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Abstract: Understanding the patterns and underlying drivers of forest structure is critical for man-
aging landscape processes and multiple resource management. Merging several landscape-scale
datasets, including long-term fire histories, airborne LiDAR, and downscaled topo-climatic data, we
assessed complex ecological questions regarding the interactions of forest structure, climate, and fire
in the Yosemite National Park, a protected area historically dominated by frequent fire and largely free
of the impacts of commercial industrial logging. We found that forest structure broadly corresponded
with forest types arranged across elevation-driven climatic gradients and that repeated burning shifts
forest structure towards conditions that are consistent with increased resilience, biodiversity, and
ecosystem health and function. Specifically, across all forest types, tree density and mid-canopy
strata cover was significantly reduced compared to overstory canopy and the indices of forest health
improved after two fires, but no additional change occurred with subsequent burns. This study
provides valuable information for managers who seek to refine prescriptions based on an enhanced
understanding of fire-mediated changes in ladder fuels and tree density and those seeking to define
the number of treatments needed to mitigate severe fire risk and enhance resiliency to repeated fires.
In addition, our study highlights the utility of large-landscape LiDAR acquisitions for supporting
fire, forest, and wildlife management prioritization and wildfire risk assessments for numerous
valued resources.

Keywords: airborne LiDAR; forest management; fire management; ladder fuels; Yosemite National
Park

1. Introduction

Fire has shaped the structure, pattern, and composition of forests globally across
multiple spatial and temporal scales [1–3]. Heterogeneity in fire severity creates natural
variation in the arrangement and density of fuels, which interacts with microclimate and
topography to influence subsequent fire activity and ecosystem processes [4–6]. Humans
have moderated these fire feedbacks by maintaining relatively frequent fire for resource
management and cultural purposes [7–10]; however, shifts in fire regimes due to fire
suppression policies and human-driven climate change have disrupted the natural role of
fire and altered forest conditions [11–13]. Contemporary fire activity, compounded with
recent widespread drought, may therefore exceed forest resilience mechanisms [14,15] and
contributes to uncertainty surrounding the persistence of forest ecosystems and risks to
ecological and anthropogenic communities. The restoration and maintenance of historic
fire regimes and forest structures that reduce the potential for high-severity fire are central
objectives of forest managers worldwide [10,16].

In the western United States, National Parks have some of the oldest contemporary fire
records and therefore provide an opportunity to evaluate the role and cumulative effects of
managed fire. In addition, National Park Service (NPS) records allow for the study of forests
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relatively free from additional manipulations, such as widespread timber harvest, which can
complicate inferences specifically related to the effects of fire [17]. Late 19th and mid-20th
century fire suppression has led to the densification and homogenization of forests within
many National Parks, such as the Yosemite National Park (YNP), posing challenges for
resource management and human safety. However, managing natural lightning ignitions
for resource benefit and prescribed fire have been at the core of Yosemite’s active fire
management program since the early 1970s [18], making YNP an ideal place to study
the effects of fire, topography, and climate on forest structure with few confounding
circumstances related to site history. Understanding the degree to which fire has influenced
forest structure in many areas of the Park is critical for implementing an effective fire
management program that requires the prioritization of areas most departed from historical
forest conditions and most at-risk for catastrophic high-severity wildfire.

Fire modifies forest structure through complex interactions between existing vegeta-
tion, fire activity, topography, and climate [19–21]. Research within YNP has highlighted
the legacy of fire exclusion—montane and subalpine forests have higher levels of fuel from
the forest floor to intermediate canopy strata, and these small diameter trees carry fire
from the surface to tree crowns, increasing fire severity [22]. The densification of these
forests has coincided with a decline in healthy, large-diameter trees and a shift towards
more shade-tolerant species compositions [23,24], altering fire behavior. These changes are
exacerbated at lower elevations within montane and subalpine forests [23]. Conversely,
where wildfires have been managed for decades, such as in the Illilouette Creek basin in
YNP, low- to moderate-severity fires have driven heterogeneous forest structure character-
ized by overall lower tree densities and reduced ladder fuels, which self-limit the spread of
high-severity fire [2,5,25–27]. Management actions therefore aim to promote and mimic
these natural processes to modify wildland fire behavior and reduce the risk of severe fire
effects [28,29], while also increasing forest health [30,31] and potential water yield [32,33].
However, single low- to moderate-severity fire events may not drive sufficient structural
change to achieve resilient forest structure, but our understanding of this feedback between
repeated fire and fuel structure and therefore the number of fire entries required to achieve
management objectives remains a key unknown.

