Habitat Conditions and Tree Species Shape Liana Distribution in a Subtropical Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Forest Plot
2.2. Data Analyses
3. Results
3.1. Diversity and Distribution of Lianas
3.2. Liana Distribution in Relation to Topographic Variables
3.3. Lianas’ Spatial Association with Tree Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schnitzer, S.A. Increasing liana abundance and biomass in neotropical forests: Causes and consequences. In Ecology of Lianas; Schnitzer, S.A., Bongers, F., Burnham, R.J., Putz, F.E., Eds.; Wiley-Blackwell Publishing: Oxford, UK, 2015; pp. 451–464. [Google Scholar]
- Schnitzer, S.A.; Bongers, F. Increasing liana abundance and biomass in tropical forests: Emerging patterns and putative mechanisms. Ecol. Lett. 2011, 14, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Schnitzer, S.A. A mechanistic explanation for global patterns of liana abundance and distribution. Am. Nat. 2005, 166, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Jongkind, C.C.H.; Hawthorne, W.D. A botanical synopsis of lianes and other forest climbers. In Forest Climbing Plants of West Africa: Diversity, Ecology and Management; Bongers, F., Parren, M.P.E., Traore, D., Eds.; CABI Publishing: Oxfordshire, UK, 2005; pp. 19–39. [Google Scholar]
- Cai, Y.L.; Song, Y.C. Diversity of vines in subtropical zone of East China. J Wuhan Bot. Res. 2000, 18, 390–396. [Google Scholar]
- Gentry, A.G. The distribution and evolution of climbing plants. In The Biology of Vines; Putz, F.E., Mooney, H.A., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 73–97. [Google Scholar]
- Schnitzer, S.A.; Carson, W.P. Treefall gaps and maintenance of species diversity in a tropical forest. Ecology 2001, 82, 913–919. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 2002, 17, 223–230. [Google Scholar] [CrossRef]
- Estrada-Villegas, S.; Schnitzer, S.A. A comprehensive synthesis of liana removal experiments in tropical forests. Biotropica 2018, 50, 729–739. [Google Scholar] [CrossRef]
- Schnitzer, S.A. Testing ecological theory with lianas. New Phytol. 2018, 220, 366–380. [Google Scholar] [CrossRef]
- Visser, M.D.; Wright, S.J.; Muller-Landau, H.C.; Jongejans, E.; Comita, L.S.; de Kroon, H.; Schnitzer, S. Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. J. Ecol. 2018, 106, 781–794. [Google Scholar] [CrossRef]
- Kusumoto, B.; Enoki, T.; Watanabe, Y. Community structure and topographic distribution of lianas in a watershed on Okinawa, south-western Japan. J. Trop. Ecol. 2008, 24, 675–683. [Google Scholar] [CrossRef]
- Joly, C.A.; Crawford, R.M.M. Variation in Tolerance and Metabolic Responses to Flooding in some Tropical Trees. J. Exp. Bot. 1982, 33, 799–809. [Google Scholar] [CrossRef]
- de Oliveira, E.A.; Marimon, B.S.; Feldpausch, T.R.; Colli, G.R.; Marimon-Junior, B.H.; Lloyd, J.; Lenza, E.; Maracahipes, L.; Oliveira-Santos, C.; Phillips, O.L. Diversity, abundance and distribution of lianas of the Cerrado–Amazonian forest transition, Brazil. Plant Ecol. Divers. 2014, 7, 231–240. [Google Scholar] [CrossRef]
