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Abstract: Atmospheric pollution caused by fine particulate matter (PM2.5) seriously damages human
health. Urban forests have the ecological function of purifying the atmosphere, which can effectively
reduce the ambient PM2.5 concentration. This paper analyzed the ability of different forest types to
mitigate PM2.5 pollution and explored the effects of forest quality and morphological parameters on
PM2.5 concentration on the forest patch level. The results concluded that the PM2.5 concentration of
the Landscape and Relaxation Forest (LF) was significantly lower than that of the Roadside Forest
(RF) and Affiliated Forest (AF) due to the environmental quality of their location. The effective
distance of LF on PM2.5 reduction was 80 m, which was significantly higher than RF and AF. The
Normalized Difference Vegetation Index (NDVI), which indicated forest growth status, was the most
effective parameter for improving the urban forest PM2.5 mitigation ability. The concentration of
PM2.5 decreased linearly with the increase in NDVI. The area and perimeter of the forest patches
had a significant nonlinear negative correlation with PM2.5 concentration. In addition, the more
irregular the shape of the forest patch, the lower the PM2.5 concentration of the forest. Moreover,
the simpler shape of RF and AF helped to alleviate PM2.5 pollution. The round shape of AF more
efficiently reduced PM2.5 concentration. Our study demonstrated that the surrounding environment,
forest growth status, and patch forms determined the PM2.5 reduction capacity of an urban forest.
The corresponding management and adjustment methods should be implemented in future urban
forest management.
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1. Introduction

Urbanization is an inevitable trend in the development of human society [1,2]. In 1950,
30% of the world’s population lived in cities, while the number reached 55% in 2018. It has
been estimated that by 2050, 68% of the world’s population is expected to live in cities [3].
Since the reform and opening up, China’s urbanization rate has soared from 17.92% in 1978
to 63.89% in 2020 [4], which has exceeded the global average level. The intensification of
urbanization has caused a series of environmental problems, among which air pollution
has become a major environmental and public health problem all over the world [5,6]. The
World Health Organization’s “Global Urban Environment” air pollution database shows
that 98% of cities in low- and middle-income countries are exposed to air pollution far
in excess of air quality guidelines [7]. Among numerous air pollutants, fine particulate
matter (PM2.5) with an aerodynamic equivalent diameter of less than 2.5 microns has been
significantly associated with human health [8–10]. It may cause premature death, increase
lung inflammation, accelerate atherosclerosis, and change the heart function of humans [11].
In 2013, 910,000 people died prematurely from air pollution in China, and 760,000 of them
were directly related to PM2.5 [12]. High concentrations of PM2.5 in urban air pose a threat
to the health of urban residents [13]. Furthermore, it has serious impacts on the living
environment and will affect the balance of the entire ecosystem as well as climate change in
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the long run [14,15]. At present, PM2.5 pollution matter has not only become a critical issue
affecting national image, social harmony, and stability but has also become a worldwide
problem [10].

Urban forests can directly or indirectly affect urban air quality by changing the urban
atmospheric environment [16,17]. Previous studies on the relationship between urban
forests and ambient particulate pollutants were mostly focused on PM10. In the past
two decades, with the continuous confirmation of the link between PM2.5 and human
health, PM2.5 has gradually attracted extensive attention. Urban forests decrease ambient
particulate matter content by trapping particulate matter, releasing particulate matter
(such as pollen), and resuspending particulate matter on plant surfaces [17] so that the
concentration of particulate matter inside the forest is much lower than the forest edge and
outside [18]. Some of these particles were absorbed by trees, while most of the rest were
trapped by the plant surface. The intercepted particles are usually released back into the
atmosphere, washed away by rain, or dropped to the ground with leaves and branches.
During drought periods, particulate matter is constantly intercepted and resuspended,
but during precipitation, it is washed away, dissolved, or transferred to the soil [19]. In
addition, trees can indirectly affect particulate concentrations by changing air temperature,
releasing volatile organic compounds (VOCs), reducing energy use (i.e., shading buildings,
changing wind speeds, lowering temperatures, etc.), and reducing the emissions from
power plants [20,21].

