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Abstract: The net primary productivity (NPP) of forest ecosystems is an important factor for under-
standing the carbon budget of forest ecosystems. There have been many studies on the spatialtem-
poral characteristics and change trends of the NPP in southwest areas based on observation and
remote sensing models. A comprehensive view of the overall state of the research on the carbon
budget and a deeper exploration of its laws and effects are needed to reach a clear conclusion and
accurately assess the NPP of forests in southwest China. Therefore, in this paper, we aim to highlight
the relevant achievements in the study of the NPP of forest ecosystems, to summarize the research
progress and spatial–temporal distribution law of the estimation of the NPPs of forest ecosystems,
to analyse the relationship between the NPP and climate factors (such as temperature, precipitation
and VPD), and to identify the main unsolved issues and suggest directions for future research. Our
summary is expected to serve as a reference for forest ecosystem carbon budget management in the
southwest and as a starting place for further research, and to promote the realization of the “double
carbon” goal.
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1. Preface

Forests are an important part of terrestrial ecosystems and the main contributor to car-
bon sequestration. Their annual average carbon sequestration accounts for approximately
80% of total value for the whole terrestrial ecosystem in China [1]. They play an important
role in achieving carbon neutrality in China. With the continuous improvement of forest
quality, the net primary productivity (NPP) and carbon sink growth potential of forests are
large [2]. Net ecosystem carbon exchange (NEE) can be defined as the difference between
ecosystem NPP and its heterotrophic respiration (Rh), so the growth of NPP can reflect
the growth of the carbon sink to a certain extent. Currently, China’s forest total carbon
sequestration amount is 434 million tons per year, equivalent to 1.591 billion tons of CO2, ac-
cording to the report of the “China carbon emission network” (http://www.forestry.gov.cn/
(accessed on 14 March 2021)). In 2018, China’s CO2 emissions were 10 billion tons, and the
amount of CO2 absorbed by forests reached 15.91% in the same period, contributing greatly
to carbon sequestration. This will play an important role in China’s efforts to reach the
peak value of carbon dioxide emissions by 2030 and achieve carbon neutralization by 2060.

The NPP of ecosystems refers to the net content of dry organic matter produced by
vegetation [3]; it is the difference between the total amount of organic matter produced
by vegetation photosynthesis and the amount of organic matter consumed by autotrophic
respiration (Figure 1). NPP represents the ability of vegetation to fix carbon. It is the ability
of vegetation to use sunlight for photosynthesis (sunlight + inorganic matter + H2O +
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CO2→ heat + O2 + C organic) and to fix and convert inorganic carbon (CO2) into organic
carbon. It is an important part of the carbon cycle. Changes in climate and other factors
have a great impact on NPP. Precipitation, temperature, CO2 concentration and changes in
land cover affect physiological activities such as plant transpiration, photosynthesis and
respiration, which causes changes in the NPP of terrestrial ecosystems and affects their
carbon balance [4].
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Figure 1. NPP mode diagram. Solar radiation irradiates vegetation and is absorbed and reflected.
The vegetation fixes CO2 as organic carbon through photosynthesis (the fixed amount of CO2 is
usually expressed by the total primary productivity (GPP) minus the organic carbon consumed
by autotrophic respiration (Ra), which is NPP). This process is affected by temperature (T) and
precipitation (P), as well as the joint influence of climate factors such as radiation (Rg) and other
environmental factors (topography, soil nutrients, CO2).

Southwest China is the second largest forest region in China [5] and contains the largest
and most typical karst forest in the country. Rain–heat synchronization, afforestation, the
binary three-dimensional geological structure and large-area-distributed carbonate rocks
are features of karst areas that form a unique carbon cycle and create a huge carbon sink
potential; these areas play an important role in the regional and global carbon cycles [6,7].
Based on the forest resources inventory data from 1989 to 2019 (the 4th to the 9th forest
resources inventory) and the average biomass of the forest stand studied by Fang [8], it is
calculated that the forest carbon reserves in the southwest forest area have increased by
0.95 PG, the annual change rates of forest area, stock density and biomass conversion ratio
are 1.79%, 0.07 and −0.05%, respectively, and the net increase of biomass carbon is 1.81%,
which is equivalent to 31.95 Tg per year, [9]. However, with serious water and soil loss and
rocky desertification the environment has become sensitive and fragile, so karst areas have
become one of the most vulnerable ecological areas in China [10]. The delicate ecological
environment and frequent human activities make it difficult to restore the vegetation in the
karst area once it is damaged; the damage affects ecosystem services and other functions
and leads to fluctuations in the carbon sequestration and sink enhancement capacity in the
area. Therefore, combining, analyzing and summarizing the research regarding forest NPP
in karst areas is of great importance for improving the estimation accuracy and assessment
of carbon storage and sequestration potential in this area.
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Therefore, we systematically review the research progress of NPP based on the colla-
tion and summary of the literature, with the following aims: (1) to review the observation
methods for forest ecosystem NPP and compare their advantages and disadvantages and
(2) to summarize the spatiotemporal change trend of forest ecosystem NPP in karst areas
and its response to climate change to comprehensively understand these spatiotemporal
characteristics, promote an in-depth understanding of forest ecosystem NPP in karst areas
and help achieve carbon peaks and carbon neutralization.