- Jirka, S.; McDonald, A.J.; Johnson, M.S.; Feldpausch, T.R.; Couto, E.G.; Riha, S.J. Relationships between soil hydrology and forest structure and composition in the southern Brazilian Amazon. J. Veg. Sci. 2007, 18, 183–194. [Google Scholar] [CrossRef]
- Putz, F.E. How trees avoid and shed lianas. Biotropica 1984, 16, 19–23. [Google Scholar] [CrossRef]
- van der Heijden, G.M.F.; Healey, J.R.; Phillips, O.L.; van der Heijden, G.M.F.; Healey, J.R.; Phillips, O.L. Infestation of trees by lianas in a tropical forest in Amazonian Peru. J. Veg. Sci. 2008, 19, 747–756. [Google Scholar] [CrossRef]
- Leicht-Young, S.; Pavlovic, N.B.; Frohnapple, K.J.; Grundel, R. Liana habitat and host preferences in northern temperate forests. For. Ecol. Manag. 2010, 260, 1467–1477. [Google Scholar] [CrossRef]
- Allen, B.P.; Pauley, E.F.; Sharitz, R.R. Hurricane impacts on liana populations in an old-growth southeastern bottomland forest. J. Torrey Bot. Soc. 1997, 124, 34–42. [Google Scholar] [CrossRef]
- Allen, B.P.; Sharitz, R.R.; Goebel, P.C. Twelve years post-hurricane liana dynamics in an old-growth southeastern floodplain forest. For. Ecol. Manag. 2005, 218, 259–269. [Google Scholar] [CrossRef]
- Campanello, P.I.; Garibaldi, J.F.; Gatti, M.G.; Goldstein, G. Lianas in a subtropical Atlantic Forest: Host preference and tree growth. For. Ecol. Manag. 2007, 242, 250–259. [Google Scholar] [CrossRef]
- Li, B.; Wu, Z.; Bin, Y.; Xiao, R.; Song, X.; Shu, Z.; Chu, C. Community Composition and Structure of the Chebaling Forest Dynamic Plot in a Mid-Subtropical Evergreen Broadleaved Forest; Guangdong Science & Technology Press: Guangzhou, China, 2020. [Google Scholar]
- Zhou, G.Y.; Wei, X.H.; Tan, Y.P.; Liu, S.G.; Huang, Y.H.; Yan, J.H.; Zhang, D.Q.; Che, Q.M.; Wang, J.X.; Meng, Z.; et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in southern china. Global Change Biol. 2011, 17, 3736–3746. [Google Scholar] [CrossRef]
- Harms, K.E.; Condit, R.; Hubbell, S.P.; Foster, R.B. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J. Ecol. 2001, 89, 947–959. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Z.; Luan, F.; Shu, Z.; Li, B. Community composition and floral characteristics of the Chebaling 20 hm2 forest dynamic plot in a mid-subtropical evergreen broad-leaved forest. For. Environ. Sci. 2021, 37, 86–91, (In Chinese with an English abstract). [Google Scholar]
- Schnitzer, S.A.; Rutishauser, S.; Aguilar, S. Supplemental protocol for liana censuses. For. Ecol. Manag. 2008, 255, 1044–1049. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, T.; Moloney, K.A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 2004, 104, 209–229. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.Rproject.org/ (accessed on 12 March 2021).