Studies have shown that increasing vegetation coverage in cities [22,23], changing
the tree species [13,24] or community structure [25,26], or adjusting the landscape in-
dices [27–31] can significantly reduce the PM2.5 concentration. However, except in the
new planning area, it is not feasible to reduce air particulate pollution by substantially
increasing the area of urban forests or large-scale changes in forest species, community
structure, landscape composition, and configuration. Nevertheless, the growth status and
spatial forms of existing urban forests can be moderately modified to improve the efficiency
of PM2.5 mitigation. The ecological services of urban forests are affected by many factors.
The basic components of the urban landscape, changes in the forest patch characteristics
in terms of the forest growth status, and the spatial forms of the patch strongly affect the
stability of ecological forest services. However, most of the studies were focused on the
size or degree of fragmentation in forest patches [27,28], and the quantitative relationship
between key characteristic parameters of urban forest patches and PM2.5 concentration
remains unknown. How to optimize the shape configuration of the existing forests in the
limited space and effectively improve the ecological services of the urban forest ecosystem
is one of the key and difficult points in future urban ecology research. Moreover, the current
concerns about the ability of urban forests to reduce PM2.5 mainly include urban street
trees [32–34], green belts [30,35] and park green spaces [36,37], and few studies have been
conducted on different functional types of urban forests, which were the basis of further
studies to promote the harmonious development of urban ecological services.

In this paper, Changchun city, which is undergoing rapid urbanization, was selected as
the study area. We analyzed the PM2.5 concentration differences in urban forests, compared
their PM2.5 reduction capacity, and revealed the relationship between PM2.5 variation in
forest patch growth status and form parameters with the help of plant ecology, spatial
analysis, and statistical techniques. Moreover, this research attempted to provide some
useful guidance and suggestions for urban forest management regarding PM2.5 mitigation.
These findings were suitable for the cities suffering from serious air pollution problems
brought about by rapid urbanization. Specifically, the three objectives of this study are:
(1) to determine the PM2.5 concentration difference among different forest types, (2) to
explore the PM2.5 reduction ability by comparing their PM2.5 reduction distance, and (3) to
reveal the key factors of urban forest patches that affect PM2.5 mitigation.
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2. Materials and Methods
2.1. Study Area

Changchun city (43◦05′–45◦15′ N; 124◦18′–127◦05′ E) is the capital of Jilin Province, lo-
cated in the middle latitude of the Northern Hemisphere, the hinterland of the Northeastern
Plain of China [38]. The built-up area is 543 km2, and it had a population of 4.468 million at
the end of 2020. Changchun is in the warm temperate zone, a continental monsoon climate
area, with an annual average temperature of 7.1 ◦C, annual precipitation of 662 mm, and an
annual sunshine duration of 2688 h in 2020. The altitude is 250–350 m in Changchun, and
the main types of soil are black soil, meadow soil, and chernozem soil. The vegetation area
was 228.65 km2, and the coverage rate was 42.11% [39]. In 2020, 89.8% of days had good air
quality in Jilin Province. Of the days with air quality exceeding the standard, 69.6% were
caused by PM2.5 [40]. From 2018 to 2020, the primary air pollutant in Changchun was PM2.5,
and the annual average concentrations were 33 µg/m3,38 µg/m3, and 42 µg/m3 [40–42],
respectively, with an annual growth rate of 27%. With the acceleration of industrialization
and urbanization, atmospheric environmental quality presented a downward trend. This
study takes the built-up area of Changchun city as the research area, and the real-time air
pollutants data were collected by the 8 Chinese National air quality monitoring stations
within the area (Figure 1).
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Figure 1. (a) The Administrative Map of China, with Changchun city displayed in red color. (b) The
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Monitoring Sites.

