Temperature during Seed Maturation Influences Timing of Bud Burst in Seedlings and Saplings of Prunus padus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Controlled Crosses
2.2. Growth of Seedlings and Temperature Treatment in the Spring of 2020
2.3. Phenological Observations
2.4. Statistical Analysis
3. Results
3.1. Influence of Maternal Seed Maturation Temperature in the First Years of the Seedlings
3.2. Influence of a Variable Spring Temperature in 2020 on the Saplings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savolainen, O.; Pyhäjärvi, T.; Knürr, T. Gene Flow and Local Adaptation in Trees. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 595–619. [Google Scholar] [CrossRef]
- Bräutigam, K.; Vining, K.J.; Lafon-Placette, C.; Fossdal, C.G.; Mirouze, M.; Marcos, J.G.; Fluch, S.; Fraga, M.F.; Guevara, M.Á.; Abarca, D.; et al. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol. Evol. 2013, 3, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F.; et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef]
- Jump, A.S.; Peñuelas, J. Running to stand still: Adaptation and the response of plants to rapid climate change. Ecol. Lett. 2005, 8, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; Cornwell, W.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 2014, 17, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Franks, S.J.; Weber, J.J.; Aitken, S.N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 2014, 7, 123–139. [Google Scholar] [CrossRef]
- Zhang, X.; Tarpley, D.; Sullivan, J.T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Prieto, P.; Peñuelas, J.; Niinemets, Ü.; Ogaya, R.; Schmidt, I.K.; Beier, C.; Tietema, A.; Sowerby, A.; Emmett, B.A.; Láng, E.K.; et al. Changes in the onset of spring growth in shrubland species in response to experimental warming along a north–south gradient in Europe. Glob. Ecol. Biogeogr. 2009, 18, 473–484. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kubler, K.; Bissolli, P.; Braslavska, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Chen, L.; Huang, J.G.; Ma, Q.Q.; Hanninen, H.; Tremblay, F.; Bergeron, Y. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Glob. Change Biol. 2019, 25, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Delzon, S.; Dufrêne, E.; Pontailler, J.-Y.; Louvet, J.-M.; Kremer, A.; Michalet, R. Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agric. For. Meteorol. 2009, 149, 735–744. [Google Scholar] [CrossRef]
- Fu, Y.H.; Campioli, M.; Deckmyn, G.; Janssens, I.A. Sensitivity of leaf unfolding to experimental warming in three temperate tree species. Agric. For. Meteorol. 2013, 181, 125–132. [Google Scholar] [CrossRef]
- Penfield, S.; MacGregor, D.R. Effects of environmental variation during seed production on seed dormancy and germination. J. Exp. Bot. 2016, 68, 819–825. [Google Scholar] [CrossRef]
- Springthorpe, V.; Penfield, S. Flowering time and seed dormancy control use external coincidence to generate life history strategy. Elife 2015, 4, e05557. [Google Scholar] [CrossRef]
- Chen, M.; MacGregor, D.R.; Dave, A.; Florance, H.; Moore, K.; Paszkiewicz, K.; Smirnoff, N.; Graham, I.A.; Penfield, S. Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. Proc. Natl. Acad. Sci. USA 2014, 111, 18787–18792. [Google Scholar] [CrossRef]
- He, H.; Willems, L.A.J.; Batushansky, A.; Fait, A.; Hanson, J.; Nijveen, H.; Hilhorst, H.W.M.; Bentsink, L. Effects of Parental Temperature and Nitrate on Seed Performance are Reflected by Partly Overlapping Genetic and Metabolic Pathways. Plant Cell Physiol. 2016, 57, 473–487. [Google Scholar] [CrossRef]