2. Research Progress on NPP in Karst Areas of Southwest China
2.1. Overview of NPP Research Models

Currently, NPP research methods are mainly divided into two classes: field investiga-
tion/observation and model estimation. Methods developed in the early stages of station
observation, such as the sample land inventory method (direct harvesting method, etc.),
aerodynamics method, biological investigation method and Eddy Covariance Technique
(EC method), can directly or indirectly obtain high-precision sample NPP and provide basic
parameters and verification data for the construction of an estimation model; obtaining
NPP results in large areas is a challenge for these methods [11]. The model estimation
methods used to estimate large-scale NPP developed rapidly in the late 20th centuryand
can be classified into three main categories: statistical models, process models and light
energy utilization models. The NPP process of forest ecosystems is complex and is jointly
affected by natural and human factors; the development of NPP estimation models faced
major bottlenecks in terms of theory and technology [12]. At the beginning of the 21st
century, with the rapid development of remote sensing technology, large-scale and high-
resolution remote sensing data became available, providing favorable conditions for the
quantitative creation of the spatial–temporal features of the light energy utilization model
(parameter model); it became widely used as the main method for simulating and estimat-
ing large-scale and even global NPP. Based on the respective advantages of remote sensing
observations and model simulations, researchers have proposed an observation method
combining plant growth models and remote sensing models, in which the remote sensing
models directly drive the plant growth models, remote sensing observations and plant
growth model simulation assimilation methods (Figure 2) [13].

2.1.1. Field Observation Method

The study of NPP at the ecosystem scale is mainly realized by field observation
methods (field investigation method and Eddy Covariance Technique (EC method)). In the
field survey method, the biomass of vegetation is estimated on the sample plot/site scale
and then the value is extrapolated to the watershed scale. The data sources required by this
method include the forest resource inventory data of the site or measured biomass (volume)
sample plot data published in the literature, such as the work of Fang [14], which is based
on continuous forest resource inventory data and in which the change in wood volume is
calculated. Then, the change in forest biomass carbon storage is derived from the biomass
conversion equation. Another widely used NPP observation method is the EC method,
which uses the micro meteorological principle to estimate the covariance of vertical wind
speed and material or energy fluctuation to directly measure the energy and material
exchange flux between the vegetation canopy and the atmosphere [15]. Therefore, this
method can obtain NEE values and indirectly obtain NPP values through the relationship
between NEE and NPP (Figure 3). The EC method has developed into an international
standard method for flux observation. Compared with conventional observation methods,
it has the following main advantages: the net exchange of ecosystems measured by vorticity
correlation technology is based on the integration of the whole ecosystem and atmospheric
material and energy exchange [16], and it can realize long-term continuous positioning
observation of ecosystem carbon flux on a fine time scale, which is helpful for understanding
the response of the carbon cycle process to environmental change and its mechanism [17].
The main limitation is that forest ecosystem flux observation stations are often set in areas
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with little human impact, which makes it difficult to account for the differences in forest age
and ecosystem heterogeneity, resulting in deviation in regional-scale carbon sink deduction
results [17]. Due to the large uncertainty of current remote sensing observations and model
fitting methods in productivity estimation, long-term flux observation data have been used
in many studies to verify these results or for model parameterization [15].
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NEE. Net primary ecosystem productivity (NEP) can be obtained by directly measuring the NEE
value in the vorticity correlation system, and NEP is the difference between NPP and heterotrophic
respiration (Rh). Therefore, the NPP value can be obtained by measuring NEE and heterotrophic
respiration (Rh).

2.1.2. Statistical Model

The basic principle of the statistical model, also known as the climate-related model, is
to construct a statistical relationship based on remote sensing data and vegetation productiv-
ity data observed on the ground, which is used to estimate regional vegetation productivity.
This kind of model is based on the principle of correlation between environmental factors
and plant growth, includes climate factors such as precipitation and temperature as driving
factors and establishes a simple statistical regression model between climate factors and
NPP to estimate the potential productivity of vegetation. Its representative models are
the Miami model, Thornthwaite Memorial model, Chikugo model and Integrated model
(Table 1).

Table 1. Statistical model representative models and their expressions. Please see more details of
“Reference” in Appendix A.

Model Expression Parameters Reference

Miami model
NPPt = 3000/

(
1 + 101.315−0.1196t)

NPPr = 3000
(
1− 10−0.000664r) t: Temperature,

r: Precipitation [18]

Thornthwaite
Memorial model

NPPE = 3000
(

1− 10−0.0009695(E−20)
)

E = 105r/
√

1 + (1 + 1.05r/L)2

L = 0.05t3 + 25t + 300

E: Actual evapotranspiration,
L; Maximum

evapotranspiration
[19]

Chikugo model
NPP = 0.29× 10−0.216RDI2

RDI = Rn/(Lr)

RDI: Radiation dryness,
Rn: Net radiation,

Lr: Latent heat of evaporation
[20]

Integrated model

NPP = RDI2 r(1+RDI+RDI2)
(1+RDI)(1+RDI2)

exp(−
√

9.87 + 6.25RDI)

RDI =
(

0.629 + 0.237PER− 0.00313PER2
)2

PER = 58.931BT/r

PER: Potential
evapotranspiration rate;

BT: Biological temperature
[21]

