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Abstract: As one of the ways to achieve carbon neutralization, shrub biomass plays an important role
for natural resource management decision making in arid regions. To investigate biomass dynamic
variations of Caragana korshinskii, a typical shrub found in the arid desert area of Ningxia, northwest
China, we combined a nonlinear simultaneous (NLS) equation system with theoretical growth (TG)
and allometric growth (AG) equations. On the basis of a large biomass survey dataset and analytical
data of shrub stems, four methods (NOLS, NSUR, 2SLS, and 3SLS) of the NLS equations system were
combined with the TG and AG equations. A model was subsequently established to predict the AGB
growth of C. korshinskii. The absolute mean residual (AMR), root mean system error (RMSE), and
adjusted determination coefficient (adj-R2) were used to evaluate the performance of the equations.
Results revealed that the NSUR method of the NLS equations had better performance than other
methods and the independent equations for BD and H growth and AGB. Additionally, the NSUR
method exhibited extremely significant differences (p < 0.0001) when compared with the equations
without heteroscedasticity on the basis of the likelihood ratio (LR) test, which used the power function
(PF) as the variance function. The NSUR method of the NLS equations was an efficient method for
predicting the dynamic growth of AGB by combining the TG and AG equations and could estimate
the carbon storage for shrubs accurately, which was important for stand productivity and carbon
sequestration capacity.

Keywords: theoretical growth equation; allometric growth equation; nonlinear simultaneous
equations system; heteroscedasticity; Caragana korshinskii shrub

1. Introduction

Biomass is investigated when studying the carbon storage of forest ecosystems, as
it is an important indicator of stand productivity and carbon sequestration capacity and
plays an indicative role in forest quality assessment [1,2]. Shrubs are indispensable and
important species in the forest ecosystem and play essential roles in ecological processes.
Aboveground biomass (AGB) is expressed on an area basis and is central to many ecological
processes and services provided by shrublands [3]. It is the main forest vegetation type
found in the arid aeolian sand regions (AASRs) of China. Shrubs are widely used for
ecological protection and restoration measures and reconstruction projects due to their
well-developed root systems and remarkable abilities in wind and sand fixation, soil and
water conservation, and drought resistance. Thus, studying shrub biomass is of great
importance for ecosystem restoration, regeneration, and security in the AASRs [4].

In recent years, scholars have constructed many biomass models [5,6]. The first study
on biomass was conducted in 1876 when Ebermeryer in Germany investigated the dry
matter productivity of the Bavarian Forest by measuring the amount of leaf litter and
wood weight of certain tree species. The earliest measurements and studies on shrub
biomass have been traced back to the early 1960s [7,8]. Lufafa et al. [9] studied the shrub
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biomass model and obtained good results. However, the model was mostly static and not
dynamic [10]. Due to differences in species biomasses and environmental conditions, such
as temperature, precipitation, and elevation, application of the shrub biomass prediction
model has been limited [11,12]. For shrub forests, there is no unified standard by which the
method is used to establish biomass models.

Due to the increasing importance of forests as carbon sinks for carbon neutrality,
there is a growing need for new models to address the dynamic biomass model [13]. The
dynamic biomass model uses age as the independent variable and is convenient for the
dynamic assessment of forest biomass. The model is governed by an underlying forest
growth mechanism controlled by a variety of ecological processes [14], which has great
predictive abilities for forest production and contributions. However, this model has been
seldom applied in forest growth, as a single dimension of time is needed to obtain forest
biomass. Existing dynamic biomass models have often been built using the space-for-time
substitution method to obtain forest biomass data at different stages in the same site [15].
Thus, it may lead to erroneous conclusions when using the space-for-time substitution
assumption for a spatial regression analysis on static data with only spatial variation while
studying ecological processes in static spatial datasets [16]. Realistically, it is difficult
to ensure the consistency of site conditions (i.e., elevation, slope, and slope aspects) at
different stages, especially in nonstationary environments [17]. Moreover, it is necessary to
acquire a mass of data, which limits the development and construction of dynamic biomass
models [18].