The historic role of fire and its feedbacks with forest structure and ecosystem processes
vary by forest type and disturbance histories in various biophysical settings, making large
sample sizes that are spatially diverse critical to disentangling complex patterns [26,34,35].
Classical methods in fire history, fuels, and forest ecology studies have generally been
limited in spatial scope and concentrated in small portions of the Park [26,36]. These
studies have provided invaluable insight into forest dynamics in response to wildfire both
within and outside the natural range of variation, but the availability of remote sensing
products and high-resolution airborne light detection and ranging (LiDAR) data facilitates
quantifying these fire-mediated changes in forest structure occurring from fine to broad
spatial scales [37,38]. LiDAR has become a powerful tool for forest studies, increasing the
scale at which forest dynamics and ecosystem processes may be evaluated [39–41] beyond
the limited spatial scope of traditional field sampling. Several case studies within YNP
have explored the relationship between horizontal and vertical forest structure and fire
severity using airborne LiDAR and remote sensing products [20,39,40]. This work expands
the scale at which feedbacks between pattern and process can be examined, highlighting
the importance of fire severity in driving post-fire recovery trajectories and providing
additional evidence for low- to moderate-severity fire creating resilient forest structures.
However, previous LiDAR acquisitions in the Park were still limited to smaller spatial areas
and/or single fire events, limiting the potential range of forest conditions considered in the
analysis and inference of structural changes following multiple fire events.

With the availability of parkwide LiDAR in 2019, we are now able to expand these
questions to forest-fire feedbacks across the entire Park to inform management and restora-
tion by evaluating if and how managed wildfire can promote desirable forest conditions.
The broad spatial coverage allows us to use a gradient of fire history to assess how repeated
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fire events influence forest structure, assisting in the development of target conditions
and inference into the need for forest management. In particular, LiDAR has been shown
to effectively quantify ladder fuels, which are a component of the canopy frequently ma-
nipulated by fire and forest managers to moderate fire behavior [42,43]. The vertical and
horizontal distribution of fuels across the landscape is critical information for prioritizing
management, wildfire use, and the need for second- or third-entry treatments to achieve
desired conditions. Furthermore, understanding patterns in forest structure and the under-
lying drivers of these patterns aids in predicting forest health [31], post-fire forest recovery
by quantifying seed sources [44] and suitable microclimates [45], and for managing sensi-
tive and threatened species [46–48] by characterizing habitat structure and configuration in
the context of disturbance.

In this study, we used parkwide LiDAR, almost a century of fire history data, and
topo-climatic data to evaluate how forest structure varies across the Yosemite National
Park according to multiple interacting factors, particularly fire history. With this rich
dataset, we addressed the following questions on broad spatial scales not previously
possible: (a) what is the relative influence of forest type, fire history, topography, and
climate on forest structure? (b) how does fire history, specifically the number of burns,
impact structure components frequently manipulated by management interventions? and
(c) how does fire history impact forest health? Our results provide the first assessment of
fire-mediated parkwide forest structure and will be useful for continued wildland fire use
and the management of natural resources within the Park.

2. Materials and Methods
2.1. Study Area

The Yosemite National Park is located in the central Sierra Nevada mountains of
California and encompasses over 759,000 acres of a diversity of habitat types. The Park
extends from low-elevation foothills to high-elevation granite peaks, with vegetation
communities broadly following this elevational gradient. Summers are characterized by
hot, dry conditions, while winters are cold and snow accounts for the majority of annual
precipitation. Lightning strikes are pervasive throughout the park and ignite numerous
fires each year. Both from lightning and cultural burning, fire has historically occurred
in all vegetation types in the Park (excluding high-elevation alpine zone); however, fire
was excluded from much of the Park from the late 19th to mid-20th century. Managing
natural lightning ignitions for resource benefit and prescribed fire have been a part of
the active fire management program since the early 1970s [49]. In many areas, abundant
high elevation granite, the lack of access, and minimal threat to human infrastructure
allow for fire management strategies such as confine and contain or monitor with no direct
suppression [50].