The Miami model is one of the earliest empirical models to estimate the NPP of global
vegetation. It is a model based on site measurements and the relationship between annual
precipitation and annual average temperature is fitted. The results obtained have been
used as a benchmark data set [22]. However, the NPP of vegetation is also affected by other
climatic factors, and the reliability of the estimated results of this model is only 66% to
75% [23]. Based on the Miami model, the Thornthwaite memorial model considers the role
of evapotranspiration and links NPP with the annual average evapotranspiration. Because
evapotranspiration is affected by various climatic factors and has a certain relationship with
photosynthesis, the estimation of NPP using this model is more reliable. However, both the
Thornthwaite memorial model and the Miami model are empirical factor statistical models
that lack a theoretical basis. The Chikugo model accounts for physiological information
regarding vegetation and uses information such as radiation dryness and net radiation. It is
a semi-empirical and semi-theoretical NPP estimation model. However, the model is based
on the condition that the soil water supply is sufficient, so the estimated NPP is actually
the potential or maximum NPP, which may be different from the real-world situation.
Additionally, the model does not include the vegetation information from grasslands and
deserts. Zhouguangsheng established a more comprehensive model (the natural vegetation
NPP model) with a theoretical basis similar to that of the Chikugo model, accounting for
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the physiological and ecological characteristics of plants, combined with the energy balance
and water balance equations, including biomass data for 23 natural vegetation ecosystems,
such as forests, grasslands and deserts and the corresponding meteorological data. The
model is based on the actual evapotranspiration, which is closely related to vegetation
photosynthesis. The interaction between climate and ecological factors is comprehensively
considered [21]. In a comparison of the models based on applications, this model was
superior to the Chikugo model, especially in arid and semi-arid areas. In addition, there is
another model: semi-empirical model. These models are of a statistical nature and reflect
regional peculiarities of forest growth and productivity under definite (assuming stable)
environmental conditions. This method is based on snapshot or periodic measurement of
stand biological characteristics on the sampled plot and uses regression analysis to establish
the relationship between average height (H) and average diameter (d), basal area (BA),
growth stock (GS) and total yield (TP), and can include the impact of environmental factors
on it [24]. However, this model cannot predict the future changes of NPP.

When physiological knowledge of vegetation was lacking, statistical models were
widely used because of their simplicity, intuitiveness, ease of implementation and small
number of required parameters. They have often been used to describe vegetation on
regional and even global scales [25]. However, climate-related models consider fewer
climate factors and lack the theoretical basis of physiology and ecology, and the statistical
laws obtained in different regions and conditions lack universality.

2.1.3. Process Model

A process model is a kind of model that simulates vegetation processes such as growth
(including photosynthesis, respiration, etc.), individual-level dynamics and ecosystem
functions [26]; it is also called the biogeochemical model. Based on the plant physiological
and ecological processes of different ecosystems, such models are established to calculate
ecosystem NPP by simulating vegetation photosynthesis, respiration, transpiration and
soil microbial decomposition processes, combined with meteorological, soil and plant
physiological parameters [27,28]. The NPP of vegetation can be estimated accurately, and
the impact of global change on vegetation productivity can be predicted. The representa-
tive models are the terrestrial ecosystem model (TEM) [29], Biome-BGC model [30] and
Vegetation-Ecosystem Modelling and Analysis Project (VEMAP) model [31]. The TEM
model is a dynamic simulation model based on ecosystem processes and is one of the
earliest biogeochemical models. The model estimates ecosystem NPP based on information
regarding spatially distributed climatic conditions, altitude, soil type, vegetation and water.
Its temporal resolution is 1 month, and its spatial resolution is 0.5◦. The Biome-BGC model
can simulate biogeochemical models of vegetation, litter, soil water, carbon and nitrogen
storage and flux on different ecosystem scales (local ecosystem, regional ecosystem, global
ecosystem) [32]. The model includes complete physiological and ecological parameters
relevant for forest, shrub, grassland and other biological communities. However, there are
still some limitations in the application of this model in mixed forests and other multiple
vegetation areas. The VEMAP model mainly considers the processes of photosynthesis,
growth and maintenance respiration, evaporation and transpiration of water, absorption
and release of carbon and nitrogen, distribution of photosynthetic products, decomposition
of litter and phenological changes. In addition to temperature and precipitation, the envi-
ronmental factors used to drive the model also include solar radiation, CO2 concentration,
soil texture, soil water holding capacity and wind speed.

Climate, soil and other factors are input factors for the process model, the processes of
photosynthesis, respiration and soil microbial interaction in the ecosystem are simulated,
and the exchange flux of greenhouse gases (CO2, CH4, N2O) between vegetation, soil and
atmosphere are calculated. The model is based on a clear physiological and ecological
mechanism and can reveal the ecosystem process and its interaction with the environment.
In addition, it can be combined with the general circulation model (GCM) to study the
impact of global change on the NPP of vegetation. However, the model relies on a large
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number of parameters, many of which are difficult to obtain with accuracy, greatly limiting
the application of the model.

2.1.4. Light Energy Utilization Model

The light energy utilization model or light use efficiency model, also known as the
parameter model, is based on light energy utilization theory and resource balance theory,
which postulates that plants tend to adjust their own characteristics to adapt to environ-
mental changes in ecological processes [33]. This kind of model focuses on the impact of
the utilization rate of light energy absorbed by vegetation and photosynthetic effective
radiation on the NPP of vegetation. Since light energy is the basic energy source of life
on land, the NPP of the ecosystem is estimated by using the light and effective radiation
(APAR) absorbed by plants and related regulatory factors [34]. The representative models
are the CASA model, GLO-PEM model [35] and C-FIX model [36] (Table 2). The normalized
difference vegetation index (NDVI) has become a widely used tool for estimating the pro-
portion of solar radiation absorbed by leaves [37]. NDVI (NDVI = (NIR− R)/(NIR + R))
is a metric of “vegetation greenness”, which is the sum of normalized differences between
measured values of spectral reflectance in red and near-infrared bands. NDVI that has
been integrated for more than one year has become a common substitute index for annual
NPP. With the rapid development of remote sensing technology and the wide application
of various spatiotemporal remote sensing data, the light energy utilization model based on
remote sensing data has gradually become the mainstream method for estimating the NPP
of vegetation [38].

