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Abstract: Correctly estimating stem diameter at any height is an essential task in determining the
profitability of a commercial forest plantation, since the integration of the cross-sectional area along
the stem of the trees allows estimating the timber volume. In this study the ability of four artificial
intelligence (AI) models to estimate the stem diameter of Tectona grandis was assessed. Genetic
Programming (PG), Gaussian Regression Process (PGR), Category Boosting (CatBoost) and Artificial
Neural Networks (ANN) models’ ability was evaluated and compared with those of Fang 2000 and
Kozak 2004 conventional models. Coefficient of determination (R?), Root Mean Square of Error
(RMSE), Mean Error of Bias (MBE) and Mean Absolute Error (MAE) statistical indices were used to
evaluate the models” performance. Goodness of fit criterion of all the models suggests that Kozak’s
model shows the best results, closely followed by the ANN model. However, PG, PGR and CatBoost
outperformed the Fang model. Artificial intelligence methods can be an effective alternative to
describe the shape of the stem in Tectona grandis trees with an excellent accuracy, particularly the
ANN and CatBoost models.

Keywords: artificial intelligence; Tectona grandis; stem tapper modeling; Fang’s stem taper equation

1. Introduction

Accurate estimates of the total and commercial volume of standing Tectona grandis is
essential to determine standing timber value, and the profitability of commercial forest
plantations (CFP) as a business unit. Research to determine taper and variable merchantable
volume has produce a diverse pool of mathematical models such as those of [1,2], who
used polynomial models to model the teak bole in an experimental field in Venezuela.
T. grandis is the fourth most planted forest species in Mexico with slightly over 30 thousand
ha established, although with a much higher value in the international market than pine,
Spanish cedar (Cedrela odorata) and eucalyptus that cover nearly 110 thousand ha according
to official sources [3].

Regression models are the commonly used approach for the estimation of stem diame-
ter [4-7]. In Mexico, most of the development and fitting of regression-based taper models
has concentrated on temperate climate species, making use of systems of compatible mod-
els [8], in which taper and volume are geometrically (derivation process) and statistically
(fitting under an equation system) united.

Nevertheless, in Mexico some models have been developed for T. grandis and such is
the case in the study by [9] that fitted compatible volume-taper models for T. grandis grown
in Campeche. However, and given the wide variety of climatic and soil conditions and
silviculture in which the species is planted, a database that captures geographical, genetic
and age variability is crucial to develop taper and volume estimates.
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In recent years, computers have increased their processing capacity, which gives an
advantage to the use of Artificial Intelligence (Al) algorithms to identify and model the
relationships between complex variables at a lower computational cost.

Thus, Al models have arrived in tropical silviculture as an option to traditional
regression models.

Schikowski [10] using the techniques of Artificial Neural Networks (ANN), Random
Forest (RF) and k nearest neighbor (k-NN) to model the shape of the bole of Acacia mearsnsii,
popularly known as black acacia; Nunes [11] also modelled with ANN and RF a com-
plex vegetation mosaic in the biological reserve of Mogi Guacu, Brazil; likewise, Sa-
kici [12] used the ANN approach to model taper of individual trees of Fagus orientalis
and Abies nordmanniana in Karatikm, in Turkey. In another study in Poland [13], the bole
shape of eight forest species was modeled using ANN and decision trees (DT) as well as
the conventional method by [4] and a simple model based on linear regression; the general
conclusion was that the ANN artificial intelligence method is more accurate to describe the
shaft profile of the species evaluated.

Although ANNs have been widely used in forest management, including tree diameter,
volume and height estimation, other Al-based algorithms have recently been proposed that
have not yet been evaluated in forestry studies and have been shown to solve problems
with heterogeneous features, noisy data and complex dependencies, such as Genetic
Programming (GP), Gaussian Process Regression (GPR) and Category Boosting (CatBoost).