2.2. Data Sources

LiDAR-derived data layers were produced for the Yosemite National Park as part of
the California LiDAR project’s southwest pilot area in collaboration with the U.S. Geological
Survey’s 3DEP program (collected 7 October 2019–23 October 2019) [51]. LiDAR metrics
were developed according to methods outlined in Chamberlin et al. 2021 [52] and include
standard FUSION metrics [53] and post-processed metrics, such as canopy cover by stratum
(Figure 1), tree approximate objects (TAO, hereafter ‘tree density’), tree height metrics,
structure class layers, and topographic metrics (Table S1). Importantly, TAOs may not
represent true individual trees but rather include one dominant tree as well as several
subdominant trees due to detection of interlocking crowns during the LiDAR point cloud
segmentation process [54]. This disparity between TAOs and true individual trees may
vary under different forest conditions and likely underestimates the true number of trees
in a given stand. TAOs considered here represent both live and dead canopy. We also
included LiDAR-derived topographic context, the relative elevation of the sample centered
within a 2000 m pixel, to incorporate potential topographic influences.
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Figure 1. Example LiDAR point cloud with height strata, shown in different colors, used in
the analysis.

To explore the potential drivers of forest structure, we evaluated climate and distur-
bance characteristics across the study area. We extracted 800 m resolution mean annual
temperature (MAT) and mean annual precipitation (MAP) data that were summarized to
30-year normals from 1990–2020 [55]. We obtained detailed fire history data from 1930 to
present, including total number of burns (hereafter, ‘burn class’), year of last burn, and
median fire return interval departure (FRID), from the National Park Service records [56].
FRID represents the deviation from pre-settlement fire frequencies due to suppression
efforts in the 20th century. Fire history records include both contemporary fire perimeters
derived from satellite data as well as digitized hand-drawn fire perimeters dating back to
1930. Smaller fires are known to be less accurate but were not expected to impact the infer-
ences due to the large sample size available. All fire starts are included in the records (min
size = 0.1 acres); however, only lightning and prescribed fires (excluding human-caused fire)
were recorded prior to the 1980s. We also assessed the effect of fire history on vegetation
health by comparing normalized difference vegetation indices (NDVI), a well-established
measure of vegetation greenness used to represent changes in plant vigor [57,58]. Mean
NDVI values were extracted from 10 m resolution Sentinel-2 imagery captured between
June and August 2019.

We created a random subsample of these variables summarized to 30 m pixels
(n = 21,444) with a minimum spacing of 100-m in ArcGIS Pro 2.9.1 [59]. Samples were
further constrained to the dominant forest types (Jeffrey pine, red fir, mixed conifer, and
lodgepole pine) in YNP using the 2016 National Landcover Database [60,61]. We ultimately
evaluated variation in and drivers of forest structure in a subsample containing a total of
14,901 pixels, including 1467 samples in Jeffrey pine, 4404 samples in red fir, 7771 samples
in mixed conifer, and 1259 samples in lodgepole pine forests (Table 1). We also tested these
relationships in samples that had experienced at least one prescribed burn, which included
a subset of the data totaling 212 Jeffrey pine samples, 2440 mixed conifer samples, and
168 red fir samples. Prescribed fire has been rare in lodgepole pine forests in the Park and
thus were dropped from this subsequent analysis.
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Table 1. Sample size within each forest type and burn class.

Forest Type Burn Class

0 1 2 3 >3 Total

Jeffrey Pine 300 417 494 192 64 1467
Mixed Conifer 1261 2280 2856 1088 286 7771

Red Fir 1466 1740 902 238 58 4404
Lodgepole Pine 844 289 102 20 4 1259

Total 3871 4726 4354 1538 412 14,901

2.3. Statistical Analyses

Given the multivariate nature of forest structure, we first performed a non-metric
multidimensional scaling (NMDS) ordination in the package ‘vegan’ [62] to assess sim-
ilarities among samples according to forest structure metrics. We included the metrics
of canopy strata, canopy variability and height, and tree density as response variables
in the ordination. We specified a NMDS ordination with two dimensions and a distance
matrix based on Bray–Curtis dissimilarities to account for changes in units among forest
structure metrics. Stress was less than 0.1, indicating a good representation of samples in
two-dimensional multivariate space.