- Verhoeven, K.J.; vonHoldt, B.M.; Sork, V.L. Epigenetics in ecology and evolution: What we know and what we need to know. Mol. Ecol. 2016, 25, 1631–1638. [Google Scholar] [CrossRef]
- Pascual, J.; Cañal, M.J.; Correia, B.; Escandon, M.; Hasbún, R.; Meijón, M.; Pinto, G.; Valledor, L. Can Epigenetics Help Forest Plants to Adapt to Climate Change. In Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications: Transcriptional Regulation and Chromatin Remodelling in Plants; Springer International Publishing: Cham, Switzerland, 2014; pp. 125–146. [Google Scholar]
- Richards, C.L.; Alonso, C.; Becker, C.; Bossdorf, O.; Bucher, E.; Colomé-Tatché, M.; Durka, W.; Engelhardt, J.; Gaspar, B.; Gogol-Döring, A.; et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 2017, 20, 1576–1590. [Google Scholar] [CrossRef]
- Kvaalen, H.; Johnsen, Ø. Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol. 2008, 177, 49–59. [Google Scholar] [CrossRef]
- Johnsen, Ø.; Fossdal, C.G.; Nagy, N.; MØLmann, J.; DæHlen, O.G.; SkrØPpa, T. Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ. 2005, 28, 1090–1102. [Google Scholar] [CrossRef]
- Yakovlev, I.A.; Carneros, E.; Lee, Y.; Olsen, J.E.; Fossdal, C.G. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 2016, 243, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, I.; Fossdal, C.G.; Skrøppa, T.; Olsen, J.E.; Jahren, A.H.; Johnsen, Ø. An adaptive epigenetic memory in conifers with important implications for seed production. Seed Sci. Res. 2012, 22, 63–76. [Google Scholar] [CrossRef]
- Dewan, S.; Vander Mijnsbrugge, K.; De Frenne, P.; Steenackers, M.; Michiels, B.; Verheyen, K. Maternal temperature during seed maturation affects seed germination and timing of bud set in seedlings of European black poplar. For. Ecol. Manag. 2018, 410, 126–135. [Google Scholar] [CrossRef]
- R_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Christensen, R.H.B. Ordinal: Regression Models for Ordinal Data. R Package Version 2015.6-28. Available online: http://www.cran.r-project.org/package=ordinal/ (accessed on 20 June 2016).
- Aguirre, M.; Kiegle, E.; Leo, G.; Ezquer, I. Carbohydrate reserves and seed development: An overview. Plant Reprod. 2018, 31, 263–290. [Google Scholar] [CrossRef]
- Seydel, C.; Kitashova, A.; Fürtauer, L.; Nägele, T. Temperature-induced dynamics of plant carbohydrate metabolism. Physiol. Plant. 2022, 174, e13602. [Google Scholar] [CrossRef]
- Seiwa, K. Effects of seed size and emergence time on tree seedling establishment: Importance of developmental constraints. Oecologia 2000, 123, 208–215. [Google Scholar] [CrossRef]
- Rohde, A.; Bhalerao, R. Plant dormancy in the perennial context. Trends Plant Sci. 2007, 12, 217–223. [Google Scholar] [CrossRef]
- Vander Mijnsbrugge, K.; Onkelinx, T.; De Cuyper, B. Variation in bud burst and flower opening responses of local versus non-local provenances of hawthorn (Crataegus monogyna Jacq.) in Belgium. Plant Syst. Evol. 2014, 301, 1171–1179. [Google Scholar] [CrossRef]
- Kim, J.A.; Kim, H.-S.; Choi, S.-H.; Jang, J.-Y.; Jeong, M.-J.; Lee, S.I. The Importance of the Circadian Clock in Regulating Plant Metabolism. Int. J. Mol. Sci. 2017, 18, 2680. [Google Scholar] [CrossRef] [Green Version]