A potential solution for these limitations is the application of nonlinear simultaneous
(NLS) equations [19], including the theoretical growth (TG) equations of basal diameter (BD)
and/or height (H) and the allometric growth (AG) equations of AGB as functions of the BD
and/or H of shrubs. The TG equation describes the age-dependent growth of an organism
or population, which reflects the regularity of the growth of some organisms [20,21]. It
is characterized by logic and the biological significance of parameters. Tree-ring widths
are effective for the prediction of BD and H growth processes [22–24]; TG models have
been presented in many forms [25–29], including the Logistic, Richards, Korf, Gompertz,
and Mitscherlich functions. Additionally, as it is commonly used to predict forest biomass,
the AG equation typically uses nonlinear power-law forms that predict AGB and the BD
and/or H of shrubs as the independent variables. Due to the simplicity and high efficiency,
AG equations have been widely used to accurately estimate forest biomass and carbon
storage, as well as to study degraded forest ecosystems [11,30].

Caragana korshinskii belongs to the Caragana genus and has a developed root system,
vigorous growth, wide adaptability, and strong stress resistance [31]. As a major forest
vegetation type found in the AASRs of Ningxia, northwest China, C. korshinskii has played a
positive role in improving the ecological environment of the sandy area and promoting the
economic construction and development of local animal husbandry. In this study, dynamic
AGB models of C. korshinskii in the AASRs were established using the NLS equation method
using the optimal TG equations of BD and H, which were selected by fitting, and the AG
equations of AGB, which were constructed using BD and/or H as the independent variables
on the basis of a large biomass dataset. The objectives of this paper are to (a) describe
the dynamic growth of AGB for C. korshinskii on the basis of dynamic AGB model and
(b) estimate biomass and carbon stock for native desert shrub in the AASRs. The novelty
of the study is to construct the dynamic growth model of AGB for C. korshinskii shrubs
using the NLS equations. The dynamic AGB model will enhance our understanding of
ecological adaptation strategies and the evolutionary mechanisms of lemon populations in
the AASRs, as well as serve as a useful resource for developing and utilizing C. korshinskii.
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2. Materials and Methods
2.1. Study Area

The study area is located in the AASRs, Yanchi County (37◦4′–38◦10’ N,
106◦30′–107◦47′ E), Ningxia Province, northwestern China. It is a typical zone consist-
ing of agricultural to pastoral areas with a temperate continental climate [32]. The annual
average temperature is 7.7 ◦C, the mean annual precipitation is 297 mm, and the annual
evaporation is 2100 mm [33,34]. The soil consists mainly of sierozem and aeolian sand.
Due to sparse precipitation, large evaporation, and a serious shortage of water resources
in the county, the tree species mainly include grassland, sandy, and halophyte vegetation,
including C. korshinskii, Nitraria sibirica, and Hedysarum scoparium.

2.2. Data Collection

C. korshinskii is an important shrub species for soil and water conservation and sand-
fixation afforestation in northwest and northeast China. It is a perennial legume shrub
with strong drought resistance and has a planting area that exceeds 40% [35,36]. A total
of 39 temporary sample plots of C. korshinskii were selected in the study area (Figure 1).
Sample plots were square and varied in size, ranging from 100 to 400 m2. The BD (mm)
at 10 cm aboveground, H (m), crown width (m), and total number of stems (N) of all
shrubs in the sample plot were measured. Then, two or three individual shrubs from each
sample plot were selected for analysis on the basis of the average BD, H, crown width,
and number of stems. A total of 87 individual shrubs were collected. The aboveground
parts were collected, and dry samples of the stems and leaves were transported to the
laboratory at a constant 85 ◦C and constant weight. We calculated the moisture content
of each component according to the relationship between the fresh and dry mass of each
sample, then calculated the dry matter mass of each part of the sample and added each
part to obtain the AGB of C. korshinskii (Table 1). Three to five stems with the largest BD
and H from individual shrubs were selected, segmented into 20 cm lengths, and cut into
disks, which were scanned using WinDENDRO software to count the number of annual
rings and measure the diameter and H in increments.