Using the distance matrix specified above, we then evaluated potential drivers of
multivariate forest structure as a function of forest type, burn class, FRID, MAT, and
MAP using the permutational multivariate analysis of variance (PERMANOVA, [63]). We
evaluated the multicollinearity of the explanatory variables using variance inflation factors
in the ‘Performance’ package [64] and found that there were no significant correlations
(all VIFs < 3.4). We included the interaction between forest type and burn class and forest
type and FRID based on expectations of different fire regime characteristics among forest
types [26,34,35]. This test compares differences in centroids and dispersion according to
grouping variables of interest (i.e., forest type, burn class) and performs a linear regression
of continuous explanatory variables in ordination space. PERMANOVA is a non-parametric
multivariate test that allowed us to accommodate the varying distributions of each forest
structure metric that contributed to the underlying distance matrix. The PERMANOVA
was implemented in the ‘Vegan’ package, version 2.6-2 [62]. Explanatory variables were
evaluated with pseudo F-ratios, which were permutated 999 times to determine statistical
significance (α = 0.01) in driving differences in multivariate forest structure.

Finally, to evaluate how burn class influenced the specific attributes of forest structure
and vegetation health, we used analysis of variance (ANOVA) tests to assess differences in
each canopy strata, in TAOs, and in NDVI according to burn class. These forest structure
metrics are attributes commonly manipulated by forest and fire managers to achieve desired
outcomes. Pairwise differences in each response between burn classes were evaluated
using TukeyHSD tests. Each analysis was performed on the entire dataset as well as the
subset focused on prescribed burns.

3. Results

A range of forest structure conditions exists across the dominant forest types of the
Yosemite National Park (Table 1). Samples spanned an elevational range of 1031 to 3388 m
and LiDAR-derived basal area ranged from 0 to 116 m2/ha. Tree density ranged from 0 to
383 TAO/ha. Some locations burned as many as nine times since historical fire records in
the Park began (1930); however, the mean number of burns was only 1.3 across all forest
types. Forest types broadly corresponded to elevation-driven gradients in mean annual
temperature and precipitation (Table 2).
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Table 2. Mean (standard deviation) elevation, forest density, number (#) of fires, mean annual
temperature (MAT), and mean annual precipitation (MAP) across the dominant forest types in
Yosemite NP.

Forest Type Elevation (m) Tree Density
(TAO/ha)

# Fires
(Since 1930) MAT (◦C) MAP (mm)

Jeffrey pine 2076 (413) 124 (46) 1.6 (1.7) 8.0 (2.3) 1173 (104)
Mixed conifer 1774 (234) 138 (44) 1.1 (1.4) 10.0 (1.2) 1106 (73)

Red fir 2284 (183) 124 (44) 1.3 (1.5) 7.3 (1.2) 1183 (92)
Lodgepole pine 2583 (238) 131 (51) 2.0 (1.5) 5.2 (1.6) 1303 (142)

3.1. Drivers of Forest Structure

Multivariate forest structure was driven strongly by mean annual temperature (F = 265,
p = 0.001), forest type (F = 176, p = 0.001), and burn class (F = 163, p = 0.001) according
to the PERMANOVA analysis (Figure 2). Topographic context (F = 79, p = 0.001), FRID
(F = 56, p = 0.001), and mean annual precipitation (F = 49, p = 0.001) explained a small,
yet statistically significant portion of variation in forest structure as well. Together, these
variables explained only 16% of variation in multivariate forest structure, indicating high
variability in forest structure characteristics among samples. These patterns were consistent
in sites that had experienced at least one prescribed burn, with mean annual temperature
(F = 124, p = 0.001), forest type (F = 123, p = 0.001), and burn class (F = 56, p = 0.001)
explaining the most variation in multivariate forest structure.
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Figure 2. Non-metric dimensional scaling analysis of LiDAR-derived forest structure metrics. Arrows
show the strength and direction of the relationship between multidimensional forest structure and
mean annual temperature (MAT), mean annual precipitation (MAP), the number of fires (# Burns),
fire return interval departure (FRID), and topographic context (Topography). Ellipses correspond to
forest type, and their location is based on samples in ordination space.