Thus, the objectives of the present study were: (1) to evaluate the capacity of four
IA models, i.e., GP, GPR, CatBoost and ANN, to accurately estimate tree diameter (d)
at any height of T. grandis, and (2) to compare them to the non-linear models of Kozak
2004 [4] and Fang 2000 [5], commonly used for stem characterization of the T. grandis.
Applying the models to the practical activities allows obtaining an adequate estimation
of the distribution of products when obtaining a CFP for this species, under development
conditions in southeastern Mexico.

2. Materials and Methods
2.1. Study Area

The study area is located in the states of Campeche, Tabasco and Chiapas in south-
eastern Mexico where 307 trees of T. grandis were destructively sampled (Figure 1). The
T. grandis plantations are growing in three humid tropical climate conditions: tropical sa-
vanna with a dry season of six months (November to April), monsoon humid tropical with
a dry season of four months (January to April), and humid tropical without a dry season.
The average annual temperature is higher than 22 °C and the rainfall ranges from slightly
over 1000 mm annually to nearly 3000 mm. The predominant soils in these plantations
are rendzinas at Campeche, vertisols and cambisols at Tabasco, and regosols and acrisols
at Chiapas.

2.2. Data and Data Preprocessing

The 307 sampled trees span a diameter range at breast height (D) of 1.3 m, from 8.5
to 45 cm. The age ranges from 7.5 to 22 years, and total height (H) goes from 9 to 27 m
(Table 1). The data were taken to widely encompass the variability of shape, size, and
development of the species in the study zone. The diameters were taken on the bole (d) in
cm at different heights (h) in m, generating 5280 pairs of height-diameter. Height-diameter
pairs above branching were not taken so the length of the non-merchantable tip varies from
tree to tree. A total of 3696 data pairs were used to develop all models (190 trees) and a
separate set of 1584 data pairs of measured from independent trees were used to test the
validity of the developed models (117 trees). Figure 2 describes the taper sampling range.
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Figure 1. Map of locations of sampling plots in three states of the Mexican republic.
Table 1. Descriptive statistics of trees from the sample for tapering.
Variable Maximum Mean Minimum Standard deviation
Normal diameter D with bark (cm) 45.00 26.89 8.50 6.81
Total height H of the tree (m) 27.00 18.96 9.03 3.39
Commercial height (Hc) of the tree (m) 18.15 10.82 2.62 2.60
Age (years) 22.00 15.99 7.5 4.62
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Figure 2. Diameter behavior of T. grandis trees in the study.
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2.3. Artificial Intelligence Models
2.3.1. Genetic Programming

Genetic Programming (GP) is a technique based on the algorithms of evolution, natural
selection, survival and search that allows the solution of problems through the automatic
generation of algorithms and expressions [14]. These expressions are represented as a tree
structure with its terminals (leaves) and nodes (functions). GP applies Genetic Algorithms
(GA) on a “population” of programs or equations, that is, typically codified as tree struc-
tures. The trial programs are evaluated using an evaluation function, where programs that
best adjust to the data observed are selected to later exchange information and produce
better programs through crossing and mutation processes, while the worst programs are
dismissed. This evolution process is repeated throughout the generations with the objective
of creating a symbolic expression that best describes the data. There are five preliminary
steps to solving a problem using GP. These are the determination of: (i) the set of terminals,
(ii) the set of functions, (iii) the measure of evaluation, (iv) the values of the numerical
parameters and the qualitative variables to control the execution, and (v) the finalization
criterion to designate a result and end the execution of the algorithm [14].

The first step to use GP is to identify the set of terminals that will be used in the
individual information programs of the population. The main types of sets of terminals
contain the independent variables of the problem, the system state variables, and the func-
tions without arguments. The second step is to determine the set of functions, arithmetic
operations, and Boolean functions (AND, OR, NOT). The third step is to measure the
aptitude, which identifies the way of evaluating how well a specific program solves a
problem. Terminals and functions are the components of the programs that form the unions
in the tree. The fourth step is the selection of the parameters to control the executions. The
control parameters contain the size of the population, the rate of crossing, etc. The last
step is the determination of the criteria to finalize the execution. In general, if the sum of
the absolute differences between the results estimated with the model and those observed
approach zero, then the model will be considered acceptable. Table 2 shows the optimal
characteristics of the configuration of the iterative process for the training of the GP model.
For the execution of the GP algorithm the HeuristicLab Version 3.3 software was used (The
research group Heuristic and Evolutionary Algorithms Laboratory (HEAL), University of
Applied Sciences Upper Austria).