Table 2. Typical light energy utilization models and their advantages and disadvantages [39].

Model CASA Model GLO-PEM Model C-FIX Model

Expression NPP(x, t) = APAR(x, t) × ε (x, t) NPP = ∑t
[
St ×Ntεg − Ra

]
NPP = GPP•(1−Ad)

Parameter
APAR: Photosynthetic active

radiation, ε: Actual light
energy utilization

St: Photosynthetic active radiation,
Nt: Photosynthetic active radiation
ratio, Ra: Autotrophic respiration

Ad: Autotrophic respiration rate
of vegetation

Advantage

(1) Less data and easier access
(2) The model is simple and easy

to operate
Strong real-time performance

(1) Few parameters and easy
to obtain

(2) High simulation efficiency
and high resolution

(3) Multiscale simulation

Shortcoming Difficult to determine parameters Limited data source The calculation of autotrophic
respiration rate is too simplified

Common
ground

Based on the concept of plant photosynthesis process and light energy utilization rate, solar radiation is taken as
input parameter to obtain or estimate APAR and then get the value of ε and generate NPP

The Carnegie Ames Stanford Approach (CASA) model proposed by Potter effectively
estimates the global NPP of vegetation [40]. The main input to the model are large-scale
long-term remote sensing satellite data. In addition, the model takes full account of
photosynthesis stress factors such as precipitation and temperature and is more suitable
for monitoring the dynamic changes in the NPP of vegetation on a large scale [41]. The
CASA model is the first light energy utilization model (PEM) to use light use efficiency
(LUE) and has been widely applied [42]. The NPP calculation in the CASA model and the
plant photosynthetic effective radiation (APAR) and actual light energy utilization (ε) are
related (Figure 4).
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The CASA model is generally accepted for use when running global NPP ε∗ is
0.389 (gC·MJ−1). The annual APAR (MJ·m−2a−1) and annual average of typical forest
vegetation types in China ε (gC·MJ−1) and annual NPP (gC·m−2·a−1) were simulated
(Table 3).

Table 3. Annual APAR (MJ·m−2a−1) and annual average of typical forest vegetation types in China
ε (gC·MJ−1) and annual NPP (gC·m−2·a−1) [44].

Vegetation Type PAR ε NPP

Broad-leaf evergreen forests 1867 0.265 525
Broad-leaf deciduous forests 1108 0.202 304

Needle-leaf and broad-leaf mixed forests 1346 0.137 330
Needle-leaf evergreen forests 1253 0.243 354
Needle-leaf deciduous forests 1585 0.133 432

Broad-leaf trees with groundcover 927 0.217 283

The CASA model not only has a simple calculation formula but can also be used with
remote sensing and extended to regional and even global scales. Temperature stress is
calculated according to the optimal temperature of plant production, and water stress is
estimated according to the comparison of water supply and potential evapotranspiration
demand [42]. The model can also be used to analyze the seasonal and interannual changes
in the NPP, so it has been widely implemented. For example, the CASA model-based
NPP of vegetation in China in 1997 was 1.95 Pg C, representing approximately 4.0% of the
world’s annual NPP of land vegetation at that time [44]. Dong used the improved CASA
model to estimate the NPP value of vegetation in the karst area of southwest China and
found that the NPP increased slightly from 1999 to 2003, but the spatial change was not
significant [45]. In most studies, the NPP in the study area is estimated by optimizing the
parameters of the traditional CASA model. Li estimated that the total NPP of the Hexi
Corridor in 2015 was 34.29 Tg C/a based on the corrected CASA model, while the original
CASA model overestimated the value t 0.23 Tg C/a [46]. Yan assimilated the synthetic
NDVI and the land cover classification map extracted from its phenological information
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into the CASA model for synthetic NPP estimation. The results showed that the accuracy
of comprehensive NPP estimation using non-fused NDVI data was better than that of NPP
estimation. Improving the accuracy of land cover classification can improve the accuracy
of comprehensive NPP estimation [47].

However, using the NDVI to calculate the NPP also has some limitations. In dense
vegetation, the NDVI reaches saturation, resulting in similar NDVI values for forests with
different NPP values [48]. Another problem is the presence of clouds, which distorts the
measurement of reflectivity and may lead to the underestimation of the NPP in some
tropical areas with dense cloud cover [49]. Finally, without the information of light use
efficiency, pure NDVI cannot fully measure the proportion of photosynthetic effective
radiation absorbed by leaves [50]. In the later developed radiative transfer model, near-
infrared reflectance is more representative of fAPAR than NDVI, so a new index, namely,
near-infrared reflectance of vegetation (NIRV), is calculated by multiplying the NDVI by
NIR. This index is highly correlated with the NPP on a specific time scale [51]. Its advantage
is that it can reduce the saturation of dense canopies and reduce the cross sensitivity to
soil and atmospheric conditions. It can also measure the changes in the NPP in the short
term [52].