Single and repeated fires strongly influenced mid-canopy fuels, particularly in strata
from 8 to 32 m (Table 3, Figure 4). The 8 to 16 m canopy stratum was particularly sensitive
to the number of fires compared to other strata (F-value = 898). Canopy cover in the more
sensitive strata was generally higher in sites that have not experienced fire in the last
century. Notably, additional fires beyond a second burn did not drive further reductions
in canopy cover according to any predictable pattern. The lowest and highest canopy
strata were relatively constant across burn classes. All samples showed high variability
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in canopy cover for each canopy strata (Figure 4). Patterns were similar across all forest
types considered (Figure S1), and interactions considering forest type were not statistically
significant. The sensitivity of mid-canopy fuels to a second burn was also observed in the
prescribed burn subsample, and subsequent burns did not drive additional changes in
canopy cover (Figure S2).

Table 3. Mean (standard deviation) canopy cover by height strata, tree density, and normalized
difference vegetation index (NDVI) from samples differing in burn class. One-way analysis of
variance results testing differences in means for each response variable according to burn class
(df = 4). Pairwise differences were assessed with Tukey HSD tests and are shown in Figures 2–4.

Response Burn Class Mean (sd) Sum Sq Mean Sq F-Value p-Value

Canopy cover
1–2 m

0 6.3 (5.1) 4303 1077 21 <0.001
1 6 (6.9)
2 7.1 (8.7)
3 6.4 (7)

>3 8.3 (8.4)

Canopy cover
2–4 m

0 8.1 (5.4) 20761 5188 170 <0.001
1 5.6 (5.3)
2 5.3 (5.9)
3 4.8 (5.1)

>3 7 (6.5)

Canopy cover
4–8 m

0 0.4 (1.7) 1403 351 49 <0.001
1 0.8 (2.6)
2 1.2 (3.2)
3 1.2 (3.4)

>3 0.6 (2)

Canopy cover
8–16 m

0 23.9 (10.6) 383350 95838 898 <0.001
1 16.2 (10.7)
2 10.7 (10)
3 11.1 (9.6)

>3 12.2 (10.1)

Canopy cover
16–32 m

0 25.3 (14.8) 147258 36814 174 <0.001
1 21.3 (14.2)
2 17.2 (14.7)
3 18.1 (14.8)

>3 15.9 (14.1)

Canopy cover
32–48 m

0 6.3 (9) 9166 2292 25.3 <0.001
1 7 (8.9)
2 7.9 (10.2)
3 8.6 (10.7)

>3 5.9 (9.1)

Tree density
(TAOs/ha)

0 141.2 (37.2) 1604513 401128 207 <0.001
1 140.6 (46.8)
2 120.7 (46.5)
3 115.4 (45.1)

>3 126.1 (37.7)

NDVI 0 0.43 (0.13) 12.85 3.21 183.7 <0.001
1 0.44 (0.14)
2 0.49 (0.14)
3 0.50 (0.12)

>3 0.50 (0.11)
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3.2. Fire-Mediated Forest Conditions

Fire history also drove variations in tree density; however, significant reductions in tree
density depended on the occurrence of a second burn (p < 0.001, Figure 3). Additional fires
did not significantly reduce tree density (Table 3, Figure 3). These patterns were also ob-
served in the prescribed burn subsample (Figure S3). Similarly, fire history drove consistent
trends in NDVI. NDVI values were similar between unburned and once-burned samples;
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however, NDVI significantly increased following a second burn (p < 0.001, Figure 5). This
increase was maintained with subsequent burns, indicating that repeat burning enhances
and maintains vegetation greenness.
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4. Discussion

