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Abstract

:

Accurate mapping of tree species is critical for the sustainable development of the forestry industry. However, the lack of cloud-free optical images makes it challenging to map tree species accurately in cloudy mountainous regions. In order to improve tree species identification in this context, a classification method using spatiotemporal fusion and ensemble classifier is proposed. The applicability of three spatiotemporal fusion methods, i.e., the spatial and temporal adaptive reflectance fusion model (STARFM), the flexible spatiotemporal data fusion (FSDAF), and the spatial and temporal nonlocal filter-based fusion model (STNLFFM), in fusing MODIS and Landsat 8 images was investigated. The fusion results in Helong City show that the STNLFFM algorithm generated the best fused images. The correlation coefficients between the fusion images and actual Landsat images on May 28 and October 19 were 0.9746 and 0.9226, respectively, with an average of 0.9486. Dense Landsat-like time series at 8-day time intervals were generated using this method. This time series imagery and topography-derived features were used as predictor variables. Four machine learning methods, i.e., K-nearest neighbors (KNN), random forest (RF), artificial neural networks (ANNs), and light gradient boosting machine (LightGBM), were selected for tree species classification in Helong City, Jilin Province. An ensemble classifier combining these classifiers was constructed to further improve the accuracy. The ensemble classifier consistently achieved the highest accuracy in almost all classification scenarios, with a maximum overall accuracy improvement of approximately 3.4% compared to the best base classifier. Compared to only using a single temporal image, utilizing dense time series and the ensemble classifier can improve the classification accuracy by about 20%, and the overall accuracy reaches 84.32%. In conclusion, using spatiotemporal fusion and the ensemble classifier can significantly enhance tree species identification in cloudy mountainous areas with poor data availability.
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1. Introduction


Tree species composition and species changes have widespread effects on forest functions, such as soil and water conservation, biodiversity maintenance, and carbon storage [1,2,3]. Knowledge about accurate tree species distribution is essential for the sustainable development of forest ecosystems [4,5]. Forest species distribution data are mainly provided by traditional forest inventories or remote sensing methods. Forest inventories are labor-intensive, making it challenging to obtain spatially continuous information on tree species in large areas. Remote sensing methods can make synchronous observations over large areas compared to forest inventories. Various optical and radar data have been utilized for tree species mapping with satisfactory accuracy [6,7,8]. Compared to airborne data, satellite multispectral images are more suitable for mapping tree species in large areas due to the spatial and temporal resolution, rapid wide coverage capability, and open access to image archives.



Currently, the data used to classify tree species based on satellite images mainly consist of single-temporal, multitemporal, and time series data. First, single-temporal imagery, which is mostly acquired when trees are in leaf, was used to classify tree species. The results are unsatisfactory and do not meet the application requirements [9,10]. Each tree species has unique phenological characteristics. These characteristics can be extracted from the reflectance of images in different seasons. Some scholars have suggested that multitemporal data should be introduced [11,12]. Four Sentinel-2 images from three seasons improved the classification accuracy from 80.5% to 88.2% compared to single-temporal images [13]. However, multitemporal data usually consist of only a few images from different seasons or seasonal composite images. This insufficient number of images may lead to a lack of phenological information at key time nodes of tree species growth [14]. Recently, time series data were composited for tree species identification [15,16,17]. Some relevant research showed that tree species classification accuracy was improved from 76.14% to 79.4% when using images with 10-day temporal resolution compared to monthly data [18], indicating that denser time series may help to identify tree species more accurately. However, in cloudy mountainous regions, dense time series are difficult to obtain directly for tree species classification within and between years due to frequent cloud contamination.



The spatiotemporal fusion technique was developed to create time series with fine spatial and temporal resolutions [19,20,21]. Relevant spatiotemporal fusion algorithms include the following types: pixel unmixing-based, weighting function-based, dictionary learning-based, Bayesian-based, and multiple hybrid methods [22]. Among them, the weighting function-based and hybrid methods are the two most widely used methods, owing to their advantages in computational cost and fusion accuracy. The spatial and temporal adaptive reflectance fusion model (STARFM) is the most representative weight function-based algorithm. It uses a weighting function calculated from the spectral differences between the data and the information of neighboring pixels to predict pixels [23]. The recently proposed spatial and temporal non-local filter-based fusion model (STNLFFM) algorithm extended the STARFM fusion framework to improve the prediction performance [24]. Flexible spatiotemporal data fusion (FSDAF) is a typical hybrid model that combines pixel unmixing and a weight function [25]. It can automatically identify gradual and abrupt surface reflectance changes by analyzing the errors in the fusion process, predicting the high-resolution surface reflectance with higher accuracy. The fused images generated by these methods have been widely applied for crop growth monitoring, biomass estimation, and forest cover classification, but rarely for tree species discrimination [26,27,28]. Therefore, these methods are potential options for generating dense time series to map tree species. However, the applicability of different fusion methods still needs to be systematically investigated.