2.2. Data Sources

The PM2.5 concentration data of 8 monitoring stations in Changchun were provided by
the China Environmental Monitoring Station (http://www.cnemc.cn/, accessed on 29 Au-
gust 2022). The meteorological data were from the Daily Dataset of China Surface Climatic
Data (V3.0) provided by the National Meteorological Science Data Center (https://data.
cma.cn/dataService/cdcindex/datacode/A.0012.0001_220/show_value/normal.html, ac-
cessed on 29 August 2022), which mainly included precipitation, average air pressure,

http://www.cnemc.cn/
https://data.cma.cn/dataService/cdcindex/datacode/A.0012.0001_220/show_value/normal.html
https://data.cma.cn/dataService/cdcindex/datacode/A.0012.0001_220/show_value/normal.html
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average wind speed, average temperature, and average relative humidity. The land-use
data were from the Third National Land Resources Survey. Three Gaofen-2 images of
different months in autumn were selected, with the dates of 23 August, 12 September, and
5 October 2020, respectively. The images had four multispectral bands (4 m resolution),
namely a blue, green, red, and near-infrared spectrum, and one panchromatic band (1 m
resolution), which were obtained from the High Resolution of the Earth Observation System
Jilin Data and Application Center (http://gaofen.jlu.edu.cn/).

2.3. Methods
2.3.1. Urban Forest Classification and Extraction

The urban forests in Changchun were extracted from the Gaofen-2 images by Ar-
cGIS10.8 (ESRI, Redlands, CA, USA) (Figure 1c). They were divided into 5 types [43]
according to their location, function, and management method (Table S1), namely Roadside
Forest (RF), Affiliated Forest (AF), Landscape and Relaxation Forest (LF), Ecological and
Public Welfare Forest (EF), and Production and Management Forest (PF). The areas of the
last two urban forest types in Changchun were relatively low; therefore, only RF, AF, and
LF were analyzed in this study. In order to ensure visual interpretation accuracy, 50 of each
forest type (about 1%) were randomly selected for site accuracy verification using a field
survey. As all kinds of urban forests have clear shape, distribution, and tone characteristics,
visual interpretation accuracy reaches 100%.

2.3.2. Forest Patch Characteristic Parameters

To measure the patch characteristics of the urban forests in terms of area, boundary,
shape, complexity, and quality, we selected six indexes to represent the forest patch feature,
which included patch area (AREA) and patch perimeter (PERIM) on the area and boundary
level; shape index (SHAPE), fractal dimension index (FRAC), and related circumscribing
circle (CIRCLE) on the patch shape scale level; in addition, the Normalized Difference
Vegetation Index (NDVI) was used to indicate the growth status of the urban forests. The
ecological significance of the six parameters is shown in Table 1.

Table 1. Name, meaning, and range of forest patch characteristic parameters.

Forest Patch Metrics Definition Ecological Meaning Data Range

Patch Area (AREA) The extent of urban
forest patch.

The larger the number, the larger the area,
and richer the species diversity. AREA > 0

Patch Perimeter (PERIM) The length of urban forest
patch edge.

The larger the number, the larger the
perimeter. It also reflects the complexity of

the forest edge.
PERIM > 0

Shape Index (SHAPE) Degree of regularity of
patch shape.

The larger the value, the more complex the
patch shape. When the value approaches 1, it
indicates that the patches are aggregated to

the maximum extent (such as square or
near square).

SHAPE ≥ 1

Fractal Dimension
Index (FRAC)

The complexity of patch shape
on spatial scale.

The larger the value, the more complex the
shape and the greater the

ecological complexity.
1 ≤ FRAC ≤ 2

Related Circumscribing
Circle (CIRCLE)

The degree of near-circular or
near-strip shape of

forest patch.

The smaller value means the shape tends to
be round, while the larger value indicates the

patch shape tends to be strip.
0 < CIRCLE < 1

Normalized Difference
Vegetation Index (NDVI)

The degree of forest coverage
and health condition.