Forests 2022, 13, 1444 3 of 15 
 

 

2. Materials and Methods 
2.1. Study Area 

The study area is located in the AASRs, Yanchi County (37°4’–38°10´ N, 106°30´–
107°47´ E), Ningxia Province, northwestern China. It is a typical zone consisting of agri-
cultural to pastoral areas with a temperate continental climate [32]. The annual average 
temperature is 7.7 °C, the mean annual precipitation is 297 mm, and the annual evapora-
tion is 2100 mm [33,34]. The soil consists mainly of sierozem and aeolian sand. Due to 
sparse precipitation, large evaporation, and a serious shortage of water resources in the 
county, the tree species mainly include grassland, sandy, and halophyte vegetation, in-
cluding C. korshinskii, Nitraria sibirica, and Hedysarum scoparium. 

2.2. Data Collection 
C. korshinskii is an important shrub species for soil and water conservation and sand-

fixation afforestation in northwest and northeast China. It is a perennial legume shrub 
with strong drought resistance and has a planting area that exceeds 40% [35,36]. A total 
of 39 temporary sample plots of C. korshinskii were selected in the study area (Figure 1). 
Sample plots were square and varied in size, ranging from 100 to 400 m2. The BD (mm) at 
10 cm aboveground, H (m), crown width (m), and total number of stems (N) of all shrubs 
in the sample plot were measured. Then, two or three individual shrubs from each sample 
plot were selected for analysis on the basis of the average BD, H, crown width, and num-
ber of stems. A total of 87 individual shrubs were collected. The aboveground parts were 
collected, and dry samples of the stems and leaves were transported to the laboratory at 
a constant 85 °C and constant weight. We calculated the moisture content of each compo-
nent according to the relationship between the fresh and dry mass of each sample, then 
calculated the dry matter mass of each part of the sample and added each part to obtain 
the AGB of C. korshinskii (Table 1). Three to five stems with the largest BD and H from 
individual shrubs were selected, segmented into 20 cm lengths, and cut into disks, which 
were scanned using WinDENDRO software to count the number of annual rings and 
measure the diameter and H in increments. 

 
Figure 1. Map (ArcGIS v10.4.1) of the study area located in Ningxia Province, China. 

  

Figure 1. Map (ArcGIS v10.4.1) of the study area located in Ningxia Province, China.



Forests 2022, 13, 1444 4 of 15

Table 1. Summary statistics used for the data analysis.

Factors Number of Individual Shrubs Mean Minimum Maximum Standard
Deviation

Age (year) 87 18.8 3.00 31.00 7.19
Basal diameter

(mm) 87 13.3 1.90 22.60 5.29

Height (m) 87 2.2 0.30 3.40 0.69
Total number of

stems (N) 87 21.3 6.00 59.00 11.22

AGB (kg) 87 5.8 0.37 12.61 3.17

2.3. Test of Data Normality

The Shapiro–Wilk test was used to test the normality of BD growth, H growth, and
AGB data (Table 2). Because the data showed non-normal distribution (p < 0.05), the gnls
function in R was applied to establish the generalized nonlinear (GNL) models of BD
growth, H growth, and AGB.

Table 2. Results of the data normality test.

Data SW Value p-Value

BD growth 0.9505 0.0022
H growth

AGB
0.9667
0.9364

0.0243
0.0003

Note: SW is the Shapiro–Wilk test statistic. p < 0.05 indicates non-normal distribution.

2.4. Biomass Model Construction
2.4.1. Theoretical Growth Equation

As a model that describes changes in biometric variables (BD and H) with age, the
TG equation reflects the basic law of shrub stand growth with certain assumptions based
on biological characteristics. Differential or calculus equations of the total growth curve
of the shrub were established, and the initial or boundary conditions were substituted to
obtain the special solution of the differential equations. Currently, the most widely used
TG equations are the five aforementioned functions (Table 3).

Table 3. The five TG equations.

Equations Formulas

Gompertz I = a1,2e−b1,2e−c1,2 A

Logistic I = a1,2

1+b1,2e−c1,2 A

Mitscherlich I = a1,2
(
1− b1,2e−c1,2 A)

Richards I = a1,2
(
1− e−c1,2 A)b1,2

Korf I = a1,2e−b1,2/Ac1,2

Note: A is the shrub age; I is the increments of BD and H at A year; a1, b1, and c1 are model parameters for BD
growth; and a2, b2, and c2 are model parameters for H growth.

2.4.2. Allometric Growth Equation

The AG equation is used to estimate shrub biomass with easily measurable factors,
such as BD and/or H, which saves manpower and material resources and is less destructive
when compared to the direct harvesting method [37]. Three AG equations of AGB were
established in the study (Table 4).
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Table 4. The three AG equations.