In tree species classification using time series images, existing classification methods include parametric and non-parametric models. Parametric models usually assume that the population obeys a certain distribution. This distribution can be determined by some parameters. For example, the normal distribution is determined by the mean and standard deviation. A model built on this basis is called a parametric model. Such assumptions do not exist in non-parametric models [29]. A parameter classifier model, i.e., the maximum likelihood method, was successfully utilized to map tree species in southern Sweden based on 23 images from 2016 to 2018 [30], with an overall accuracy of 87%. However, parameter models may underfit when dealing with complex classification problems, resulting in unsatisfactory accuracy. Many non-parameter supervised classification algorithms have recently been developed and applied. A total of 12 major tree species were classified in southwestern France using 17-date Formosat-2 satellite image data acquired across one year and three non-parametric classifiers [15], i.e., the K-nearest neighbor algorithm (KNN), support vector machine (SVM), and random forest (RF) [31,32,33]. The kappa coefficient of the three methods was higher than 0.9. More advanced classifiers, such as artificial neural networks (ANNs) and light gradient boosting machine (LightGBM), have also been applied to classification using remote sensing time series with ideal accuracy [34,35,36]. However, according to relevant studies, each classification method has its limitations and cannot meet all aspects of classification performance requirements simultaneously. Therefore, combining various classifiers with complementary advantages is an effective way to improve classification accuracy [37,38].



Existing ensemble strategies for combining different classifiers include four categories: voting, bagging, boosting, and stacking. Voting is the most popular ensemble method [39]. It consists of hard voting and soft voting. In hard voting, the output result corresponds to the class with the most allocation among multiple classifiers. In soft voting, the corresponding weight is set for each classifier; then, a specific weight fusion is carried out to obtain a better classifier [40]. A previous study showed that an ensemble model based on a voting strategy enhanced the overall accuracy by 1%–5% relative the best single classifier [41]. The voting strategy has also been applied in other classification studies, such as for river detection, scene classification, and land cover mapping, with the ensemble model always performing better than the best individual classifier [42,43,44]. However, to the best of our knowledge, ensemble models have rarely been applied to tree species discrimination. Therefore, the development an ensemble model to improve tree species mapping based on dense time series is necessary.



In this study, the main aims are as follows: (1) to examine the performance of different spatiotemporal fusion methods to generate high-quality time series, (2) to map tree species more accurately in cloudy mountainous regions based on fused time series, and (3) to explore the application potential of multiclassifier fusion in tree species identification.




2. Study Area


Helong City, located in southeast Jilin Province, with an area of 5068.62 square kilometers, was used to test our proposed method (Figure 1). It has a mid-temperate, semi-humid monsoon climate. The yearly average temperature, sunshine, and precipitation are 5.6 °C, 2387.2 h, and 573.6 mm, respectively. This region is located in the Changbai Mountains, with more than 1000 peaks higher than 1000 m above sea level. The sufficient sunshine, abundant rainfall, fertile soil, and mountainous terrain provide a suitable environment for the development of forests. Forests cover more than 80% of Helong City. The dominant tree species are oak, larch, Korean pine, Pinus sylvestris, and birch. Another important reason for choosing this region is the poor availability of satellite data. For example, in this region, there were only 3 Landsat 8 images with less than 10% cloud cover captured in 2016. The availability of other satellite imagery is similar. Therefore, this region is very suitable for testing our proposed classification procedure.




3. Data and Methods


Our workflow includes (1) data preprocessing, (2) comparison and selection of spatiotemporal fusion methods, (3) generation of high-resolution time series images, (4) tree species classification based on various feature combinations and different classifiers, (5) classification accuracy assessment, and (6) tree species distribution mapping (Figure 2).