The positive value indicates vegetation exist,
and the larger the value, the greater the

vegetation coverage.
−1 < NDVI < 1

2.3.3. PM2.5 Concentration Data

A Land Use Regression (LUR) model was used to simulate the concentration of
PM2.5 [31,44,45] in Changchun, as it can accurately reflect the spatial distribution character-

http://gaofen.jlu.edu.cn/
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istics of air pollutants with a simple model structure and less computing resources than
non-linear models [31]. There were mainly two or more independent variables and one
dependent variable in the LUR model, as follows:

y = λ0 + λ1X1 + λ2X2 + . . . + λnXn + δ (1)

where the dependent variable y was the PM2.5 concentration of the monitoring sites, the
independent variables X1, X2 . . . Xn were the environmental factors that influence the PM2.5
variation, λ1, λ2 . . . λn were the associated coefficients, and σ was the random variable.

Considering the city size and the research scale, we selected five categories as the
independent variables, which included the traffic factor, land use factor, population factor,
meteorological factor, and vegetation factor, respectively. Buffer zones of 300 m, 600 m,
900 m, 1200 m, and 1500 m radius were established at the 8 state-controlled monitoring
points in Changchun, and a total number of 55 factors were calculated to establish the LUR
model. The environmental factors of each category and their relationships with the PM2.5
concentration can be seen in Table S2. The variables with a correlation coefficient less than
0.4 with PM2.5 concentration were removed, and the remaining variables were analyzed by
multiple linear regression. The optimal LUR model is listed in Equation (2). Then, ArcGIS
10.8 was used to grid the study area (the grid size was 1 km × 1 km), and the relevant
environmental variables of each grid center point were calculated. After standardized
processing, the PM2.5 concentration of each point in autumn was calculated according to
the optimal LUR model. Finally, the ordinary kriging interpolation method was used to
obtain the spatial distribution of the PM2.5 concentrations (Figure S1). The mean PM2.5
concentration was 52.70 µg/m3 in Changchun.

y =42.54 + 0.152xILP900+3.314xTROAD600+2.801xMROAD600−17.953xNDVI300−19.315xPRE300 (2)

The adjusted R2 was 0.852, and the p value was 0.018. Where y was the PM2.5 concerta-
tion calculated by LUR, xILP900 was the industrial land area of the 900 m buffer zone radius;
xTROAD600 was the total road density of the 600 m buffer zone radius (km·km-2); xMROAD600
was the first-level road density of the 600 m buffer zone radius (km·km-2); xNDVI300 was
the NDVI value of the 300m buffer zone radius, and xPRE300 was the precipitation (mm) of
the 300m buffer zone radius.

2.3.4. Data Analysis

The number of patches included in the analysis was determined by a stratified random
sampling method. The forest patch metrics were obtained by FRAGSTATS 4.2 after being
converted to a raster format in ArcGIS 10.8 (ESRI, Redlands, CA, USA). NDVI was calcu-
lated from the Gaofen-2 images through band calculation as Equation (3) in ENVI 5.3 (ITT
Visual Information Solutions, Boulder, CO, USA). The PM2.5 data from the different forest
types and buffer zones were extracted by spatial analysis in ArcGIS 10.8. One-Way ANOVA
was applied to find the PM2.5 concentration differences among the different forest types,
and Pearson correlation analysis and regression analysis between the patch characteristic
parameters and PM2.5 concentrations were conducted in R (CRAN project). The PM2.5
mitigation distance was calculated by comparing the PM2.5 concentration of different buffer
zones from the forest patches. In this study, the seasonal mean concentration of PM2.5 was
used, and similar meteorological conditions were assumed in the same season. In this way,
the influence of the urban forest landscape on the PM2.5 concentration can be highlighted
under the premise of relatively consistent meteorological conditions.