In conclusion, it can be seen that the estimation of the NPP in forest ecosystems still
requires long-term and systematic research. The light energy utilization model is widely
applicable (Table 4). In recent years, Chinese scholars have further improved the remote
sensing inversion algorithm of ecosystem productivity based on the light energy utilization
model to improve the estimation accuracy of global and regional ecosystem productivity.
For the estimation of forest ecosystem NPP, it is necessary to strengthen the research on
the carbon cycle mechanism of different regions and types of forest ecosystems, realize
the standardized measurement of biomass, and reduce the measurement error of surface
biomass. Second, when constructing the model for estimating the NPP of forest ecosystems,
the complexity of forest ecosystems must be considered, and the adaptability of existing
models needs to be assessed and verified to reduce the uncertainty caused by model
parameters and achieve the goal of accurately estimating the NPP of forest ecosystems.

2.2. Response of the NPP to Climate Change in Karst Areas of Southwest China

Quantifying the relative contributions of climate change and human activities to vege-
tation dynamics is the key to coping with global climate change [66]. The southwest karst
region covers a vast territory with complex landforms. In addition, the influence of upper
air circulation has formed a unique and diverse climate. The main part is characterized
by a warm and humid subtropical monsoon climate [67]. Climate determines the NPP of
vegetation in terms of the physiological structure and processes of vegetation by changing
the environmental conditions. Therefore, changes in NPP can directly reflect the response
of vegetation ecosystems to environmental and climatic conditions [68]. In general, climate
factors and season length are positively correlated with NPP, while the relationship between
regions is more varied [69].

2.2.1. Effect of Temperature Change on NPP

Temperature affects the growth and metabolic rate of all organisms [70] and affects the
processes of photosynthesis and respiration. Usually, based on the remote sensing model
of light energy utilization, photosynthesis (rate) rises along the temperature, but only up to
certain threshold above each of which it is too hot for the plant and the rate goes down, and
respiration is positively related to temperature. Most models also consider the temperature
dependence of other processes, such as water balance, evaporation or decomposition rate.
In addition, the model usually assumes that the minimum temperature is more important
than the average temperature [71]. The impact of temperature on forest NPP is complex.
Temperature rise simultaneously controls the two processes of vegetation photosynthesis
and respiration. The impact on these two processes determines the increase or decrease in
ecosystem NPP; that is, there are both positive and negative effects.
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Table 4. Comparison and application of the main remote sensing models.

Model Advantage Shortcoming Representative Study Time Study Area NPP gC/m2·a Reference

Statistical model Simple, fewer parameters required
(1) Lack of physiological and

ecological theoretical basis
(2) Lack of universality

Miami 1980–2010 Grassland in
southern China 1418.83 [53]

Thornthwaite 2000–2015 China 899.40 [54]

Process model

(1) Clear physiological and
ecological mechanism

(2) Can simulate and predict the
impact of global change
on NPP

(1) Complex model
(2) Many parameters required

and difficult to obtain
(3) Difficulty in regional

scale conversion

Biome-BGC 2000–2015 Yunnan Province 892.83 [55]

BEPS 2001–2010 Jiangxi Province 692.96 [56]

LPJ-GUESS 2001–2015 Southwest China 531.81 [57]

CEVSA 1981–2015 Shennongjia Forestry
District 628.27 [58]

Light energy
utilization model

(1) Reduce reliance on ground
observations

(2) Few parameters, easy
to obtain

(3) Applicable to large-scale
NPP estimation

(1) Greatly affected by sensor,
atmosphere and cloud cover

(2) Uncertainty in radiosity and
conversion processes

MODIS 2001–2018 Southwest China 710.44 [59]

CASA 2000–2010 Guizhou Province 828.1 [60]

MODIS 2000–2015 Guangxi Province 724.5 [61]

MODIS 2000–2014 Yunnan Guizhou
Plateau 768 [62]

GLO-PEM 2001–2011 Southwest China 540.33 [63]

CASA 2002–2011 Chongqing Province 500.45 [64]

CASA 2000–2011 Sichuan Province 303.27 [65]
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On the one hand, the increase in temperature will increase the respiration of forest
vegetation, consume dry matter, and reduce the NPP value. At the same time, the increase
in temperature will increase the transpiration of vegetation and affect the growth and
development of vegetation. For example, in some areas of southeast Yunnan and central
Guangxi, the temperature is negatively correlated with the vegetation coverage. The lack
of surface water and the increase in temperature aggravates the surface evaporation in
this area, thus inhibiting vegetation growth [72]. In the south of the Hengduan Mountain,
when the temperature rises and the precipitation remains unchanged, the NPP shows a
downwards trend [73]. The NDVI values of coniferous forests in Yunnan Province are
significantly negatively correlated with air temperature [74].

On the other hand, with the increase in temperature, the enzyme activity of photosyn-
thesis in plants is enhanced, and the photosynthetic efficiency of vegetation is improved,
which promotes the growth of vegetation and improves the NPP of vegetation [75]. The
growth of many middle- and high-latitude forests is limited by the nitrogen supply to some
extent, and warming can lead to an increase in soil nitrogen availability, which may also
indirectly promote an increase in forest vegetation productivity. There are many reports on
the promoting effect of warming on the NPP. For example, in March and April, when the
temperature is ≥10 ◦C, plants begin to grow and the NPP in Guizhou Province begins to
increase gradually. In summer (June–August), before the end of June, all parts of Guizhou
experience the first day of temperatures ≥20 ◦C, and the vegetation enters a rapid growth
period. From July to August, the average temperature in Guizhou is approximately 20 to
28 ◦C, depending on the altitude. The vegetation enters a high-speed growth period, and
the NPP value reaches the maximum value in a year [76]. On a monthly scale, temperature
is the controlling factor of the NPP in humid and semi-humid regions [77].