3.1. Remote Sensing Data and Preprocessing


The spatial resolution of the Landsat data is 30 m. However, the 16-day revisit cycle of Landsat has long limited its use for the study of global biophysical processes. MODIS involves daily data collection, so the probability of collecting cloud-free images is many times higher in MODIS compared to Landsat. However, the spatial resolution of MOIDS data at 500 m is not sufficient for mapping of tree species. Therefore, MODIS data were used to improve the temporal resolution of the available Landsat data for our study.



The only three cloud-free Landsat 8 OLI images in 2016 from different dates and the MCD43A4 product from MODIS on the same day were applied to select the best spatiotemporal fusion algorithm [45,46]. Each Landsat image consists of two adjacent paths (paths/rows: 116/30, 116/31). The image pair on May 19 was defined as the reference images of spatiotemporal fusion algorithms. The other two image pairs were used to assess the accuracy of different fusion algorithms. Figure 3 shows the MCD43A4 images of the base date (May 19) and two predicted dates (May 28 and October 19). The time series consisting of 28 images from March 21 to October 28 in the MCD43A4 product was input into the optimal spatiotemporal fusion algorithm to generate fine-pixel-resolution dense time series with 8-day intervals. The imaging time range of these images covers the whole growth period of various tree species. Table 1 lists the imaging date and spatiotemporal spectral information of all images. In addition, the Shuttle Radar Topography Mission (SRTM) V3 product provided by NASA JPL was selected to extract topographic information [47].



The MODIS and Landsat 8 images were acquired through the Google Earth Engine platform [48]. MODIS data preprocessing steps are as follows: (1) application of a forest mask to extract forest pixels, (2) filling in of missing values in the MCD43A4 images with image values from the same date in adjacent years [49,50], and (3) resampling of MODIS images to 30 m resolution using bicubic interpolation in ArcGIS 10.8. The USGS Landsat 8 Tier 1 dataset on the GEE platform was calibrated to surface reflectance after atmospheric and radiometric correction. Images taken on the same day were seamlessly mosaiced using ENVI 5.3 software and clipped to the forest area. The spatial reference for all data was unified to the WGS84 coordinate system.




3.2. Field Data


The reference data of land cover types and dominant tree species were derived based on the forest inventory data of Jilin Province for 2016 (Figure 4). In GIS, the data divide the study area into polygons representing separate, homogeneous stands. The training and validation samples were generated according to these data. The feature data of forests and five dominant tree species, i.e., oak, larch, Korean pine, Pinus sylvestris, and birch, were extracted separately, and small polygons with an area of less than 0.01 hm2 were removed. A 30 m inward buffer was applied to each polygon to minimize edge effects between patches of different tree species [51]. The sample points of each tree species were randomly sampled in the polygons (Figure 5). The minimum distance between adjacent sampling points was required to be greater than 30 m. Table 2 lists the number of samples for each tree species. Each category of sample points was randomly divided into a training set and a validation set in a ratio of 8:2. The training and validation samples do not contain the same sample points. The above process was completed using ArcGIS 10.8 software.




3.3. Spatiotemporal Fusion


Three typical spatiotemporal fusion methods were selected, i.e., STARFM, STNLFFM, and FSDAF. These fusion algorithms need at least one pair of high-resolution and low-resolution images at base date t0 and a known low-spatial-resolution image at predicted date tk; these images are then fused to obtain a high-spatial-resolution image for date tk. The Landsat 8 image and the MODIS image of May 19 (base date) were applied to predict the fused images on May 28 and October 19 (predicted date). The Landsat 8 images of May 28 and October 19 were used to verify the accuracy. The algorithm with the highest accuracy was selected to generate dense time series with 8-day intervals.



3.3.1. STARFM


The STARFM algorithm performs the fusion process using Equation (1) for MODIS (M) and Landsat (L):


   L     x   w 2    ,  y   w 2    ,  t k    =   ∑   i , j = 1  N   W  i j   ×   M    x i  ,  y j  ,  t k    + L    x i  ,  y j  ,  t 0    − M    x i  ,  y j  ,  t 0       



(1)




where w is the size of the moving window, N is the number of similar pixels filtered by the local moving window,   L    x   w 2    ,  y   w 2    ,  t k      is the value of the central pixel of the moving window for the Landsat image at predicted date    t k   , and    x   w 2     ,    y   w 2      is the central pixel within the moving window. The spatial weighting function (   W  i j    ) determines how much each neighboring pixel (   x i  ,  y j   ) in w contributes to the estimated reflectance of the central pixel.   M    x i  ,  y j  ,  t k      is the MODIS reflectance at the window location (   x i  ,  y j   ) observed at predicted date    t k   , while   L    x i  ,  y j  ,  t 0      and   M    x i  ,  y j  ,  t 0      are the corresponding Landsat and MODIS pixel values, respectively, observed on the base date (   t 0   ) [23].