Equations Independent Variables Model Parameters

W = a3(nBDm)
b3 nBDm a3, b3

W = a3(nHm)
b3 nHm a3, b3

W = a3

(
(nBDm)

2Hm

)b3 (nBDm)2Hm a3, b3

Note: W is the AGB; n is the number of stems, and BDm, and Hm are the means of BD and H for an individual
shrub, respectively; and a3 and b3 are model parameters.

2.4.3. Nonlinear Simultaneous Equations

The TG equations of BD and H with age were established using the five functions
(Table 3). The AG equations of AGB were constructed using BD and H as the independent
variables and the power function (PF) (Table 4). Then, the best equations for the TG and
AG equations were selected after evaluation. Finally, the nonlinear ordinary least square
(NOLS), nonlinear seemingly uncorrelated regression (NSUR), two-stage least squares
(2SLS), and three-stage least squares (3SLS) methods were used to build a dynamic system
of the NLS equations for AGB by combining the best TG and AG equations (Table 5). The
formula of the NLS equations in this study is as follows:

BD = f (A)
H = f (A)

W = f (BD, H)
(1)

where f are the best performed equations for BD growth, H growth, and AGB models
according to the evaluation indices.

Table 5. The four methods of the NLS system.

Method Instruments Objective Function Covariance of θ

NOLS No γ′γ
(
X
(
diag(S)−1⊗

)
X
)−1

NSUR No γ′
(

diag(S)−1
OLS ⊗ Im

)
γ

(
X
(
S−1 ⊗ Im

)
X
)−1

2SLS Yes γ′(Im ⊗V)γ
(
X
(
diag(S)−1 ⊗ Im

)
X
)−1

3SLS Yes γ′
(

S−1
2SLS ⊗V

)
γ

(
X
(
diag(S)−1 ⊗V

)
X
)−1

Note: γ is a column vector of the residuals for each equation, S is the variance–covariance matrix between

the equations (
_
σ ij =

(
_
e
′
i
_
e j

)
/
√
(T − ki) ·

(
T − k j

)
), X is the matrix of the partial derivatives with respect

to the coefficients, V is the matrix of the instrument variables Z(Z′Z)−1Z, Z is the matrix of the instrument
variables, and Im is the n×n identity matrix. The NSUR and 3SLS methods require two solutions. The first
solution for NSUR is an NOLS solution that obtains the variance–covariance matrix and fits all the equations
simultaneously. The second solution for 3SLS uses the variance–covariance matrix from the 2SLS solution and fits
all the equations simultaneously.

NOLS is widely used to estimate parameters in a single equation and can thus lead
to biased and inconsistent estimations by neglecting correlations among different equa-
tions when estimating parameters for each equation [38]. NSUR is an efficient parameter
estimation technique when the error components of a system of unrelated equations are
correlated [39]. The parameter variances estimated from large samples using NSUR may
be less than the parameter variances obtained by NOLS. Meanwhile, 2SLS and 3SLS are
adopted for exact identification and overidentified structural equation models. However,
2SLS neglects correlations, and there is some information loss among different equations
for one-by-one estimations [40]. As a system method of estimation, 3SLS is effective for
the simultaneous estimation of all parameters of different equations, and it considers the
correlation of random errors. A system of NLS equations can be written as follows:

εt = q(yt, xt, θ),
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where εt is the residuals of y observations and the function evaluated by the coefficient
estimates.

zt = Z(xt)

2.5. Heteroscedasticity Test and Elimination

The existence of heteroscedasticity in models makes parameter estimation by ordinary
regression biased, leading to increased error and parameter variation coefficients, and
thereby affecting the reliability of the models. Alternatively, residual graph analysis is an
intuitive and convenient analysis method. When the regression model has heteroscedastic-
ity, the distribution of the points on the residual graph shows a certain trend. In this study,
when there was heteroscedasticity, the variance functions, including the PF, exponential
function (EF), and constant plus PF (CPF), were used to deal with variance heterogeneity. To
compare the models with and without variance functions, the Akaike information criterion
(AIC), Bayesian information criterion (BIC), and negative two times the logarithm of the
likelihood (−2LL) were used; the smaller the values, the better the model. The formulas of
the criterions are as follows:

AIC = 2r− 2 ln(L) (2)

BIC = r ln(ni)− 2 ln(L) (3)

where L is the likelihood of the equations, r is the numbers of model parameters, and ni is
the number of samplers.