Temperature is one of the main climatic factors driving changes in the NPP, with
obvious seasonal variation. In high latitudes, vegetation growth is periodic, and in humid
and semi-humid areas, temperature promotes NPP growth by promoting photosynthesis
of vegetation and the release of nutrients in soil. When the temperature is too high, it
aggravates the transpiration of vegetation and decreases the NPP.

2.2.2. Impact of Precipitation Change on NPP

The distribution pattern of forest productivity in China mainly depends on the hy-
drothermal conditions in the climatic environment, and the moisture conditions play a
decisive role in determining the level of forest productivity in most regions of China [78].
Most of the karst areas in southwest China are monsoon climate areas, with abundant
annual precipitation. Most areas have an annual precipitation between 1000 and 1600 mm,
and some areas have an annual precipitation between 1800 and 2000 mm; the annual
average relative humidity is 75% to 80%. The region has the distribution characteristics
of hydrothermal and thermal synchronization, but the spatial and temporal distribution
of precipitation is extremely uneven. In response to water stress or high temperature, the
stomata of leaves will partially close, to prevent excessive transpiration of water, thus
limiting the entry of CO2 into the plant through the stomata, reducing the concentration
of CO2 between mesophyll cells. This results in an increase in the content of solute in the
plant and a decrease in the stomatal conductance of leaves, leading to a weakening of light
cooperation, thus affecting the growth and development of vegetation and the accumu-
lation of dry matter [79]. Although the temperature in different vegetation distribution
areas in southwest China has increased to varying degrees, the change trend of forest NPP
is consistent with the change trend of precipitation in vegetation distribution areas [80].
For example, in the southern part of the Hengduan Mountain, under the condition of
constant temperature, the change trend of NPP is consistent with that of precipitation,
indicating that precipitation is the dominant factor affecting the change in the NPP in
this region [73]. In the two decades from 1981 to 2000, forests were widely distributed in
the southwestern region. The temperature rise rate was 0.037 ◦C/year, the precipitation
change trend was not obvious, and the NPP of forest vegetation did not exhibit an obvious
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change trend [80]. From 2000 to 2011, the average temperature in Sichuan was 12.3 ◦C, and
the annual average precipitation was 732.4 mm. From 1981 to 2000, the annual average
temperature was 12.3 ◦C and the average annual precipitation was 976.0 mm. The average
annual temperature was relatively stable, and the precipitation decreased significantly. At
the same time, the coefficient of variability obtained from the correlation analysis between
NPP and precipitation reached 83.4%, indicating that precipitation was the main driving
factor affecting the change in the NPP of vegetation in Sichuan Province [65]. In addition,
the impact of precipitation on the NPP was due to the effects of dry and wet environments
of vegetation. For example, during the drought events in southwest China from 2009 to
2010, the NDVI value of vegetation exhibited a general downward trend in the region,
especially in southwest Yunnan and Guizhou [81], which corresponded to the general
downward trend of NPP in this region as a result of precipitation changes.

Precipitations is one of the main climatic factors driving changes in the NPP. NPP can
be promoted in the vegetation growth period and in arid areas, as seen in the drought from
2009 to 2010. However, the southwest karst region is located in the subtropical monsoon
region. Although the rainfall (1000–2000 mm) is relatively low, the water stress effect
caused by engineering water shortages caused by karst landforms and their impact on the
NPP are very worthy of attention and research.

2.2.3. Impact of VPD on NPP

The vapor pressure deficit (VPD) describes the difference between the saturated
vapour pressure and the actual vapor pressure at a given temperature [82], which reflects
the temperature, humidity and dryness of the air and determines the whole transpiration
rate [83]. Under constant temperature, plants growing at low VPD usually showed higher
photosynthetic rates and enhanced stomatal and mesophyll conductance. In contrast, plants
exposed to high VPD are subject to high evaporation demand and have low efficiency from
a physiological point of view, often showing a decrease in net photosynthesis, stomatal
conductance and water use efficiency [84]. In some studies [82,84], the mechanism of
the decline in productivity was related to the limitation of photosynthesis caused by the
decrease in stomatal conductance caused by the rise in VPD. Increased VPD during growth
resulted in a higher transpiration water loss rate. With a decrease in leaf water status,
stomatal conductance decreases, thus reducing CO2 capture [85] and resulting in a decline
in photosynthetic capacity. For example, in the southwest Xishuangbanna region, in the dry
and hot seasons, the increase in VPD and temperature has greatly increased the demand for
atmospheric evaporation, further causing stomatal closure and limiting photosynthesis [86].
The fertilization effect of CO2 on vegetation has been recognized as the main driving force
of global green up. The increase in CO2 concentration increases the content of CO2 between
cells, thus promoting leaf photosynthesis [87]. CO2 is a raw material that participates in
photosynthesis and affects the NPP through its effects on temperature, plant water and
nutrient demand. Generally, when the CO2 concentration increases, plants can reduce
canopy evapotranspiration by reducing their own stomatal conductance to improve the
use efficiency of soil water. They can also improve the use efficiency of soil nitrogen to
improve the photosynthesis efficiency of forest vegetation and promote the accumulation
of dry matter [68,88]. However, the current terrestrial ecosystem models do not accurately
reflect the limiting effect of atmospheric water vapor pressure on vegetation growth, which
will lead to the models overestimating future ecosystem productivity.