3.3.2. FSDAF


FSDAF is a multisource remote sensing spatiotemporal fusion algorithm that combines unmixing, spatial interpolation, and similar neighboring pixel smoothing to obtain robust fusion results. It can be used to obtain land surface information of gradual changes or sudden changes in land cover types in heterogeneous regions [25]. First, FSDAF estimates the temporal variation of Landsat pixels     Δ  F  t p       based on the unmixing of the entire image to generate a temporal prediction (   F 2  t p    ). Secondly, using thin-plate spline interpolation to generate spatial prediction (   F 2  S P    ), the residuals between the Landsat pixels and the MODIS pixels are considered in FSDAF as [52]:


  R   x , y   = Δ C   x , y   −  1 n      ∑   i = 1  n   F 2  t p      x i  ,  y i    −   ∑   i = 1  n   F 1     x i  ,  y i       



(2)




where   R   x , y     is the residual in the MODIS pixel at a given location     x , y    , n is the number of Landsat pixels inside a MODIS pixel, and the Landsat pixel at location      x i  ,  y i      is inside the MODIS pixel at location     x , y    . In a homogenous area, spatial prediction performs well, which is applied to calculate a new residual [52]:


   R   h 0      x , y   =  F 2  S P     x , y   −  F 2  t p     x , y    



(3)







A weighted function (   w h   ) is used for a homogeneity index of residual compensation to integrate the two residuals (i.e.,    R   h 0      and  R ). The final prediction of FSDAF can be expressed as [52]:


     F 2   ^    x , y   =  F 1    x , y   +   ∑   i = 1    n s     W i    Δ  F  t p      x  i ,    y i    + n × R    x i  ,  y i    ×  w h     x i  ,  y i       



(4)




where    W i    is the weight of similar pixels, and      F 2   ^    x , y     is the predicted image.




3.3.3. STNLFFM


STNLFFM extends the STARFM fusion framework. Based on the basic assumption of scale invariance between the temporal relationship of low-resolution images and the temporal relationship of high-resolution images, it solves the linear temporal relationship between the known low-resolution images of the base date and the predicted date and maps it to the high-resolution image to generate fusion results. This process can be expressed by Equation (5):


  F   x , y ,  t p    =   ∑   k = 1  M    ∑   i = 1  N  W (  x i  ,  y i  ,  t k  ) ×   a    x i  ,  y i  , Δ  t k    × F    x i  ,  y i  ,  t k    + b    x i  ,  y i  , Δ  t k       



(5)




where   F   x , y ,  t p      is the predicted image of the target pixel     x , y     for the predicted date    t p   ; M is the number of base (reference) dates; N is the total number of similar pixels (of the same type as the target pixel) in the image;      x i  ,  y i      is the position of the ith similar pixel;   a    x i  ,  y i  , Δ  t k    ,   b    x i  ,  y i  , Δ  t k      are the linear fit coefficients of the MODIS similar pixel set between the reference moment    t k    and the predicted moment    t p   , which are calculated using the least squares method; and   W    x i  ,  y i  ,  t k      is the weight of the ith similar pixel of the Landsat image for the reference date (   t k   ).





3.4. Tree Species Classification


The spectral reflectance (6 bands) and topographic features (3 variables) of elevation, slope, and aspect constitute input features that are combined in sets of up to 171 depending on the experiment [53]. The time series consists of 28 fused images. Each image contains 6 spectral bands. These variables and the three topographic features comprise up to 171 variables.