Table 2. Parameters used in modelling with GP.

Parameter Characteristic
Size of the population 500 individuals
Criterion of finishing 100 generations
Maximum size of the tree 150 nodes, 12 levels
Elites 1 individual
Parent selection Selection per tournament
Cross Sub-tree, 90% of probability
Mutation 15% of mutation rate
Function of evaluation Coefficient of determination R?
Symbolic functions (+, —, x, =, exp, log)
Symbolic terminals Constant, weight x variable

2.3.2. Gaussian Process Regression (GPR)

The Gaussian Process Regressions (GPRs) are non-parametric probabilistic models of
automatic learning used to resolve regression problems; the learning consists of inferring a
function through a set of training data [15]. The GPR predicts the later probability distribu-
tion using a previous probability, and then updates the previous probability distribution by
a set of data from training, in addition to providing a confidence zone for the function pre-
dicted. The GPR is fully characterized by its mean functions and covariance. This process
is a natural generalization of Gaussian distribution. In this process, mean and covariance
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are, respectively, a vector and a matrix. There is an S dataset with n observations, where
{(x;,y;)|i =1,...n} x; is the input vector with D dimension and y; is the target vector.

A Gaussian Process f(x) describes the distribution of the functions, which is why it is
required to specify its mean function m(x) and covariance function k (x, x’), denoted as:

f(x) ~ GP(m(x), k(x,x")) (1)

The covariance function, also known as the kernel function of the GPR, defines the
degree of correlation between the exits from two entry sets (x, x’), and it is the backbone of
the relations between the entry variables. The mean and covariance function can be defined
as Equations (2) and (3), respectively:

m(x) = E[f(x)] 2)
cov[f(x')] = k(x,x") = E[(f(x) —m(x)) (f(x") —m(x'))] 3)

where E[-| denotes the mathematical expectation.

The kernel is the most significant function in the learning models based on GPR [16];
an adequate selection of the kernel function is important, since the accuracy of the model is
due primarily to the covariance function selected, which determines the effectivity of the
model and the accuracy of the predictions in the regression analysis [17]. In this study, an
exponential square function is used as the kernel function (Equation (4)), ensuring that the
predictions are invariant with changes of origin in the space of the entries [15,18].

(x—x’)2

k(x,x') = O’%EXP [262 + 025 (x, x) 4)

where UJ% is the variance of the functions and specifies the maximum covariance allowed
(amplitude of the function); £ is the length of scale, and is a strictly positive hyperparameter
that determines the reach of the influence on neighboring points as they distance from each
other, and 07 is the variance of the noise of the observations. The set of hyperparameters or

parameters of the covariance function is written as 6 = {0’]%, l, o2 } [17].

The hyperparameters of the covariance function are obtained through learning of
the training data, using Bayesian inference techniques such as the maximization of the
marginal probability.

In this study, in the implementation of the GPR technique, the algorithm was trained
using the Matlab software version R2019a (Mathworks Inc., Natik, MA, USA)optimizing
the kernel hyperparameters using the cross-validation technique (fold = 10) specifying their
initial values for 0’% =02, ¢/ =235, 0’,% = 6, necessary to find the final parameters of the
model through the criterion of maximum marginal authenticity.

2.3.3. Category Boosting (CatBoost)

CatBoost is an automatic learning algorithm of decision trees based on a gradient
boost (Gradient boosting), developed by researchers from the Russian internet company,
Yandex [19], which can solve problems with heterogeneous characteristics, and data with
noise and complex dependencies, as compared to other algorithms based on decision
trees. Among the advantages of using CatBoost there is that it requires configuring few
hyperparameters, thus avoiding the over-adjustment and obtaining more generalized
models. Decision trees are used for regression, and each tree corresponds to a partition of
the feature space and the output value.