2.6. Evaluation of the Models

The TG and AG equations were fit by nonlinear regression. Then, a set of NLS equa-
tions combining the TG and AG equations were estimated to obtain the AGB estimation
model of C. korshinskii. Finally, the variance functions were used to eliminate heteroscedas-
ticity in the fitting. Leave-one-out cross-validation was performed to evaluate two statistical
criteria. Three indices, the AMR, root mean square error (RMSE), and adjusted coefficient
of determination (adj-R2), were calculated as model accuracy metrics. The formulas of the
fit statistics are as follows:

AMR =
m

∑
i=1

ni

∑
j=1

∣∣∣yij −
_
y ij

∣∣∣
ni

(4)

RMSE =

√√√√√ m

∑
i=1

ni

∑
j=1

(
yij −

_
y ij

)2

ni − r
(5)

adj-R2 = 1− (ni − 1)

∑m
i=1 ∑ni

j=1

(
yij−

_
y ij

)2

ni−r

∑m
i=1 ∑ni

j=1

(
yij − y

)2

 (6)

where
_
y ij is BD growth, H growth, or AGB prediction, and y is the average of the observations.

3. Results
3.1. Growth Equations with Generalized Nonlinear Models
3.1.1. Theoretical Growth Equations of Basal Diameter and Height

Five TG equations were constructed to fit the BD and H growth of C. korshinskii
(Table 6). The results showed that the five equations had good performances when the
adj-R2 was >0.8. However, Gompertz growth equations showed better fitting accuracy than
others for both BD and H growth. The AMR, RMSE, and adj-R2 were 1.4767, 1.9767, and
0.8636 for the BD growth model, respectively. The AMR, RMSE, and adj-R2 were 0.2378,
0.2939, and 0.8248 for the H growth model, respectively. Therefore, the Gompertz equation
was selected as the optimal TG equation and built in the follow-up study.
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Table 6. Summary of evaluations from fitting BD and H growth of C. korshinskii shrubs using
GNL regression.

Factors Equations AMR RMSE adj-R2 Factors Equations AMR RMSE adj-R2

BD

Gompertz 1.4767 1.9767 0.8636

H

Gompertz 0.2378 0.2939 0.8248
Logistic 1.5174 1.9981 0.8606 Logistic 0.2449 0.2993 0.8183

Mitscherlich 1.5477 2.0381 0.8437 Mitscherlich 0.2498 0.3053 0.8023
Richards 1.5062 2.0162 0.8467 Richards 0.2426 0.2998 0.8086

Korf 1.5326 2.0181 0.8521 Korf 0.2473 0.3023 0.8102

3.1.2. Allometric Growth Equation of Biomass

On the basis of easily measurable factors, the total BD (nBDm), total shrub H (nHm),
and total BD squared multiplied by H ((nBDm)2Hm) were used to establish the AG equa-

tions for the AGB of C. korshinskii (Table 7). The adj-R2 of W = a3

(
(nBDm)

2Hm

)b3
was > 0.8

(adj-R2 = 0.8014), and the AMR and RMSE values were both smaller than the other two equa-

tions on independent biomass in the AG equations. Therefore, W = a3

(
(nBDm)

2Hm

)b3

was selected as the best model for the AG equation.

Table 7. Summary of evaluations from fitting AGB of C. korshinskii shrubs using GNL regression.

Equations AMR RMSE adj-R2

W = a3(nBDm)
b3 1.3741 1.6538 0.7304

W = a3(nHm)
b3 1.7441 2.1431 0.5473

W = a3

(
(nBDm)