Seven experiments were set up to explore the effects of multitemporal spectral and topographic features on tree species classification. The input feature of experiment 1 was the single-temporal image surface reflectance. Experiment 2 added topographic features based on Experiment 1. Because the time series contains 28 images, both Experiment 1 and Experiment 2 needed to be performed 28 times. The input features of Experiment 3, Experiment 4, and Experiment 5 were the spectral features of spring, summer, and autumn images, respectively. The rest of the experiments were classified based on all spectral features. In addition, three experiments using real observation Landsat data were designed as a baseline to compare with experiments using fused images. These three experiments used the only three cloud-free Landsat images from 2016, the seasonal composite images of spring, summer, and autumn from 2016; and the seasonal composite images of spring, summer, and autumn from 2015, 2016, and 2017. Each composite image was obtained by averaging all available imagery throughout the season. The feature combinations for each experiment are shown in Table 3. All experiments used the same training and testing sampling points.



Four supervised classification methods, i.e., KNN [31], RF [33], ANN [34], and LightGBM [34], were selected in this research. In addition, a new ensemble model based on the soft voting strategy was proposed. The soft voting rule of an ensemble model on decision problem x works as follows [41]:


   D x  = m a  x  i d x     ∑   i = 1  L   w i   d  x , i    



(6)




where    D x    is the selected class number of hard voting on decision problem x, L is the number of voters (base classifiers),    d  x , i     is the binary vector output (e.g., [0, …, 0, 1, 0, …, 0]) of the classifier on decision problem x,    w i    is the weight of the ith base classifier, and   m a  x  i d x     is the index for which the maximum value was obtained in the summation vector (    ∑   i = 1  L   w i   d  x , i    ). Multiple maximum values return the index of first occurrence.



In our ensemble model, the results of KNN, RF, ANN, and LightGBM are fused with the same weights. The deep forest algorithm proposed by Zhou et al. was used for comparison with our proposed ensemble model [54]. This algorithm is a deep ensemble model. Its core technology is cascade forest and multigranularity scanning. This method requires little parameter tuning and performs better than traditional machine learning methods on many datasets.



The abovementioned algorithms were implemented using the scikit-learn and LightGBM libraries in Python [55]. Bayesian optimization was used to tune the main parameters of each method [56]. Table 4 lists the main parameter settings for base classifiers.




3.5. Accuracy Assessment


Five metrics were chosen to assess the performance of the three spatiotemporal fusion algorithms, i.e., correlation coefficient (CC), root mean square error (RMSE), structural similarity index (SSIM), spectral angle (SAM), and global relative error (ERGAS) (Equations (7)–(11)) [57,58,59]. A total of 10,000 pixels were randomly selected, and the correlation coefficients (Equation (12)) between the predicted images (pixel values) and the actual Landsat 8 image in the red and near-infrared bands on the two predicted dates were calculated. Relevant studies have shown that the red band and the near-infrared band are most related to the chlorophyll content and water content of vegetation, respectively [55]. The Landsat image on the base date was compared to Landsat images on the two predicted dates as a control. The correlation coefficients between each band and their average were calculated.


   CC    F , G   =  1 B    ∑   b = 1  B    c o v    F b  ,  G b       σ   F b     σ   G b       



(7)




where F and G represent the fusion image and the real image, respectively;   c o v   (·) is the covariance;  σ  represents the standard deviation of the image; b is the band number; and B is the total number of bands.


  RMSE   F , G   =  1 B    ∑   b = 1  B      ‖  F b  −  G b   ‖ 2     N 1   N 2       



(8)




where    N 1    and    N 2    are the height and width of the image, respectively.


  SSIM   F , G   =  1 B    ∑   b = 1  B      2  μ   F b     μ   G b    +  C 1      2 c o v    F b  ,  G b    +  C 2           μ   F b     2  +    μ   G b     2  +  C 1         σ   F b     2  +    σ   G b     2  +  C 2       



(9)




where  μ  represents the mean value of a given band of the image.


   SAM    F , G   =  1   N 1   N 2      ∑   i = 1    N 1   N 2    a r c c o s      V   F i   T   V   G i      ‖  V   F i     ‖ 2  · ‖  V   G i     ‖ 2       



(10)




where    V   F i      and    V   G i      are the spectral vectors of the ith pixel of images F and G, respectively.


  ERGAS = 100  h l     1 B    ∑   b = 1  B    R M S  E b 2       μ   G b     2       



(11)




where h is the spatial resolution of the high-resolution image, and l is the spatial resolution of the low-resolution image.


  r   X , Y   =   C o v   X , Y       V a r  X  V a r  Y       



(12)




where X and Y are the pixel-value vectors of the fusion image and the real image, respectively; Cov(X,Y) is the covariance of X and Y; Var[X] is the variance of X; and Var[Y] is the variance of Y.



