 915–918. [Google Scholar] [CrossRef] [Green Version]
- Villari, C.; Faccoli, M.; Battisti, A.; Bonello, P.; Marini, L. Testing phenotypic trade-offs in the chemical defense strategy of Scots pine under growth-limiting field conditions. Tree Physiol. 2014, 34, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, H. Decline symptoms on roots of Quercus robur. For. Pathol. 1994, 24, 386–398. [Google Scholar] [CrossRef]
- Janssens, I.; Sampson, D.; Curiel-Yuste, J.; Carrara, A.; Ceulemans, R. The carbon cost of fine root turnover in a Scots pine forest. For. Ecol. Manag. 2002, 168, 231–240. [Google Scholar] [CrossRef]
- Mosca, E.; Montecchio, L.; Barion, G.; Dal Cortivo, C.; Vamerali, T. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps. Ann. Bot. 2017, 119, 1235–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bongarten, B.C.; Teskey, R.O. Dry weight partitioning and its relationship to productivity in lololly pine seedlings from seven sources. For. Sci. 1987, 33, 255–267. [Google Scholar]
- Magnani, F.; Grace, J.; Borghetti, M. Adjustment of tree structure in response to the environment under hydraulic constraints. Funct. Ecol. 2002, 16, 385–393. [Google Scholar] [CrossRef]
- Aaltonen, H.; Lindén, A.; Heinonsalo, J.; Biasi, C.; Pumpanen, J. Effects of prolonged drought stress on Scots pine seedling carbon allocation. Tree Physiol. 2017, 37, 418–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyle, D.R.; Barnes, B.F.; Klepzig, K.D.; Koch, F.H.; Morris, L.A.; Nowak, J.T.; Otrosina, W.J.; Smith, W.D.; Gandhi, K.J.K. Abiotic and Biotic Factors Affecting Loblolly Pine Health in the Southeastern United States. For. Sci. 2020, 66, 145–156. [Google Scholar] [CrossRef]
- Susaeta, A.; Adams, D.C.; Gonzalez-Benecke, C.; Soto, J.R. Economic Feasibility of Managing Loblolly Pine Forests for Water Production under Climate Change in the Southeastern United States. Forests 2017, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Bottero, A.; D’Amato, A.W.; Palik, B.J.; Bradford, J.B.; Fraver, S.; Battaglia, M.A.; Asherin, L.A. Density-dependent vulnerability of forest ecosystems to drought. J. Appl. Ecol. 2017, 54, 1605–1614. [Google Scholar] [CrossRef]
Variation | Source of Variation | df 1 | Mean Square | p > F |
---|---|---|---|---|
DBH | Treatment (T) | 4 | 0.1 | 0.9826 |
Year (Y) | 2 | 283.07 | <0.0001 | |
T × Y | 8 | 1.12 | 0.3515 | |
Total tree height | T | 4 | 2.22 | 0.0697 |
Y | 2 | 443.26 | <0.0001 | |
T × Y | 8 | 2.75 | 0.0062 | |
Stemwood volume | T | 4 | 0.99 | 0.415 |
Y | 2 | 227.63 | <0.0001 | |
T × Y | 8 | 1.73 | 0.0915 | |
RG | T | 4 | 2.82 | 0.0277 |
Y | 2 | 84.02 | <0.0001 | |
T × Y | 8 | 4.94 | <0.0001 |
Variable | df 1 | F-Value | p > F |
---|---|---|---|
AL | 4 | 3.07 | <0.0001 |
AL:As | 4 | 2.81 | <0.0001 |
MC | 4 | 2.11 | 0.0904 |
Treatment | AL:AS | MC (%) |
---|---|---|
Control | 0.072 ± 0.06 a 1 | 116.3 ± 3.4 ab |
Wound | 0.068 ± 0.06 a | 117.8 ± 5.8 a |
Low | 0.064 ± 0.05 ab | 114.0 ± 3.6 ab |
Medium | 0.063 ± 0.04 ab | 110.3 ± 3.0 ab |
High | 0.039 ± 0.04 b | 100.5 ± 3.5 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mensah, J.K.; Sayer, M.A.S.; Nadel, R.L.; Duwadi, S.; Fan, Z.; Carter, E.A.; Eckhardt, L.G. Effect of Leptographium terebrantis on Foliage, New Root Dynamics, and Stemwood Growth in a Loblolly Pine (Pinus taeda L.) Plantation. Forests 2022, 13, 1335. https://doi.org/10.3390/f13081335
Mensah JK, Sayer MAS, Nadel RL, Duwadi S, Fan Z, Carter EA, Eckhardt LG. Effect of Leptographium terebrantis on Foliage, New Root Dynamics, and Stemwood Growth in a Loblolly Pine (Pinus taeda L.) Plantation. Forests. 2022; 13(8):1335. https://doi.org/10.3390/f13081335
Chicago/Turabian StyleMensah, John K., Mary Anne S. Sayer, Ryan L. Nadel, Shrijana Duwadi, Zhaofei Fan, Emily A. Carter, and Lori G. Eckhardt. 2022. "Effect of Leptographium terebrantis on Foliage, New Root Dynamics, and Stemwood Growth in a Loblolly Pine (Pinus taeda L.) Plantation" Forests 13, no. 8: 1335. https://doi.org/10.3390/f13081335
APA StyleMensah, J. K., Sayer, M. A. S., Nadel, R. L., Duwadi, S., Fan, Z., Carter, E. A., & Eckhardt, L. G. (2022). Effect of Leptographium terebrantis on Foliage, New Root Dynamics, and Stemwood Growth in a Loblolly Pine (Pinus taeda L.) Plantation. Forests, 13(8), 1335. https://doi.org/10.3390/f13081335