This model has several advantages compared with traditional Gradient Boosting
Decision Trees (GBDT) algorithms, which cope with categorical features by a method
named Greedy Target Statistics (Greedy TS). To deal with categorical features during
training rather than the preprocessing phase to estimate the expected and category driven
target, CatBoost allows the use of a complete data set for training. According to [19], the
Greedy TS strategy manages categorical features with minimum information loss. This is
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useful for minimizing information loss and overfitting. Givenadataset D ={X;}i=1,...,n,
where X; = (x;, 1, ... , x;, m) is a vector of m characteristics, the category of the k-th training
example can be replaced by a numerical characteristic expressed in Equation (5) according
to the requested TS. The substitution of a given categorical example x0y, , k can be obtained
by calculating its average value with the same category value placed before in a random
permutation of data set ¢ = (0y, ..., ). In addition, CatBoost can combine various
categorical features into a new one in a greedy way by establishing a new tree split.

Z;:ll [xajlk = xap,k} +yoj+aP

p—1 L
Ej:1 {xa],k = xap,k} ta

Q)

J?O'p/k = E(y‘xap = xap,k) =

where y is the objective function, P is a previous value, and a is the weight of the previous
value. [xa]-,k = xap,k} is equal to one when x0j ;. = x0, , while otherwise it is equal to zero,

since a > 0 represents the P weight. This method contributes to reducing the noise obtained
from the low frequency category.

On the other hand, CatBoost combines multiple categorical features, using a greedy
way of combining all the categorical characteristics and their combinations in the current
tree with all the categorical characteristics in the data set, so that CatBoost overcomes the
gradient bias.

In this study, in the implementation of the CatBoost model, some of the main pa-
rameters that affect the accuracy and stability of the model were adjusted through the
cross-validation technique (fold = 5); the number of iterations was fixed in 500, the max-
imum depth of the tree was 10, and the proportion of subsets of the data sets was fixed
in 1. In the generation of the CatBoost model, Software R (R Foundation for Statistical
Computing, Vienna AT) and the library Catboost [20] were used.

2.3.4. Artificial Neural Networks (ANN)

An Artificial Neural Network (ANN) is an abstract computational model that follows
the behavior of the human brain [21]. The ANN can be defined as “structures made up
of densely interconnected simple adaptive processing elements (called nodes or artificial
neurons) capable of performing computational data processing and massively parallel
knowledge representation” [22]. Each neuron in the network calculates a weighted sum by
wj; of its p entry signal y;, fori = 0,1,2,...n hidden layers and then applies a non-linear
activation function to produce an exit signal, u;. The form of this function is:

n
uj =Y wyy; (6)
i=0

The most used ANN model in non-linear modelling is Multilayer Perceptron (MLP)
implemented with a retro-propagation algorithm (RP). Thus, the MLP consists of one or
more hidden layers. In a practical way, for the solution of non-linear regression problems,
only one three-layer ANN is necessary, as shown in Figure 3, where the first layer (i)
represents the input of the variables, the second layer is the hidden layer (j), and the third
layer is the exit (k). Each layer is interconnected by weights W;; and Wy, and each unit adds
its entries, adding a bias or threshold term to the sum and the non-linearity, transforming
the sum to produce an exit. This non-linear transformation is called a node activation
function. The nodes of the exit layer tend to have linear activations. In MLP, the logistic
sigmoid function (Equation (7)) and the linear function (Equation (8)) are generally used in
the hidden and exit layer, respectively.

flw) =1/(1+e7%) )
flx) =x ®)

where w is the weighted sum of the entry and x is the entry to the exit layer.
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Input Layer. i Hidden Layer. j Output Layer. k

Figure 3. Three-layer ANN structure.