NDVI = (NIR − R)/(NIR + R) (3)

where NIR was the near-infrared spectrum, and R was the red spectrum of the Gaofen-
2 images.
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3. Results
3.1. Spatial Forms, NDVI and PM2.5 Concentration of Different Urban Forest Types

As shown in Table 2, the AREA and PERIM of LF were 10.29 km2 and 2380.94 m,
respectively, and were much bigger than RF and AF, while FRAC and CIRCLE were the
least in LF among the three forest types. Moreover, AREA and PERIM were more discrete
in LF than RF and AF. The SHAPE index appeared to be very different among the different
forest types, which presented as RF > LF > AF. In addition, the mean values of NDVI
in RF, LF, and LF were not too different, but the maximum and minimum values varied
greatly. RF had the lowest NDVI value of 0.43, and AF had the largest value of 0.89. The
PM2.5 concentration was significantly different among the different urban forest types.
RF had the highest PM2.5 concentration (52.23 µg/m3) and was significantly higher than
AF (46.74 µg/m3) and LF (44.07 µg/m3), and LF was significantly lower than RF and AF.
However, the standard deviation (SD) of LF was much lower than RF and AF.

Table 2. Descriptive statistic of forest patch characteristic parameters and PM2.5 concentration of
three forest types.

Forest Type Index Max. Min. Mean SD

RF AREA (km2) 6.85 0.04 0.88 1.03
PERIM (m) 3880 140 825.42 521.19

SHAPE 3.96 1.57 2.31 0.43
FRAC 1.26 1.08 1.20 0.04

CIRCLE 0.97 0.57 0.88 0.07
NDVI 0.79 0.43 0.65 0.07

PM2.5 (µg/m3) 60.10 47.52 52.23 a 2.22
LF AREA (km2) 123.71 0.01 10.29 19.09

PERIM (m) 30,800 64.00 2380.94 4331.54
SHAPE 10.58 1.03 2.00 1.47
FRAC 1.36 1.01 1.11 0.83

CIRCLE 0.95 0.09 0.61 0.18
NDVI 0.85 0.55 0.67 0.07

PM2.5 (µg/m3) 58.01 31.00 44.07c 7.57
AF AREA (km2) 5.64 0.04 0.40 0.62

PERIM (m) 1940 140 380.23 245.20
SHAPE 2.57 1.03 1.63 0.25
FRAC 1.20 1.01 1.14 0.37

CIRCLE 0.91 0.30 0.73 0.11
NDVI 0.89 0.53 0.67 0.09

PM2.5 (µg/m3) 55.61 36.32 46.74 b 3.00
Notes: Different letters indicated significant differences. Refer to Table S1 for the meaning of the abbreviated
forest types, and Table 1 for the meaning of the abbreviated forest patch characteristic parameters, respectively.

3.2. PM2.5 Reduction Capacity of Different Forest Types

As shown in Figure 2, LF had the longest PM2.5 reduction distance (80 m), and it was
5.3 times that of RF (15 m). The PM2.5 reduction distance of AF was 35 m, which was bigger
than RF but much smaller than LF. The PM2.5 concentration of LF and AF fluctuated wildly
within the 100 m buffer zone around the forest patch, while RF had a relatively stable
variation. Moreover, the PM2.5 concentration of RF on each distance point was larger than
AF and LF.
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3.3. Relations of Forest Patch Characteristics Parameters and PM2.5 Concentration
3.3.1. Correlations of Forest Patch Characteristics and PM2.5 Concentration

The correlation of the patch characteristic parameters and PM2.5 concentration ap-
peared to be different among the three forest types (Table 3). The AREA, PERIM, and NDVI
of RF, LF, and AF had a high negative significance with the PM2.5 concentration. Moreover,
NDVI had the biggest correlation coefficient, larger than AREA and PERIM. The SHAPE
index had a negative significance in relation to the PM2.5 concentration of RF and LF at a
0.01 level but with AF at a 0.05 level. In addition, the relationship was negative between
FRAC and PM2.5 concentration in LF, but it displayed a significant positive correlation in
RF and AF. Moreover, the relationship between CIRCLE and the PM2.5 concentration was
also inconsistent, as RF represented the negative correlation and LF and AF appeared to
have a positive correlation.

Table 3. Correlations of forest patch characteristic parameters and PM2.5 concentration.