The overall accuracy of tree species classification was assessed using the overall accuracy (OA) and kappa coefficient (Equations (13) and (14)). The class-wise accuracies were evaluated by the producer accuracy (PA), user accuracy (UA), and F-value (Equations (15)–(17)) [60].


  OA =   T P + T N   T P + T N + F P + F N    



(13)






  Kappa =    P 0  −  P e    1 −  P e     



(14)






  PA =   T P   T P + F N    



(15)






  UA =   T P   T P + F P    



(16)






   F 1  =   2 × U A × P A   U A + P A    



(17)




where TP is true positive, representing the number of correct predictions for positive samples; TN is true negative, showing the number of correct predictions for negative samples; FP is false positive, indicating the number of incorrect predictions for positive samples; FN is false negative, denoting the number of incorrect predictions for negative samples; Po is the number of correctly predicted samples divided by the total number of samples; and Pe is equal to (a1 × b1 + a2 × b2 + … + am × bm)/n × n, where a1 to am represent the number of true samples for each tree species, and b1 to bm indicate the number of samples predicted for each tree species.





4. Results


4.1. Image Fusion and Evaluation


The STARFM, FSDAF, and STNLFFM were applied to generate the fused images of May 28 and October 19. Figure 6 shows a comparison of the Landsat image of the base date and the Landsat images of the two predicted dates. Table 5 shows the correlation coefficients of each band and their mean values between the Landsat images of the base date and the predicted date. Compared with the Landsat image of October 19, the reflectance of the Landsat image on May 28 was closer to the Landsat image of the base date. The correlation coefficient of each band on May 28 was also higher, which was an average of 0.12 higher than that on October 19. The Landsat images between the two prediction dates and the base date were significantly correlated, and the correlation coefficients were both greater than 0.8. MODIS pixels, which is equivalent to aggregating multiple Landsat pixels at the same location. This temporal correlation also exists on MODIS images. Therefore, high-quality Landsat-like images can be generated through spatiotemporal fusion technology based on MODIS.



Figure 7 shows a typical region of these fused images. Table 6 shows the metrics of different methods. It can be seen that the fusion accuracy of the two dates varies greatly. The fusion results of different algorithms on May 28 are very similar and satisfactory. The high accuracy metrics indicate very little difference between fused and reference images. On October 19, the performance of the three algorithms was significantly worse than that on May 28. The levels of several metrics were also significantly lower but still acceptable. Among the three algorithms, STNLFFM achieved the highest accuracy. The STARFM model performed slightly worse than STNLFFM. FSDAF is the most unsatisfactory algorithm because the fusion results were severely blurred, and a considerable amount of spatial information was lost.



The scatter plots in Figure 8 show the correlation of the red and near-infrared bands between the fused and reference images. The STNFLLM correlation coefficient is always the highest, which indicates that the fusion results correlate more with the actual observations. The average correlation coefficient of STARFM is close to that of STNLFFM and higher than that of FSDAF. In conclusion, STNLFFM performed best in both qualitative and quantitative evaluations. Therefore, the STNLFFM algorithm was selected to generate dense time series images for tree species classification.




4.2. Classification and Mapping of Tree Species


4.2.1. The Overall Accuracy of Five Tree Species


Four existing machine learning algorithms and our proposed ensemble algorithm were used to classify tree species in ten experiments. Lollipop plots were generated to display the accuracy for different dates in Experiment 1 and Experiment 2 (Figure 9). Table 7 shows the kappa coefficients and overall accuracy for all experiments. The accuracy of Experiment 1 and Experiment 2 is the mean value of the whole experiment.



Figure 9 shows that the classification accuracy is not satisfactory based only on a single image. The kappa coefficient is only around 0.55, and the overall accuracy is approximately 65%. The introduction of topographic features in Experiment 2 significantly improved the classification accuracy by approximately 6% overall, with a kappa coefficient improvement of approximately 0.07. Table 7 shows that multitemporal images can significantly enhance classification precision compared with single-temporal classification. Satisfactory accuracy can be achieved using images from only one season. When using the ensemble classifier based on images of different seasons, the kappa coefficients were all higher than 0.75, and the overall accuracy was higher than 0.8. The classification based on spring images had the highest accuracy among the three seasons, with 82.41% OA and a 0.765 kappa coefficient. Adding topographic features to time series data improved classification accuracy, but the effect was not as pronounced as adding it to single-phase images. Compared with using only three Landsat images and seasonal composite images from one year and three years, the overall accuracy classification using the full time series, topographic variables, and the ensemble classifier was improved by 11.4%, 12.48%, and 4.87%, respectively. Therefore, the complete fused time series with topographic features as auxiliary variables constitutes the optimal feature combination.