The procedure to update the synaptic weight through the Backpropagation (BP) algo-
rithm refers to the way in which the error calculated in the exit side propagates backward
from the exit to the hidden layer(s) and finally to the entry layer [23]. The error is minimized
after several cycles of training called seasons.

During each cycle, the network reaches a specific level of accuracy. Generally, the
error estimator that is used here is the sum of the square error (SSE), together with the BP
procedure. Likewise, a second algorithm must be chosen during the training phase that
updates the weights in each cycle.

The selection of an appropriate training algorithm, the transference function, and the
number of neurons in the hidden layer are fundamental characteristics of the ANN model.

In this study, for the implementation of the ANN model, a structure of three layers
such as the one shown in Figure 3 was used. Likewise, the configuration was chosen that
offered the best result in the study carried out by [12], where the number of neurons in the
hidden layer was fixed at 10; in the hidden and exit layer the functions of logistic sigmoid
(Equation (7)) and linear (Equation (8)) transference were chosen, respectively. The ANN
model was trained using the RP algorithm and the Levenberg-Marquardt (LM) algorithm
to update the weights in the nodes.

The ANN model was trained and validated using the Matlab® software version R2019a
(Mathworks Inc, Natik MA, USA).

In general, for the training and verification of the tapering models using the artificial
intelligence techniques, 70% of the data were used for the training and 30% to verify the
models. On the other hand, in all the AI models, the used variables to estimate the diameter
(d) of the tree stem at different heights (h) were diameter at breast height (D), height at
diameter and total height (H).

2.4. Non-Linear Regression Models

In this study two well-known and efficient non-linear taper models were fitted by
ordinary least squares. These models are broadly used and were selected, considering their
goodness of fit and complexity. The Fang 2000 model [5] was chosen based on geometric
properties (segmentation) while the Kozak 2004 [4] was selected based on performance in
accurately describing taper. These models were also used by [12] where artificial neural
networks models were superior in fit when compared with geometric non-linear models.
Table 3 shows Equations (9) and (10) of the models selected.
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Table 3. Conventional models used for the tapering model adjustment used in this study.

Model Expression Number of Equation
k=by (k=p)
d=Ci\VH (1 —Z) B 0611]+121X212
I} =1if py <z < p, otherwisel; =0
I =1if pp <z <1 otheriwseI, =0
K
= \/ apDH™? b
1=V bi(lo—t1)+ba(ti—arf2) T b3 b
13
to=(1—po)"
)
Fang 2000 Po=H . €)
th=(1- P1)T
th=(1-p)%
(bp—by )k
w = (1-py) i
(b3=by)k
ap = (1—pp) "0
ﬁ — b11*(11+12)b211 b3lz
e=
d - b2 +b 1 b 1-2'/3 01 ba(L b H(l—z’/3) b 1-2'/3
Kozak 2004 4o D" H (i’ﬁ)[ 124 ()b (5) - +ha(p)+bs e (5 )] (10)
b=13/H

Notes: d is stem diameter (cm) at height /2 in m, D is the diameter at breast height (cm), h is the height of the stem
(m), H is the total height of the tree (m), k =7 /40,000. a;, and b; are regression coefficients. There are intermediate
variables that are explained in each model.

These models were fitted using the statistical software SAS version 9.3 (SAS Institute,
Cary, NC, USA). through the MODEL procedure to obtain the regression and goodness
of fit parameters using the full information maximum likelihood (FIML) method of maxi-
mum authenticity. Both [5,24] point out that the adjustment with FIML homogenizes and
minimizes the standard error of the parameters in the system.

During the fitting, auto-correlation problems were corrected with a continuous auto-
regressive structure CAR (2) [6], which considers the distance between two consecutive
measurements of the commercial height in each of the trees;. The structure that is added to
the model is the following;:

hij—hij hif*ze,']',Q + & (11)
where:

¢jj is the ordinary residual in tree i,

di=1forj>1andd; =0forj=1,

7; is the auto-regressive parameter of order i, and

hij — hij_1 is the separation distance from j to j—1 observation within each tree,
hi]' > hi]'—l-

The auto-regressive structure was included in the MODEL procedure of SAS/ETS that
allows the dynamic updating of residuals. The Durbin—-Watson (DW) test suggests that the
autocorrelation was overcome in the final fit of the models [25].