- Stoyan, D.; Stoyan, H. Fractals, Random Shapes, and Point Fields: Methods of Geometrical Statistics; Wiley: Chichester, UK, 1994. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology, 3rd English ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Sakamoto, Y.; Ishiguro, M.; Kitagawa, G. Akaike Information Criterion Statistics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Nabe-Nielsen, J. Diversity and distribution of lianas in a neotropical rain forest. J. Trop. Ecol. 2001, 17, 1–19. [Google Scholar] [CrossRef]
- Burnham, R.J. Dominance, diversity and distribution of lianas in Yasunı´, Ecuador: Who is on top? J. Trop. Ecol. 2002, 18, 845–864. [Google Scholar] [CrossRef]
- DeWalt, S.J.; Chave, J. Structure and biomass of four lowland Neotropical forests. Biotropica 2004, 36, 7–19. [Google Scholar] [CrossRef]
- Albuquerque, L.B.; Velázquez, A.; Mayorga-Saucedo, R. Solanaceae composition, pollination and seed dispersal syndromes in Mexican mountain cloud forest. Acta. Bot. Bras. 2006, 20, 599–613. [Google Scholar] [CrossRef]
- Hu, L.; Li, M.; Li, Z. Geographical and environmental gradients of lianas and vines in China. Glob. Ecol. Biogeogr. 2010, 19, 554–561. [Google Scholar] [CrossRef]
- Lobos-Catalán, P.; Jiménez-Castillo, M. Temperature shapes liana diversity pattern along a latitudinal gradient in southern temperate rainforest. Plant Ecol. 2019, 220, 1109–1117. [Google Scholar] [CrossRef]
- Sperry, J.S.; Hollbrook, N.M.; Zimmerman, M.H.; Tyree, M.T. Spring filling of xylem vessels in wild grapevine. Plant Physiol. 1987, 83, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Ewers, F.W.; Fisher, J.B.; Fichtner, K. Water flux and xylem structure in vines. In The Biology of Vines; Putz, F.E., Mooney, H.A., Eds.; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- DeWalt, S.J.; Schnitzer, S.A.; Chave, J.; Bongers, F.; Burnham, R.J.; Cai, Z.Q.; Chuyong, G.; Clark, D.B.; Ewango, C.E.N.; Gerwing, J.J.; et al. Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 2010, 42, 309–317. [Google Scholar] [CrossRef]
- Teramura, A.H.; Gold, W.G.; Forseth, I.N. The biology of vines. In Physiological Ecology of Mesic, Temperate Woody Vines; Putz, F.E., Mooney, H.A., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 245–285. [Google Scholar]
- Kusumoto, B.; Enoki, T.; Kubota, Y. Determinant factors influencing the spatial distributions of subtropical lianas are correlated with components of functional trait spectra. Ecol. Res. 2013, 28, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Brubaker, S.C.; Jones, A.J.; Lewis, D.T.; Frank, K. Soil properties associated with landscape positions and management. Soil Sci. Soc. Am. J. 1993, 57, 235–239. [Google Scholar] [CrossRef]
- Gessler, P.E.; Chadwick, O.A.; Charmran, F.; Althouse, F.; Holmes, K. Modeling soil-landscape and ecosystem properties using terrain attributes. Soil Sci. Soc. Am. J. 2000, 64, 2046–2056. [Google Scholar] [CrossRef]
- Hayes, M.; Moody, A.; White, P.S.; Costanza, J.L. The influence of logging and topography on the distribution of spruce-fir forests near their Southern limits in Great Smoky Mountains National Park, USA. Plant Ecol. 2007, 189, 59–70. [Google Scholar] [CrossRef]
- Hegarty, E.E. Vine-host interactions. In The Biology of Vines; Putz, F.E., Mooney, H.A., Eds.; Cambridge University: Cambridge, UK, 1991; pp. 357–375. [Google Scholar]