Forest Type AREA PERIM SHAPE FRAC CIRCLE NDVI

RF −0.447 ** −0.475 ** −0.206 ** 0.137 ** −0.035 −0.751 **
LF −0.648 ** −0.542 ** −0.354 ** −0.102 0.035 −0.715 **
AF −0.530 ** −0.479 ** −0.088 * 0.136 ** 0.127 ** −0.716 **

Notes: * Correlation is significant at 0.05 level; ** Correlation is significant at 0.01 level. Refer to Table S1 for the
meaning of the abbreviated forest types, and Table 1 for the meaning of the abbreviated forest patch characteristic
parameters, respectively.

3.3.2. Effects of Forest Patch Characteristics Parameters on PM2.5 Concentration

Figure 3 reveals the PM2.5 concentration variation with the urban forest patch parame-
ters. AREA and PERI had a logarithmic relationship with the PM2.5 concentration in RF
(Figure 3a,b), and LF (Figure 3f,g), but changed linearly in AF (Figure 3j,k). SHAPE had
a negative linear relationship with PM2.5 concentration in all three forest types, but only
4.26%, 12.53%, and 0.77% of the variation of the PM2.5 concentration in RF, LF, and AF
was associated with it (Figure 3c,h,l). Figure 3d,m show that a positive correlation existed
between the PM2.5 concentration and FRAC in RF and AF, in which 1.87% and 1.85% of
the PM2.5 concentration variation was caused by FRAC, respectively. CIRCLE appeared to
have a positive relationship with the PM2.5 concentration in AF (Figure 3n). NDVI had the
most associations with PM2.5 concentration, and it can explain 56.46%, 51.06%, and 51.27%
of the PM2.5 concentration variation of RF, LF, and AF, respectively, by the linear regression
models (Figure 3e,i,o).
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Figure 3. Regression analysis of PM2.5 concentration and forest patch characteristics parameters.
Notes: Refer to Table S1 for the meaning of the abbreviated forest types, and Table 1 for the meaning of
the abbreviated forest patch characteristic parameters, respectively. Figures (a–e) were the regression
model between PM2.5 concentration and AREA, PERIM, SHAPE, FRAC and NDVI respectively in RF,
Figures (f–i) were the regression model between PM2.5 concentration and AREA, PERIM, SHAPE and
NDVI respectively in LF, and Figures (j–o) were the regression model between PM2.5 concentration
and AREA, PERIM, SHAPE, FRAC, CIRCLE and NDVI respectively in AF.

4. Discussion
4.1. PM2.5 Mitigation Capability of Urban Forest

Urban forests can help to mitigate PM2.5 pollution, and according to Table 2, it was
concluded that the PM2.5 concentrations of RF, LF, and AF were 0.89%, 16.38%, and 11.31%
lower than the mean value of Changchun, respectively. The main reason that RF had
a higher PM2.5 concentration than LF and AF may be due to the growth environment
of their locations. RF planted by the roadside may suffer more gaseous pollutants from
traffic transportation [32,35,46] than AF and LF. AF is usually located in the community
or campus, and the distance from the road was further than RF, and the buildings around
AF could help block pollutants. LF is usually located in favorable environments, such
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as parks or gardens [43]. Furthermore, apart from the advantage of its location, it also
has a bigger size in the urban environment, which encourage forest ecological services to
purify the atmosphere, similar to a natural forest. Moreover, the low species biodiversity
of RF hindered the air pollution capacity. For the convenience of management and a trim
appearance, unique species were selected for RF. Not only PM2.5 mitigation, other services
such as carbon sequestration, oxygen release, as well as soil and water conservation could
not reach their potential in low biodiversity [47,48]. In addition, most of the RF species
had a good adaption to urban environments. However, the species in RF were not the best
choice for PM2.5 removal. It was reported that conifer species ranked high in PM2.5 removal
efficiency [13]. However, broad-leaf species are always selected for RF in Northern Chinese
cities [49], which reduced the PM2.5 reduction capacity of RF.