2Hm

)b3 1.0986 1.4193 0.8014

3.2. Nonlinear Simultaneous Equations of Dynamic Models

In this study, the best performed TG equations of BD and H and the best performed
AG equation of AGB were combined using the NOLS, NSUR, 2SLS, and 3SLS methods to
construct the NLS equations. Table 8 shows the parameters and evaluation indices after
fitting each model. Results revealed that the same estimation parameters and evaluations
were obtained by using GNL regression and the NOLS method, which was the same
estimation when using the 2SLS and 3SLS methods. However, the NSUR and 2SLS or 3SLS
methods showed different outcomes from NOLS. Namely, the NSUR method had better
performance than the others. For BD growth of C. korshinskii shrubs, the AMR and RMSE of
BDNSUR were 1.3481 and 1.8046, which decreased by 9.54% and 9.53% when compared to
Equation (4), respectively. The adj-R2 of BDNSUR was 0.9055 and increased by 4.63% when
compared to Equation (4). For H growth of C. korshinskii shrubs, the AMR and RMSE of
HNSUR were 0.2171 and 0.2683, which decreased by 9.53% and 9.54% when compared to
Equation (5), respectively. The adj-R2 of HNSUR was 0.8644 and increased by 4.58% when
compared to Equation (5). For the AGB of C. korshinskii shrubs, the AMR and RMSE of
AGBNSUR were 1.0514 and 1.3584, which decreased by 4.49% and 4.48% when compared
to Equation (6), respectively. The adj-R2 of AGBNSUR was 0.8246 and increased by 2.82%
when compared to Equation (6). Therefore, the NSUR method of the NLS equation system
was selected to establish the NLS equations for BD growth, H growth, and AGB.
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Table 8. Summary of evaluations from fitting BD and H growth of C. korshinskii shrubs using GNL
regression and the four methods of the NLS equations.

Method Equations
Model Parameters Evaluation Indicator

a1 b1 c1 a2 b2 c2 a3 b3 AMR RMSE adj-R2

GNL
model

BD growth 32.9515 2.8928 0.0616 — — — — — 1.4767 1.9767 0.8636
H growth — — — 3.0767 2.5956 0.1160 — — 0.2378 0.2939 0.8248

AGB — — — — — — 0.0163 0.4971 1.0986 1.4193 0.8014

NOLS
BDNOLS 32.9514 2.8928 0.0616 — — — — — 1.4767 1.9767 0.8636
HNOLS — — — 3.0767 2.5956 0.1160 — — 0.2378 0.2939 0.8248

AGBNOLS — — — — — — 0.0163 0.4971 1.0986 1.4193 0.8014

NSUR
BDNSUR 36.4637 2.9877 0.0572 — — — — — 1.3481 1.8046 0.9055
HNSUR — — — 3.2242 2.5382 0.1057 — — 0.2171 0.2683 0.8644

AGBNSUR — — — — — — 0.0159 0.4994 1.0514 1.3584 0.8246

2SLS
BD2SLS 33.3535 3.4320 0.0689 — — — — — 1.5388 2.0598 0.8519
H2SLS — — — 2.9674 2.7336 0.1280 — — 0.2386 0.2949 0.8235

AGB2SLS — — — — — — 0.2391 0.2758 1.4247 1.8406 0.6661

3SLS
BD3SLS 33.3535 3.4320 0.0689 — — — — — 1.5388 2.0598 0.8519
H3SLS — — — 2.9674 2.7336 0.1280 — — 0.2386 0.2949 0.8235

AGB3SLS — — — — — — 0.2391 0.2758 1.4247 1.8406 0.6661

Note: BDNOLS, HNOLS and AGBNOLS are the BD growth, H growth, and AGB equations with NOLS method,
respectively; BDNSUR, HNSUR and AGBNSUR are the BD growth, H growth, and AGB equations with the NSUR
method, respectively; BD2SLS, H2SLS and AGB2SLS are the BD growth, H growth, and AGB equations with 2SLS
method, respectively; BD3SLS, H3SLS and AGB3SLS are the BD growth, H growth, and AGB equations with 3SLS
method, respectively.

Figure 2 shows the relationships between the observed and fitted values of BD growth,
H growth, and AGB models of C. korshinskii shrubs according to NLS. The rates of R2 for
the three models were 98.66%, 98.65, and 96.14%.
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3.3. Models with Heteroscedasticity

Biomass and sample plot data often have measurement errors, as well as individual
differences among samples, which models sometimes neglect, thereby leading to het-
eroscedasticity of the estimated results. In this study, the PF, EF, and CPF were used to
eliminate heteroscedasticity. Then, the AIC, BIC, and −2LL were used to compare model
performances. The value of −2LL was produced by the log of the LR, which provides a
ratio of the probability of correct predictions and incorrect predictions. Results revealed
that there were significant differences (p < 0.0001) detected between the models with and
without heteroscedasticity for BD growth, H growth, and AGB (Table 9). The models that
used PF as the variance function had the smallest AIC, BIC, and −2LL for BD growth, H
growth, and AGB.
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Table 9. Fit of BD growth, H growth, and AGB models with and without heteroscedasticity of
C. korshinskii shrubs.