- Carrasco-Urra, F.; Gianoli, E. Abundance of climbing plants in a southern temperate rain forest: Host tree characteristics or light availability? J. Veg. Sci. 2009, 20, 1155–1162. [Google Scholar] [CrossRef]
- Garrido-Perez, E.I.; Burnham, R. The evolution of host specificity in liana-tree interactions. Puente Biologico 2010, 3, 145–157. [Google Scholar]
- Balfour, D.A.; Bond, W.J. Factors limiting climber distribution and abundance in a Southern African forest. J. Ecol. 1993, 81, 93–100. [Google Scholar] [CrossRef]
- Campbell, E.J.F.; Newbery, D.M. Ecological relationships between lianas and trees in lowland Rain Forest in Sbah, East Malaysia. J. Trop. Ecol. 1993, 9, 469–490. [Google Scholar] [CrossRef]
- Putz, F. Lianas vs. trees. Biotropica 1980, 12, 224–225. [Google Scholar] [CrossRef]
Species Code | Latin Binomial | Family | Abundance |
---|---|---|---|
Todasi | Toddalia asiatica | Rutaceae | 6 |
Uncrhy | Uncaria rhynchophylla | Rubiaceae | 16 |
Maccoc | Maclura cochinchinensis | Moraceae | 6 |
Fisold | Fissistigma oldhamii | Annonaceae | 610 |
Ampcan | Ampelopsis cantoniensis | Vitaceae | 182 |
Kadcoc | Kadsura coccinea | Schisandraceae | 1 |
Embrib | Embelia ribes var. pachyphylla | Primulaceae | 6 |
Strcat | Strychnos cathayensis | Loganiaceae | 3 |
Morpar | Morinda parvifolia | Rubiaceae | 17 |
Melfus | Melodinus fusiformis | Apocynaceae | 11 |
Actcal | Actinidia callosal | Actinidiaceae | 12 |
Actlat | Actinidia latifolia | Actinidiaceae | 1 |
Milnit | Millettia nitida | Fabaceae | 2 |
Parlae | Parthenocissus laetevirens | Vitaceae | 1 |
Elagla | Elaeagnus glabra | Elaeagnaceae | 1 |
Rhanap | Rhamnus napalensis | Rhamnaceae | 9 |
Versol | Vernonia solanifolia | Asteraceae | 1 |
Aketri | Akebia trifoliata | Lardizabalaceae | 1 |
Emblae | Embelia laeta | Primulaceae | 49 |
Dalhan | Dalbergia hancei | Fabaceae | 29 |
Staobo | Stauntonia obovatifoliola | Lardizabalaceae | 18 |
Muspub | Mussaenda pubescens | Rubiaceae | 1 |
Caecri | Caesalpinia crista | Fabaceae | 68 |
Embrud | Embelia rudis | Primulaceae | 32 |
Caldie | Callerya dielsiana | Fabaceae | 158 |
Gnepar | Gnetum parvifolium | Gnetaceae | 64 |
Degree of Freedom | Deviance | Residue Degree of Freedom | Residue Deviance | |
---|---|---|---|---|
NULL | 3499 | 5073.9 | ||
Family | 6 | 1082.1 | 3493 | 3991.8 |
Family: slope | 7 | 98.89 | 3486 | 3892.9 |
Family: sin(aspect) | 7 | 116.96 | 3479 | 3775.9 |
Family: convexity | 7 | 126.24 | 3472 | 3649.7 |
Family: elevation | 7 | 442.45 | 3465 | 3207.2 |
Family: sin2(aspect) | 7 | 25.37 | 3458 | 3181.9 |
Family: elevation2 | 7 | 49.98 | 3451 | 3131.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Zhang, Y.; Luan, F.; Yuan, Z.; Ali, A.; Chu, C.; Bin, Y. Habitat Conditions and Tree Species Shape Liana Distribution in a Subtropical Forest. Forests 2022, 13, 1358. https://doi.org/10.3390/f13091358
Li B, Zhang Y, Luan F, Yuan Z, Ali A, Chu C, Bin Y. Habitat Conditions and Tree Species Shape Liana Distribution in a Subtropical Forest. Forests. 2022; 13(9):1358. https://doi.org/10.3390/f13091358
Chicago/Turabian StyleLi, Buhang, Yingming Zhang, Fuchen Luan, Zuoqiang Yuan, Arshad Ali, Chengjin Chu, and Yue Bin. 2022. "Habitat Conditions and Tree Species Shape Liana Distribution in a Subtropical Forest" Forests 13, no. 9: 1358. https://doi.org/10.3390/f13091358
APA StyleLi, B., Zhang, Y., Luan, F., Yuan, Z., Ali, A., Chu, C., & Bin, Y. (2022). Habitat Conditions and Tree Species Shape Liana Distribution in a Subtropical Forest. Forests, 13(9), 1358. https://doi.org/10.3390/f13091358