In summary, from the perspective of a single climate factor, the relationship between
NPP changes in forest vegetation and temperature in karst areas of southwest China is
mainly positive, the relationship with precipitation is complex and the relationship with
VPD is negative. However, generally, temperature, precipitation and VPD affect NPP
changes together, and the impact on the NPP also has a certain seasonality and lag. In
humid and semi-humid areas, temperature is the dominant factor, and precipitation is the
dominant factor in arid, semi-arid and engineering water shortage areas. In dry and hot
seasons, temperature and precipitation affect the VPD and NPP. In addition, the response
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of forest vegetation NPP to climate is also affected by topographic factors [74]. For example,
in high-altitude areas, due to the particularity of karst landforms, precipitation increases
soil erosion, thus reducing vegetation NPP; water and soil loss is not easy in low-altitude
areas, and precipitation promotes the increase in NPP.

3. Current Situation and Change Trend of the NPP of Forest Ecosystems in Karst Areas

The terrain of southwest China is inclined from southeast to northwest and includes
mostly mountainous and hilly landforms. The region is rich in forestry resources and is an
important forest resource zone in China [89]. At the end of the 20th century, the planting of
fast-growing forests (mainly eucalyptus, poplar and pine) was promoted in the region, the
vegetation coverage increased (the forest area in Southwest China accounted for 47.6% of
the total land area in 2018), and the NPP and carbon reserves in the region also increased.
From 2001 to 2018, the NPP of vegetation in southwest China fluctuated significantly. The
highest annual average value of NPP occurred in 2015, which was 752.55 gC/m2·a, the
lowest value occurred in 2004, which was 668.21 gC/m2·a, and the multiyear average
value was 710.44 gC/m2·a. In terms of spatial distribution, it was high in the south and
low in the north, and there were great differences among different provinces, Yunnan
(989.63 gC/m2·a) > Guizhou (773 gC/m2·a) > Chongqing (597.2 gC/m2·a) > Sichuan
(496.27 gC/m2·a) [59].

For the study of the forest NPP in Southwest China, the vegetation was mainly
classified into coniferous forest, broad-leaved forest and coniferous broad-leaved mixed
forest [59,90]. However, most NPP studies in Southwest China focused on the overall
vegetation NPP, while little information was reported regarding the total NPP of forests
and the NPP of different types of forest vegetation. Based on previous research results, in
this study, we classified and summarized the annual average NPP of different regions in
Southwest China, as well as that of major forest vegetation types in China (Table 5), along
with the annual average total NPP of forests (Table 6). The results showed that the annual
average NPP of evergreen broad-leaved forests was the highest in all regions of Southwest
China, and even in the entire country, due to the long growth cycle of evergreens and the
long duration of light and action. The annual average NPP of mixed forests and coniferous
forests were ranked second and third. However, the NPP of the evergreen broad-leaved
forest in the Qinba Mountain area was slightly lower than that of the evergreen coniferous
forest, mainly because the evergreen broad-leaved forest is better suited for growing in
subtropical areas, while the Qinba Mountain area is at the intersection of subtropical
and warm temperate zones. Compared with subtropical areas with lower latitudes, the
subtropical climate characteristics in the Qinba Mountain area are relatively weak, affecting
the growth of evergreen broad-leaved forests [59,91]. From the perspective of the average
value of total forest NPP, all the southwestern provinces, except Sichuan Province, exceed
the national average value of forest vegetation, of which Guizhou Province has the highest
average value (1100.31 ± 6.39 gC/m2·a), and Yunnan Province does not include tropical
rainforest, so the average value is low.

For the estimation of the annual average NPP of common forest vegetation in South-
west China, the research results of different scholars are different (Table 7). Based on forest
inventory data, Yu estimated that the average NPP in southwest China from 1989 to 1993
was 9.64 t·ha−1year−1, of which the annual average NPP of evergreen broad-leaved forest
was the highest [97]; Ni calculated the annual average NPP of different forest vegetation
types according to Luo’s data from 1989 to 1993 [98,99]; Liu summarized the literature
published from 1982 to early 2013 and summarized the annual average NPP of different
forest vegetation types in Southwest China [90]. Liu’s annual average NPP is much lower
than that of Weilian and Ni because the latter adopts the combination of forest inventory
and field investigation.
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Table 5. Summary of the annual average NPP of different forest vegetation types in Southwest China
and China.

Region Year

NPP(gC/m2·a)

ReferenceBroad-Leaf
Evergreen

Forests

Broad-Leaf
Deciduous

Forests

Needle-Leaf
Evergreen

Forests

Needle-Leaf
Deciduous

Forests

Needle-Leaf
and

Broad-Leaf
Mixed
Forests

Yunnan Province 1982–2014 996 778 / 536 / [92]
Chongqing

Province 2001–2011 830.4 726.74 663.51 525.81 / [93]

Yunnan Province 1981–2000 1000 / / / 400~800 [80]
Southwest China 1982–2006 925.29 / 911.01 / 976.45 [94]
Qinba Mountain 2000–2015 554.71 445.67 557.97 463.00 483.49 [95]

China 1982–2015 1323.71 637.21 497.59 442.35 832.06 [96]

Note: / in the table indicates the absence of a value.

Table 6. Summary of the annual average NPP of forests in Southwest China and China.

Region Year NPP gC/m2·a Reference

Yunnan Guizhou Plateau 2000–2014 875.69 [62]
Guangxi Province 1989–1993 1000.3 ± 5.97 [97]
Guizhou Province 1989–1993 1100.31 ± 6.39 [97]
Sichuan Province 1989–1993 600.35 ± 3.40 [97]
Yunnan Province 1989–1993 700.75 ± 4.88 [97]

China 1982–2015 650.73 [96]

Table 7. Summary of the annual average NPP of common forest vegetation in Southwest China.