Model Variance
Function AIC BIC −2LL LR p-Value

BD growth

No 370.41 380.27 362.41
PF 348.90 361.23 338.91 23.50 a <0.0001
EF 353.25 365.58 343.25 19.16 b <0.0001

CPF 350.90 365.70 338.91 23.50 c <0.0001

H growth

No 38.77 48.64 30.77
PF 23.43 35.76 13.43 17.34 a <0.0001
EF 25.91 38.24 15.91 14.86 b <0.0001

CPF 25.43 40.23 13.43 17.34 c <0.0001

AGB

No 311.80 319.20 305.80
PF 275.96 285.82 267.96 37.84 a <0.0001
EF 296.69 306.56 288.69 17.11 b <0.0001

CPF 277.96 290.29 267.96 37.84 c <0.0001
Note: a LR was calculated with respect to the models without heteroscedasticity and the models using PF as the
variance function for the AGB of C. korshinskii shrubs. b LR was calculated with respect to the models without
heteroscedasticity and the models using EF as the variance function for the AGB of C. korshinskii shrubs. c LR
was calculated with respect to the models without heteroscedasticity and the models using CPF as the variance
function for the AGB of C. korshinskii shrubs.

Figure 3 shows the standardized residuals of the BD growth, H growth, and AGB
models, which had poor fit for all shrub components with obvious trends (trumpet resid-
uals). However, the plots of the models with heteroscedasticity using PF as the variance
function had better fit and no obvious trends.

3.4. Models Comparisons

Table 10 shows the evaluations of the NLS equation of BD and H growth and AGB of
C. korshinskii shrubs. The Gompertz equation indicated there was a relationship between
the AGB and age and numbers of stems using GNL regression. Results revealed that the
AMR and RMSE of the NLS equation were 1.0514 and 1.3584, which decreased by 22.31%
and 19.02%, respectively, when compared to the Gompertz growth equation for AGB. The
adj-R2 was 0.8246 from the NLS equations, which increased by 10.64%. Additionally, we
found that the NLS equation greatly improved the model accuracy and reduced forecast
estimation errors.

Table 10. Summary of evaluations from the NLS equation of BD and H growth and AGB equations
of C. korshinskii shrubs. The Gompertz equation indicated there was a relationship between AGB and
age using GNL regression.

Equation Index AMR RMSE adj-R2

NLS
BD growth 1.3481 1.8046 0.9055
H growth 0.2171 0.2683 0.8644

AGB 1.0514 1.3584 0.8246
Gompertz AGB 1.2860 1.6168 0.7453

Figure 4 shows the predicted BD growth, H growth, and AGB of C. korshinskii shrubs
from the NLS equations and predicted AGB versus age and number of stems from the
Gompertz equations using GNL regression. There were significant differences between
the AGB estimates from the NLS equations and the Gompertz growth equation using
GNL regression.
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The NLS equations system provided a feasible research method for estimating Caragana
shrub layer biomass; scientifically supported regional ecosystem protection, restoration,
and reconstruction; and accurately evaluated ecosystem service functions in the AASRs.
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4. Discussion

As important components of forest resources, shrubs play unique roles in mitigating
global climate change [41]. Monitoring shrub biomass and carbon storage has increasingly
attracted global attention [3,42]. There are many direct harvesting, model estimation,
and remote sensing interpretation methods for obtaining shrub biomass. Although the
accuracy of precise harvesting is very high, it requires considerable manpower and material
resources and is destructive to the forest. Additionally, it greatly increases the vulnerability
of the desert ecosystem and does not contribute to its protection. Advanced methods, such
as remote sensing technology and geographic information systems, have irreplaceable
advantages in the estimation of forest biomass and net growth on a large and even global
scale. However, due to the limitations of remote sensing data in space, spectrum, and
radiation resolution, the accuracy of estimating ground forest biomass using remote sensing
data is unreliable [43]. Therefore, due to the establishment of shrub biomass prediction
models using easily measurable factors, these models have become effective methods for
measuring shrub biomass in the AASRs.