2.5. Goodness of Fit of the Models

The goodness of the Al and regressions models was measured based on statistics that
include: Determination Coefficient (R?; Equation (12)), Root-Mean-Square Error (RMSE;
Equation (13)), Mean Bias Error (MBE; Equation (14)) and Mean Absolute Error (MAE;
Equation (15)).

a2
Y(Yi—Y;)
Y(Yi-Y))

RZP=1-— (12)
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RMSE = - (13)
Y. — Y
MBE = LY —Yi) (14)
Y; - Y;
MAE = M (15)

where:

Y; Y; Y; are the estimated, average and observed values, respectively, and 7 is the
number of observations. As an evaluation criterion for the goodness-of-fit statistical criteria,
it was assumed that the best fit is obtained when R? is closest to unity and the other criteria
are closest to zero.

3. Results and Discussion

As observed in Table 4 based on the goodness of fit criterion of the models, between
the two conventional equations evaluated in diameter estimation, the Kozak’s model shows
better results (R* = 0.985, RMSE = 1.070, MAE = 0.746 and MBE = —0.063). Regarding
the artificial intelligence models for estimating stem diameters, these were capable of
describing the diametric profile with accuracy. Particularly, the ANN model obtained
the best performance with relation to other models evaluated, followed by the CatBoost
model. The GP model performed the lowest in comparison to the other artificial intelligence
models. The results obtained using the ANN model were close enough to those obtained
using Kozak’s model; however, in terms of the RMSE and MAE statistics the differences
are negligible (Table 4).

Table 4. Summary statistics for diameter estimate along the stem (d) and DW parameter obtained by
autocorrelation correction of the conventional models.

RMSE MBE MAE

2
Model R (cm) (cm) (cm) DW
Kozak2004 0.985 1.070 —0.063 0.746 2.055
Fang2000 0.974 1.405 —0.125 1.120 2.053
CatBoost 0.978 1.299 —0.038 0.920 -
GPR 0.978 1.314 —0.010 0.952 -
ANN 0.985 1.085 —0.082 0.751 -
PG 0.977 1.343 —0.098 0.964 -

Table 5 shows the fitted parameter estimates and their standard errors for both models
where all the parameters were significant at 5%. Although Kozak 2004 is slightly superior
in fit to Fang 2000, this latter includes an explicit total bole and variable merchantable
model, while for Kozak 2004, it is necessary to directly obtain the volume by estimating
the height h; to a height h, which can be executed without difficulty in a spreadsheet
(numerical integrating this function).

As for the mean bias of the model as determined by the MBE statistic, in general all
models tend to slightly underestimate the diameter of the teak tree.

In the case of CatBoost, GPR and ANN AI models, for the estimation of new values
of Teak tree stem diameter by a third party, the file containing the trained algorithm can
be embedded as a module on a Raspberry Pi or Arduino single board or use a specialized
software for its execution, commonly R or Matlab. The trained algorithm file can be
requested via e-mail to the corresponding author.
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d = (((LN(((2.985

Table 5. Parameters estimated and standard errors of the conventional models of tapering evaluated.

Fang 2000 Kozak 2004
Parameter Estimation Standard Error Estimation Standard Error

ag 0.000068 2.181 x 108 1.223695 0.0385
ap 1.928423 2507 x 1077 0.990858 0.0063
ap 0.854570 0.08590 —0.05868 0.0132
by 2259 x 10~° 2.181 x 108 0.124234 0.0546
b, 993 x 10~° 2.507 x 10~7 —1.10823 0.0765
bs 0.000034 2.264 x 1077 0.406955 0.0151
by - - 7.265247 0.5388
bs - - 0.113903 0.00364
be - - —0.44487 0.0393
P1 0.016437 0.000183 - -