Vegetation Type
NPP(t·ha−1year−1)

[97] [98] [90]

Broad-leaf evergreen forests 25.4 21.9 ± 5.3 17.6 ± 7.2
Needle-leaf evergreen forests 18.66 13.5 ± 3.0 12.1 ± 6.5

Needle-leaf and broad-leaf mixed forests / 9.9 ± 5.0 9.0 ± 5.0
Tropical rainforest 16.85 27.1 ± 9.2 20.9 ± 6.7

Needle-leaf deciduous and broad-leaf mixed forests / 15.2 ± 3.0 11.9 ± 2.4

In conclusion, the spatial distribution of vegetation NPP in Southwest China is related
to the regional hydrothermal conditions and the zonal distribution of vegetation types.
The highest NPP of forest vegetation in Southwest China is broad-leaved forest, followed
by mixed forest and coniferous forest. From the distribution pattern, Yunnan has better
hydrothermal conditions, with the highest NPP (989.63 gC/m2·a) in Yunnan and the lowest
NPP (496.27 gC/m2·a) in Sichuan. Moreover, the forest NPP of Yunnan Province and
Guizhou Province exceeded the national average of forest NPP.

4. Summary and Perspectives

Reviewing the observation methods of forest ecosystem NPP and comprehensively
understanding the spatial and temporal characteristics and change trends of NPP in karst
areas are of great significance for promoting the in-depth understanding of forest ecosystem
NPP in karst areas and helping to achieve carbon peaks and carbon neutralization. Due
to different methods for estimating NPP at the regional scale, great uncertainty has been
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brought to the results of forest NPP estimation in karst areas of southwest China. By
summarizing and commenting on the progress of NPP estimation methods in academic
circles at home and abroad, the following aspects can be considered for future NPP research:
(1) establishing a highly accurate and comprehensive coupling model; (2) developing high-
precision climate data sets; and (3) further strengthening the research on the interaction
mechanism between climate change, LUCC and productivity.

4.1. Establishment of a High-Precision and Comprehensive Coupling Model

Whether through site measurement or model simulation, the sources of differences
in NPP estimates are very wide. For the measured results, even if they are also from the
field site survey, the results may still be quite different. The possible reasons are that the
above ground and underground parts measured by NPP are incomplete, and the artificial
forest and natural forest are not distinguished. For model simulation, statistical models are
widely used for NPP estimation of regional forest ecosystems due to their simple operation
and easy access to parameters. However, they lack physical significance and have poor
space–time portability. At the same time, the complex interaction between the atmosphere
and the ecosystem leads to uncertainty in the simulation results, which may lead to great
differences in the simulation values of NPP in the same region. Process models have clear
physiological and ecological mechanisms and can reveal ecosystem processes and their
interactions with the environment. It is helpful to study the impact of global change on the
NPP of vegetation. However, the model relies on a large number of parameters, many of
which are difficult to obtain with accuracy. However, the light energy utilization model
has simple parameters and little dependence on ground measurements. It is suitable for
large-scale regional observations, but the accuracy needs to be improved. Therefore, it has
more potential for the development of multimodel fusion or to improve the accuracy of
light energy utilization models for NPP detection in forest ecosystems.

4.2. Developing High-Precision Climate Data Sets

Remote sensing model simulations of large-scale regional operations require data
regarding many meteorological factors for use as driving variables, such as temperature,
radiation and precipitation. Traditionally, a variety of meteorological data collected by
meteorological stations are obtained and the spatial interpolation method is used to generate
various types of spatially continuous meteorological data maps. One drawback is that this
method is restricted by the number of meteorological stations providing the data used
in the interpolation. The more sites there are, the more representative the data will be.
However, in reality, the number of meteorological stations is very limited, and their spatial
distribution is extremely uneven. Another limitation of the interpolation method itself is
its inability to consider the influence of other elements, such as terrain and altitude, in the
spatial interpolation. The error in the model spatial driving data is one of the main sources
of model regional estimation error. Cai found that the photosynthetic effective radiation
retrieved by the remote sensing method can significantly improve the regional simulation
accuracy of the remote sensing model, and radiation data with higher spatial resolution
improve the simulation accuracy of regional vegetation productivity [100]. Therefore,
using remote sensing to retrieve climate data can effectively improve the accuracy of
NPP estimation.

4.3. Further Research on Interaction Mechanisms

Great progress has been made in the study of the relationship between terrestrial
ecosystems and key climate factors. An analysis of the mechanism of interactions is a topic
for future research. It is generally believed that the greenhouse effect and climate factors
affect vegetation productivity by affecting the process of plant growth and development and
the water cycle. However, changes in the factors related to plant growth and the interactions
between them are not often considered. In addition, the mechanism of interaction between
terrestrial ecosystems and climate change needs to be further clarified from the perspective
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of plant physiology. There have been few studies on the relationship between climate
change, LUCC, topographic factors, soil conditions and forest NPP.

The “measurability, reportability and verifiability” of terrestrial ecosystem carbon
sequestration is an important scientific framework for formulating China’s emission reduc-
tion and foreign exchange increase policies [17]. Reviewing the methods of observation
of forest ecosystem NPP and gaining a comprehensive understanding of the temporal
and spatial characteristics and change trends of NPP in karst areas are important for the
implementation of China’s carbon neutrality strategies. It is of great importance to help
achieve the goals of carbon peaks and carbon neutralization.
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