In this study, we applied the GNL regression approach [44] to develop TG equations of
BD and H on the basis of the Gompertz, Logistic, Mitscherlich, Richards, and Korf equations.
Then, the optimal equations for BD and H growth were selected on the basis of the AMR,
RMSE, and adj-R2 values. The Gompertz equation showed the best performance for both
BD and H growth of C. korshinskii shrubs (Table 6) [20,45]. Moreover, the nBDm, nHm,
and (nBDm)2Hm were used as the independent variables to build the AGB AG equation.
The equation using (nBDm)2Hm as the independent variable performed better than the
others (Table 7) [10,11,46]. Finally, the NOLS, NSUR, 2SLS, and 3SLS methods of the NLS
equations were constructed and combined BD and H growth from the TG equation and
AGB from the AG equation (Table 8).

In this study, we found identical fit and evaluation when using the NOLS and GNL
regression approach. It also showed the same prediction for the methods of 2SLS and
3SLS. Tang et al. [47] demonstrated that, in some situations, the NOLS is more efficient
than the GNL regressions. Despite having a slight lower efficiency, a main advantage
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of 2SLS is that this can be estimated consistently with the existence of heteroscedasticity.
What is more, there were theoretical advantages for both 2SLS and 3SLS when compared
to the NSUR method. However, they required large sample datasets and overidentified
estimation, which was difficult to realize in the forest biomass equations [48]. The duration
of the equation fittings for the NLS equations methods was ordered as follows: 3SLS
(16.87 s) > 2SLS (10.92 s) > NSUR (3.21 s) > NOLS (1.26 s). Therefore, the NSUR method of
the NLS equations was determined to have the best performance [49,50].

The NLS equations system could significantly improve the model accuracy and reduce
the estimation error of the predictions [23]. The estimation error also met the accuracy
requirements on a regional scale; reduced the error between biomass and carbon storage
estimation; and could serve as a reference for forest management, the rational utilization of
resources, and mitigation of climate change.

As an important component of shrub biomass, AGB accounts for 60–70% of the
biomass of an individual shrub [51], while the underground biomass of C. korshinskii shrubs
accounts for 30–40% of the total shrub biomass [52]. However, the variation in underground
biomass growth for C. korshinskii shrubs remains unclear. Future studies should focus on
identifying variations in shrub biomass to assist with the improvement of shrub biomass
estimates when modeling C. korshinskii growth.

5. Conclusions

In this study, the NLS equation systems of BD growth, H growth, and AGB models
were used to quantify C. korshinskii shrub AGB growth on the basis of the theorical growth
and allometric growth equations in northwestern China. It was found that the Gompertz
equation had better performance than the other equations using GNL regression for the
BD and H growth models. For the AGB models, using (nBDm)2Hm as the independent
variable resulted in better evaluations. The NSUR method of the NLS equations had better
performance than the other three methods and the independent equations, which thereby
provides an efficient method for predicting AGB growth of C. korshinskii shrubs. Moreover,
the equations with heteroscedasticity accounted for multiple sources of heteroscedasticity
found in the data, thus making the NLS equations approach an attractive option for
C. korshinskii shrub biomass growth estimation. The NLS equations fitted in this study
are appropriate for modeling new shrubs that have ecological characteristics and growth
features similar to C. korshinskii shrubs in the AASRs.
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Abbreviations

Aboveground biomass AGB Arid aeolian sand regions AASRs
Theoretical growth TG Allometric growth AG
Nonlinear simultaneous NLS Generalized nonlinear GNL
Nonlinear ordinary least square NOLS Nonlinear seemingly uncorrelated regression NSUR
Two-stage least squares 2SLS Three-stage least squares 3SLS
Basal diameter BD Height H
Absolute mean residual AMR Root mean system error RMSE
Adjusted determination coefficient adj-R2 Power function PF
Exponential function EF Constant plus power function CPF
Akaike information criterion AIC Bayesian information criterion BIC
Negative two times the logarithm of the likelihood −2LL
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