P2 0.082406 0.00205 - -

7 0.507385 0.0173 0.413999 0.0158
Y2 0.159728 0.0109 0.136901 0.0106

On the other hand, a useful characteristic of the GP Al model is that it provides an
algebraic expression to estimate the stem diameter of the tree, which can be programmed
in a spreadsheet (Equation (16)). The suggested equation derived from the GP approach is
as follows:

D — 18.442) +1.868 + D)) —0.809 + D) + ((0.784 x D + LN(EXP(LN(0.0704 D) /((14.316 — 18.6353)
*EXP(—1.892)/(0.755 * h) % (LN (1.665 * 1) +9.9252))))) + 1.832  (—5.972 — (—5.972 — (0.205 x H — 3.238 (16)
*(h/(1.842 % h)) /3.355)))/ (—7.252/(—3.52)))) x0.837 — 1.532)

One of the main advantages of Al-based models over traditional methods is that overfitting can be avoided
by selecting an appropriate structure as in the case of ANNs or by adjusting internal parameters through cross-
validation in CatBoost and GPR models. Another advantage of Al-based models is their capacity to model large
amounts of noisy data from dynamic and non-linear systems. Their greatest disadvantage is that they requires
specialized knowledge in the use of software and execution of programming codes for their implementation.

Figure 4 presents the residual distributions of predicted stem diameters obtained by all models using a set
of 1584 independent data. Figure 4 also shows that the Kozak’s taper equation and ANN models visually adjust
better, with their points close to zero and showing no tendency to over or underestimate. In addition, Figure 4
shows that the Kozak 2004 equation and ANN model best fit the observed data particularly in the lower stem
sections. This is not the case for the Fang 2000 regression model which also shows errors in the upper part of
the stem. Additionally, the ANN model has a slight advantage of accurate estimation of stem diameter at lower
heights compared to the Kozak 2004 model.

Figure 5 shows the trend of bias for the six models along the stem at 10% relative height intervals. The
models that showed the least bias in all height ranges were the Kozak 2004 and ANN models, while the Fang 2000
and GP models had the greatest bias near the stump. The GPR model showed a tendency to underestimate the
taper especially above 60% relative height, where the base of the canopy would be.

In practice, estimates are made from 1 m stem height upwards, and a log length standard of 2.2 m is
considered, so the commercial height hardly passes 60% of the total height. For this reason and for the graphic
analysis of the bias, the use of the Kozak 2004 and ANN models is recommended in the estimation of stem
diameters up to the commercial height.

It should be highlighted that the Fang 2000 model being a segmented model, the parameters p1 and p2
indicate the inflection points which in this case occur from nearly 6% and up to 54% of the total height, similar to
what was reported by [7] for Quercus spp. trees and to what was reported by [9] who estimate the inflection points at
8% and 59%, respectively.
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Figure 4. Residual distributions of the models (a) Kozak 2004, (b) Fang 2000, (c) ANN, (d) GPR,
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Figure 5. Tendency of bias for 10% relative heights intervals along the stem.

The results obtained by the conventional and artificial intelligence models evaluated here agree with other
previous studies by [12], who performed a comparative analysis of the ANN technique on several conventional
models, among them Kozak 2004 and Fang 2000 to determine the diameter of the stem of two forest species in
Turkey. Similarly to our study, the Kozak 2004 model proved to be a very efficient structure to estimate taper,
almost comparable to the best ANN models. No similar studies using CatBoost, GPR and GP techniques were
found in the literature despite these techniques being quite efficient in model complex phenomena [10].

4. Conclusions

Among the four Al-based models, the ANN and CatBoost methods showed better performance than the
GPR and GP methods.

From the two conventional models evaluated, the Kozak’s equation obtained a better performance compared
to the Fang model, which is why its use is recommended to estimate the shape of the stem in T. grandis trees from
forest plantations established in southeastern Mexico.
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The artificial intelligence methods can be an effective alternative to describe the shape of the stem in T.
grandis trees with an excellent accuracy, particularly the ANN and CatBoost models.
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