The effective decreasing range of PM2.5 concertation was also a criterion for the PM2.5
reduction ability of urban forests. Generally, the further from the urban forest, the higher
the PM2.5 concentration. Therefore, the breakpoints of the curve from rising to declining
(Figure 2) was regarded as the maximum distance of PM2.5 reduction in urban forests. As
illustrated in Figure 2, the PM2.5 mitigation distance of LF was significantly greater than RF
and AF. In addition, the fluctuation ranges of RF, AF, and LF were 8.13 µg/m3, 10.64 µg/m3,
and 9.81 µg/m3, respectively, in the 100m buffer zone radius. Although the fluctuation
value was large in LF, all of the PM2.5 concentrations in the buffer zone radius were smaller
than the average PM2.5 concentration in Changchun. Moreover, 4.76% and 57.14% of the
PM2.5 concentrations were lower than the average value of RF and AF. LF had fewer ups
and downs than RF and AF, which indicated its stable PM2.5 reduction capacity.

4.2. Forest Growth Status and Shape Regulated PM2.5 Concentration

NDVI had the strongest relationship with PM2.5 concentration than the other patch
characteristic parameters in all of the forest types (Table 3). Healthy ecosystems pro-
vide stronger ecological services. As an important indicator reflecting plant growth and
health [50,51], NDVI plays a critical role in PM2.5 reduction. Our study demonstrated that
the PM2.5 concentration would decrease by more than 2.2 µg/m3 with an NDVI increasing
by 0.1 (Figure 3). In addition, a negative linear correlation appeared between NDVI and the
PM2.5 concentration of a forest patch, which meant that the PM2.5 concentration changed
monotonously with NDVI.

In addition to NDVI, which indicated the forest growth status, the forest shape pa-
rameters also played a vital role in PM2.5 mitigation. Usually, AREA reflected the forest
size. As is known, the ecological services provided by the small-sized forest were lim-
ited, and large-sized forests have stable ecological services [52], including PM2.5 reduction.
However, the relationships between AREA and the PM2.5 concentration in RF and LF were
non-linear; that is, the PM2.5 concentration would decrease gradually when the urban
forest size increased with a forest size larger than a certain threshold. However, the AREA
of AF displayed a linear variation with PM2.5 concentration. This may be caused by the
AREA distribution differences among the different urban forest types. The mean AREA
of RF and LF were bigger than AF (Table 2), and 96.62% of the AF patches AREA were
smaller than 2 km2 (Figure 3), which did not reach the curves’ breakpoint of AF and LF.
Similar to AREA, PERIM was another parameter that denoted forest size. Therefore, the
relationship between PERIM and the PM2.5 concentration showed the same trend as the
AREA in RF, LF, and AF. However, PERIM also signified forest patch boundary complexity.
A large PERIM with the same AREA meant a longer border and more contact opportunities
with the outside environment. When PERIM was bigger than the threshold, the PM2.5
reduction efficiency would decline, and atmospheric purification could not keep pace with
the increasing rate of PM2.5 concentration. SHAPE signifies the regularity of the forest
patch [30], the larger the value, the more irregular the forest patch (Table 1), and the bigger
the ecologic ecotone area. As the results in Table 3 suggest, the PM2.5 concentrations in
RF and LF were highly negatively correlated with SHAPE. It suggested that the irregular
shape of the forest patch could help to mitigate PM2.5 concentration. On the other hand,
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the relationship between SHAPE and the PM2.5 concentration of AF was relatively low,
as well as the explanation degree in the regression model (Table 3 and Figure 3). The
mean SHAPE of AF was much smaller than RF and LF, and 92.29% were less than 2. For
aesthetic purposes, green community spaces are usually designed in a square shape, and as
such, the square or near-square shape of AF had fewer opportunities than the complicated
shape for gas flow and exchange. Therefore, the SHAPE of AF had a lower significance
level regarding the PM2.5 concentration compared with RF and LF. The variations in the
FARC and PM2.5 concentration were not consistent in different urban forest types. With an
increase in FARC, the PM2.5 concentration increased accordingly in RF and AF. However,
there existed a weak negative relationship in LF. Unlike SHAPE, FARC represented the
shape complexity of the forest patch on a spatial scale. Despite the FARC in RF, LF and
AF had few differences; the SDs of LF were 12 times that of RF and two times that of AF.
Therefore, there was no significant connection between FARC and the PM2.5 concentration
of LF due to the large variation. CIRCLE reflected the shape of the patches, which either
tend to be round or in strips (Table 1). The smaller the value, the closer the shape was to a
circle. On the other hand, the closer the value was to 1, the closer the shape was to a strip.
As shown in Table 2, RF had the biggest CIRCLE, which indicated that the RF patches were
more stripped than LF and AF. The strip shape of the patches had more chances to contact
and exchange with external materials, including particulate matter. Therefore, the CIRCLE
of RF had an opposite relationship with the PM2.5 concentration than LF and AF.