Our study provides a unique landscape-scale assessment of the effects of repeated
fire on forest structure, pairing Parkwide high-density LiDAR, improved climatological
models from Park long-term weather data, and extensive, accurate fire records to evaluate
interactions among climate, fire, and topography across multiple spatial scales and forest
types. We found that fire history introduced variation into forest structure beyond that
expected of different forest types determined broadly by climate niche space. Repeated
burning shifted forest structure towards conditions that are consistent with increased
resilience, biodiversity, and ecosystem health and function. These structural changes are
characteristic of forests experiencing frequent, low- to moderate-severity fire. Specifically,
across all forest types, mid-canopy strata cover, such as small diameter trees and large
shrubs (i.e., ladder fuels), was significantly reduced compared to overstory canopy and
indices of forest health improved after two fires, but no additional change occurred with
subsequent burns. Because our sampling network covered a broad spatial scale, including
areas difficult to access within the Park, we were able to capture a wider range of forest
conditions and fire histories not possible using ground-based field observations or previous
LiDAR acquisitions, including areas where repeated fire has been managed in the landscape.
Our study therefore provides robust support for many principles of disturbance ecology
and forest management e.g., [20,59,60] at scales not previously possible in past studies,
improving the Park’s capacity to manage fire and wildlife and promote forest health.

Our findings highlight how repeated fires can shape forests across a diverse landscape
in ways that make them more resilient to subsequent burns. While high-severity fire has
accounted for an increasing proportion of area burned within the Park [34], fires have
typically been dominated by low to moderate fire severities that promote heterogenous
and resilient forest conditions [5,24,26,27], even after a single fire event [65]. One such
resilient watershed in YNP, the Illilouette Creek basin where fire has been managed for
decades, is considered a reference area for an intact frequent fire regime resilient to large,
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high-severity wildfire [26,66]. While our study spanned the entire area of the Park, lower
tree densities and reduced mid-strata vegetation cover associated with two burns since 1930
match forest conditions observed in this fire-restored watershed, suggesting that for much
of the Park, repeat burning meets management objectives to promote natural ecosystem
processes and reduce the risk of catastrophic fire (see YNP Fire Management Plan 2004).
Furthermore, limited structural change beyond two fires supports widespread evidence of
the ‘self-limiting’ nature of wildfires, where fire-driven declines in horizontal and vertical
fuel continuity moderate fire behavior and reduce subsequent fire severity [5,6,67–69],
which limits the associated structural change [20,22,40]. Surprisingly, these structural
changes did not vary by forest type despite the expectations of varying fuel loads and fire
severity among different species assemblages [26,35], as well as the evidence of individual
post-fire structural trajectories [40]. Given the high variance in structural characteristics,
forest type-specific responses to fire may be more likely to emerge at scales which consider
fire severity patterns and are therefore subsumed at larger spatial scales [39].

Forest structural elements exhibited high variability across forest types and burn
classes, highlighting the many processes that may shape forest structure (such as climate,
insects, disease) as well as the fine-scale variability in fire behavior resulting in heteroge-
nous fire effects [20,39,70]. Notably, our study did not consider variations in fire severity
due to the lack of historical, spatially-explicit fire severity information; however, wildfires
in Yosemite have, on average, burned at low severity with limited patches of high and mod-
erate severity [26], even under drought conditions and when fires are burning concurrently
to megafires (e.g., Creek Fire and Blue Jay Fire). While quantifying fine scale variability
in fire behavior is important [40,71], our study captured the mosaic of forest structure
resulting from this variability and is consistent with the historical legacies of fire elsewhere
in western U.S. forests [26,38,58,59]. Using fire perimeters instead of within-fire variation
in fire severity would also introduce variation into each burn class, given that not all forest
area within fire perimeters burn during a fire event. Furthermore, patterns in structural
changes were less predictable at high fire frequencies, which may indicate vegetation state
transitions under fire and climate conditions exceeding post-fire resilience mechanisms.
These frequent-fire sites were dominated by the mixed conifer forest type, which accounts
for most of the wildland-urban interface in the Park and could potentially be more impacted
by other management activities, invasive species, or human-caused ignitions.

The stratum-based perspective considered here has great utility for setting prescription
targets and anticipating fire behavior to achieve desired management outcomes. Parkwide
canopy strata information greatly improves the accuracy of landscape data being used in
fire behavior models and risk assessments for fire management decision making. Given that
the strongest responses to fire were in the mid-canopy stratum (8–16 m), our results support
restoration actions that seek to remove smaller diameter trees to reduce fuel continuity from
ground to canopy level. Furthermore, given the importance of ladder fuels for moderating
fire activity, the availability of Parkwide mid-canopy fuel data highlights areas where
management actions are most needed to mitigate high severity fire risk and promote
diversity and connectivity of important wildlife habitat, objectives dually achieved through
fuel reduction treatments [43,72,73]. Fuels are difficult and time-consuming to capture
using field measurements; therefore, the use of Parkwide LiDAR in this study provides
an unprecedented assessment of fuels across the Park’s dominant forest types [42]. Fuel
treatments, either through mechanical means or wildland fire, typically aim to reduce tree
density and ladder fuels to mitigate fire risk [29], and our study empirically demonstrates
this effect after two fires.