The performance of the evaluated classifiers differed significantly. In Experiment 1, ANN and RF significantly outperformed KNN and LightGBM. After adding topographic features, the model with the highest average overall accuracy was RF, followed by LightGBM, ANN, and KNN. In multitemporal classification, ANN and LightGBM achieved significantly higher classification accuracy than KNN and RF. However, the ensemble classifier achieved the highest accuracy in almost all experiments. Compared to the best base classifier, the most significant improvements in overall accuracy and kappa coefficients were around 3.4% and 0.047, respectively. When classifying based on the optimal feature combination in Experiment 7, compared with KNN, RF, ANN, and LightGBM, the classification accuracy of the ensemble classifier was improved by 4.89%, 4.07%, 1.42%, and 1.56%, respectively. Therefore, the ensemble classifier was ultimately selected for tree species mapping.




4.2.2. The Class-Wise Accuracies of Five Tree Species


The user accuracy, producer accuracy, and F-value of each classifier in Experiment 7 are reported in Table 8. As a control, the mean user accuracy, producer accuracy, and F-value of the other nine experiments are reported in Table 9. The confusion matrix for each classifier is shown in Figure 10. The F-value was chosen to measure the classification accuracy of each category. The ensemble method achieved the highest accuracy in all classes of tree species. Except for Korean pine, the classification accuracy was satisfactory, and the F-value was above 80%. Birch had the highest classification accuracy at 90.71%. In contrast, Korean pine had the lowest classification accuracy, with an F-value of 72.21%. However, the ensemble classifier exhibited the most significant improvement in classification accuracy of this category, with the F-value improved by approximately 2.5% compared with ANN.




4.2.3. Comparison with Other Ensemble Models


Table 10 shows the classification accuracy of the deep forest algorithm and our proposed ensemble method with the optimal feature combination (Experiment 7). The overall accuracy of our ensemble model was about 2% higher than that of the deep forest model, which indicates that our proposed model is more advanced.




4.2.4. Tree Species Mapping


A tree species distribution map of the study area (Figure 11) was produced using the ensemble classifier based on spectral and topographic features. The most common species were oak (39.15%) and larch (39.87%), whereas the other three species were relatively less distributed, with area proportions of 4.65% (Korean Pine), 5.40% (Pinus sylvestris), and 10.93% (Birch).






5. Discussion


5.1. Error Sources in Spatiotemporal Fusion Algorithms


The three spatiotemporal fusion methods are mathematically different. By assuming a linear relationship between fine and coarse images or between coarse prediction and base date images, STARFM uses a linear regression model to describe this linear relationship, followed by prediction through the application of the linear regression model to the coarse image on the prediction date or the fine image on the base date. However, the performance of STARFM for reflectance change areas and heterogeneous landscapes is not satisfactory [61]. The flexible spatiotemporal data fusion (FSDAF) model is a method involving the use of one pair of fine- and coarse-resolution images and one coarse-resolution image acquired on the prediction date. This method integrates unmixing-based methods, spatial interpolation, and STARFM into one framework. However, this method is computationally expensive, and the prediction accuracy greatly depends on the extent of land cover changes between the two dates of the input images [62]. In STNLFFM, the coefficients of the linear equation of a given pair of coarse-spatial-resolution pixels can be acquired using the least squares method based on the neighboring pixels and the given pixels themselves. Then, the coefficients can be used for the observed fine-spatial-resolution image to acquire a prediction. To decrease the effects of heterogeneous landscapes, STNLFFM uses neighboring spectrally similar pixels to make a more accurate prediction [63]. The accuracy of the three fusion algorithms is similar and acceptable. STNLFFM performs best because it pays more attention to changes in the reflectance of multitemporal images [64]. However, it is necessary to point out that the fusion precision of all methods on October 19 was lower than that on May 28 because the time interval between the prediction and reference dates was longer. The difference in phenology was more significant, leading to a decrease in fusion accuracy [21]. In cases in which the reference and prediction dates are closer and the correlation between the images is strong, the prediction results are generally more reliable [65]. Another limitation of the three algorithms described above is that these methods only use information from images obtained on the two individual dates and ignore the temporal information of time series with different resolutions. The use of additional images can help to improve fusion results [66].