5. Conclusions and Implications

This study extracted urban forest patches from remote sensing images and calculated
patch quality and shape parameters with the help of image processing and landscape
ecology methods. By using the LUR model, a PM2.5 concentration distribution map was
simulated to compare the difference in the ecological services regarding the PM2.5 reduction
in three urban forest types. Then the decisive factors influencing PM2.5 concentration were
obtained by correlation analysis and a regression model. It was concluded that urban
forests play an important role in PM2.5 mitigation. The PM2.5 concentration of the urban
forests varied due to their locations and the opportunity of contact with contaminants.
Furthermore, LF had the strongest PM2.5 reduction capacity, larger than RF and AF, for it
had the biggest PM2.5 reduction distance when compared to RF and AF. NDVI was the
most important factor for mitigating the PM2.5 concentration than the other patch shape
indexes. The AREA, PERIM, and SHAPE parameters also significantly affected PM2.5
concentration. The PM2.5 concentration decreased rapidly when the AREA and PERIM of
the forest patch were small and then declined slowly when AREA and PERIM increased.
In addition, the PM2.5 variation of RF and LF cannot be regulated by FRAC, and CIRCLE
only has a positive relation with AF.

Urban air quality suffers enormous pressure under intensive urbanization and global
change. Urban forest ecosystems have huge potential for atmosphere purification, including
PM2.5 mitigation. Reasonable forest management measures can help to sustain the stability
of ecological services. The exact connections between PM2.5 concentration and urban forest
characteristics are critical to establishing such practices. The following recommendations
should be considered to decrease PM2.5 pollution.

(1) Improve urban forest growth status or health condition. Growth status represented
by NDVI had the greatest influence on PM2.5 reduction. LF and AF were far away
from road traffic pollution and usually received more maintenance than RF. Therefore,
the focus for RF should be their conservation in terms of water, fertilizer, and pest and
disease management in urban management.

(2) Increase the forest patch area, perimeter, and irregularity. As we know, it is difficult to
increase the forest size in the limited urban environment. Nevertheless, the amount of
forest can be increased through roof greening, vertical greening, and building metope
greening, etc. On the other hand, when the forest size is fixed, the PM2.5 concentration
can be effectively reduced by increasing the length of its boundary and creating a
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more irregular spatial shape of the boundary, which helps to maximize the reduction
ability of the urban forest. In addition, to improve the PM2.5 mitigation capacity of
AF, an irregular round boundary should be considered for landscape planning.

(3) The regression model between the patch parameters of the urban forests and PM2.5
concentrations should be used to evaluate the reduction effect of the forest. Low PM2.5
concentration patches should be selected as the optimal urban forest planning and
design scheme. Through assessing the PM2.5 reduction capacity of different forest
types, related transformation and optimization measures could be implemented.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f13091408/s1, Figure S1: Spatial distribution of PM2.5 concentration
in Changchun; Table S1: Urban forest classification; Table S2: Correlations between environmental
factors and PM2.5 concentration for LUR model.
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