Importantly, two entries were required to achieve these structural and density changes,
but additional fire did not significantly impact canopy structure. The consistency of
these patterns between our Parkwide sample and samples within prescribed burn units
emphasizes the effectiveness of prescribed fire for creating resilient forest conditions,
as well as matching those conditions created by natural low to moderate intensity fire
regimes [74–77]. The need for two entries to achieve resilient forest structure is consistent
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with the ongoing implementation of fuels management within the Park, where overly
dense forests with abundant dead and downed fuels require substantial fuels reduction
prior to implementing prescribed burns to meet management objectives [30,78–80]. While
we could not disentangle the effects of prescribed fire versus wildfire in samples that
had experienced both, the resulting forest conditions are likely consistent with low to
moderate fire effects due to prescribed fire moderating subsequent fire behavior [72,81].
These patterns provide useful targets for managers who seek to manage fire in a way
that maintains or restores forest conditions that sustain low to moderate severity fire
regimes. Furthermore, understanding the frequency and spatial extent of fires creating
these desired conditions assists managers who must prioritize multiple treatment needs,
balance the attribution of limited resources, and be able to anticipate the consequences of
management actions on both short and long timescales. As the extent of prescribed fire
increases in areas of the Park, additional work to isolate prescribed fire effects across a
broader temperature–precipitation gradient will address additional knowledge gaps for
sensitive species and long-term effects for the resilience and health of the Park’s highly
valued forest communities.

Observed structural changes associated with two burns corresponded to improved
forest health indices, providing additional support to the utility of fire use to achieve
multiple management objectives [31,32,72,78]. Additional work is needed to assess and
attribute the underlying mechanism for these observed changes in NDVI; however, NDVI
is a well-established index of forest health [58] and suggests that subsequent fires promote
increased vegetation greenness in some component of the canopy. Because we controlled
for multiple factors within our ordination space, confounding factors, such as forest type,
were minimized. An increase in NDVI can generally be attributed to improved plant vigor
and could reflect known relationships between forest structure, light, and water availability,
such as understory vegetation responses to reduced tree density and overstory canopy
cover [79,80] or improved overstory canopy health associated with reductions in competi-
tion and potential increases in soil water [32]. Although a combination of factors is likely
reasonable to assume, further field studies are needed to parse the changes observed in this
study. Considering fire-forest feedbacks at a Parkwide scale necessarily loses resolution for
understanding underlying mechanisms, but the fire-driven structural outcomes observed
in this study are consistent with those known to sustain low- to moderate-severity fire
regimes, reduce risk to catastrophic wildfire, and promote broader ecosystem health [31].
Given the value of large LiDAR acquisitions for monitoring forest resilience at the scale of
a management unit, more frequent acquisitions surrounding large fire events and ongoing
tree mortality will be an important component of landscape management in this era of
rapid change.

5. Conclusions

This study provides insights into the lasting effects of nearly a century of fire history
within the dominant forest types of the Yosemite National Park. We found that tree
density and mid-canopy strata, in particular 8–16 m, were most impacted by multiple fires,
supporting restoration actions that seek to remove smaller diameter trees. Importantly, two
entries were required to achieve these structural and density changes, but additional fire
did not significantly impact forest structure, suggesting that two fires may create forest
conditions that restore self-sustaining ecosystem processes. These patterns were consistent
for all forest types, which may indicate similar management strategies may be applied
parkwide; however, individual forest type responses are known to emerge at finer spatial
scales. This study supports past work around achieving fire resilience through restoring
natural fire regimes but offers further insight into the drivers and specific strata effects
by which these resilience gains are achieved. Finally, this work highlights the utility of
large-landscape LiDAR acquisitions for supporting fire, forest, and wildlife management,
specifically for prioritizing management needs and evaluating fire risks to numerous
valued resources.
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