- IbÁñez, C.; Kozarewa, I.; Johansson, M.; Ögren, E.; Rohde, A.; Eriksson, M.E. Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees. Plant Physiol. 2010, 153, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, X.; Wang, H.; Ciais, P.; Peñuelas, J.; Myneni, R.B.; Desai, A.R.; Gough, C.M.; Gonsamo, A.; Black, A.T.; et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Change 2018, 8, 1092–1096. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.J.; Ho, C.H.; Gim, H.J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 2011, 17, 2385–2399. [Google Scholar]
- Vander Mijnsbrugge, K.; Moreels, S. Varying Levels of Genetic Control and Phenotypic Plasticity in Timing of Bud Burst, Flower Opening, Leaf Senescence and Leaf Fall in Two Common Gardens of Prunus padus L. Forests 2020, 11, 1070. [Google Scholar]
Year | Bud Burst | Leaf Senescence |
---|---|---|
2016 | 14/10 | |
2017 | 22/3, 28/3, 31/3 | 18/9, 5/10, 17/10 |
2018 | 26/3, 3/4, 10/4 | 1/10, 11/10 |
2019 | 21/3, 25/3, 4/4 | 18/9, 15/10 |
2020 | 2/3, 5/3, 9/3, 12/3, 16/3, 23/3, 27/3 | 14/9, 2/10, 23/10 |
2021 | 18/3, 8/4, 23/4 | 27/9, 18/10 |
leaf Senescence 2016–2019 | Bud Burst 2017–2019 | |||
---|---|---|---|---|
Variable | Estimate | p-Value | Estimate | p-Value |
C_X2 | −0.82 | 0.293 | 5.75 | <0.001 *** |
Y_1 | 1.66 | 0.025 * | ||
Y_2 | 0.37 | 0.655 | 1.81 | 0.003 ** |
Y_3 | 2.81 | 0.002 ** | −2.67 | <0.001 *** |
Ts_warm | −0.15 | 0.855 | −1.51 | 0.185 |
D | 0.14 | <0.001 *** | −0.66 | <0.001 *** |
C_X2:Y_1 | −0.76 | 0.319 | ||
C_X2:Y_2 | 3.41 | <0.001 *** | −6.46 | <0.001 *** |
C_X2:Ts_warm | −0.50 | 0.549 | −0.50 | 0.688 |
Y_1:Ts_warm | 0.44 | 0.427 | ||
Y_2:Ts_warm | 0.48 | 0.387 | 2.90 | <0.001 *** |
Y_3:Ts_warm | −0.81 | 0.456 | 2.11 | 0.027 * |
Bud Burst | Leaf Senescence | ||||
---|---|---|---|---|---|
Year | Variable | Estimate | p-Value | Estimate | p-Value |
2020 | Ts_warm | 7.66 | 0.003 ** | −7.03 | 0.090 |
T20_warm | −8.63 | <0.001 *** | 4.80 | 0.239 | |
C_X2 | 10.59 | <0.001 *** | −3.90 | 0.233 | |
D | −1.25 | <0.001 *** | 0.23 | <0.001 *** | |
Ts_warm:T20_warm | 5.20 | 0.013 * | 0.04 | 0.991 | |
T20_warm:C_X2 | −5.97 | <0.001 *** | −3.52 | 0.397 | |
Ts_warm:C_X2 | −8.36 | 0.001 ** | 9.66 | 0.028 * | |
2021 | Ts_warm | −3.08 | 0.121 | −0.75 | 0.592 |
T20_warm | −5.25 | 0.010 * | 0.60 | 0.654 | |
C_X2 | 2.81 | 0.085 | −1.11 | 0.336 | |
D | −0.50 | <0.001 *** | 0.21 | <0.001 *** | |
Ts_warm:T20_warm | 1.40 | 0.379 | −0.36 | 0.754 | |
T20_warm:C_X2 | 0.35 | 0.857 | −0.27 | 0.846 | |
Ts_warm:C_X2 | 2.06 | 0.305 | 1.07 | 0.458 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vander Mijnsbrugge, K.; Moreels, S.; Aguas Guerreiro, Y.; Beeckman, S. Temperature during Seed Maturation Influences Timing of Bud Burst in Seedlings and Saplings of Prunus padus. Forests 2022, 13, 1362. https://doi.org/10.3390/f13091362
Vander Mijnsbrugge K, Moreels S, Aguas Guerreiro Y, Beeckman S. Temperature during Seed Maturation Influences Timing of Bud Burst in Seedlings and Saplings of Prunus padus. Forests. 2022; 13(9):1362. https://doi.org/10.3390/f13091362
Chicago/Turabian StyleVander Mijnsbrugge, Kristine, Stefaan Moreels, Yorrick Aguas Guerreiro, and Simeon Beeckman. 2022. "Temperature during Seed Maturation Influences Timing of Bud Burst in Seedlings and Saplings of Prunus padus" Forests 13, no. 9: 1362. https://doi.org/10.3390/f13091362
APA StyleVander Mijnsbrugge, K., Moreels, S., Aguas Guerreiro, Y., & Beeckman, S. (2022). Temperature during Seed Maturation Influences Timing of Bud Burst in Seedlings and Saplings of Prunus padus. Forests, 13(9), 1362. https://doi.org/10.3390/f13091362