5.2. The Influence of Different Features on Classification Accuracy


In different feature combinations, the classification accuracy increases continuously with the number of images because multitemporal or time series data contain phonological and tree species growth information, and growth characteristics differ depending on the tree species [13,51,67]. Tree species are difficult to classify in a single temporal image, but time series growth information benefits tree species discrimination [68]. Among topographic features, elevation is highly correlated with tree species distribution. Larch and birch trees are mainly distributed in high-altitude regions. In contrast, the other three tree species are distributed primarily in flat areas. Therefore, when the input data are only a single temporal image, topographic features can complement single-temporal spectral information and significantly improve classification accuracy. However, when the input features contain enough temporal-phase spectral features, topographic features can only slightly improve the accuracy because the classification is mainly based on spectral features [69].




5.3. The Advantages and Limitations of Ensemble Classifiers


The proposed ensemble classifier combining KNN, RF, ANN, and LightGBM consistently achieved the best accuracy. By introducing the advanced classification methods of ANN and LightGBM, the ensemble model we proposed not only performed well on low-dimensional data but also on high-dimensional data such as time series. Compared with other studies, our reported classification accuracy is similar [70]. The classification accuracy of Korean pine was the least satisfactory, possibly owing to the small number of samples and the uncertainty of the reference data. The confusion matrix shows that the ensemble model reduced the occurrence of misclassification and underclassification. Our results reflect the effectiveness and generalizability of ensemble learning in tree species classification. However, compared to ANN, the number of correctly classified pixels of Korean pine was reduced in the ensemble method because KNN, RF, and LightGBM have lower classification accuracies for Korean pine. These classifiers did not help the classification of Korean pine in the ensemble model but reduced its classification accuracy. The soft voting strategy is simple and easy to implement, but there are still some limitations in selecting its base classifiers. First, the classification results between base models should not differ too much. When a base model works poorly relative to other models, the results are likely to become noise and affect the ensemble effect, and there should be less homogeneity among the base models [71].




5.4. Comparison with Other Studies


We compared our results with those reported in similar studies. In terms of spatiotemporal fusion, the fusion accuracies were close to those of the associated developers [23,24,25]. Cheng et al. showed that STNLFFM always outperforms STARFM. The correlation coefficients between the fusion image and the real Landsat image of STNLFFM in the two test areas were all higher than 0.9 [24]. In a study by Li et al., FSDAF predicted blurred image texture information with unclear edges [72]. These results are consistent with our findings. In terms of tree species classification, Wang et al. fused GF-1, Landsat 8, and MODIS NDVI data to obtain enough spatial and temporal resolution for six forest types distinguished in Duchang County by utilizing the STNLFFM model and support vector machines [64], achieving an overall accuracy of 82%, which is slightly lower than that reported in our study. The tree species classification system proposed in a study by Joongbin Lim et al. is similar to ours [70]. They developed a model to classify the five dominant tree species in North Korea (Korean red pine, Korean pine, Japanese larch, needle fir, and oak) using Sentinel-2 data and machine learning techniques. In the Gwangneung Forest area, the proposed model achieved an overall accuracy of 83%, which is at the same level as our results (84.32%). However, the spatial resolution of the Sentinel-2 images they used was 10 m. This is higher than the 30 m of the Landsat-like time series we used in the present study. The above comparisons show the reliability and advances achieved in our research.





6. Conclusions


Owing to the poor availability of remote sensing data, tree species classification in cloudy mountain areas remains a challenge. In this research, we improved tree species mapping in cloudy mountainous regions from the perspectives of remote sensing data, classification features, and classification algorithms. Three spatiotemporal fusion methods, i.e., FSDAF, STARFM, and STNLFFM, were compared. The best-performing STNLFFM algorithm was applied to generate a dense time series with 8-day intervals. In addition to the spectral features of the fused time series, topographic features were also added to the classification procedure. KNN, RF, ANN, LightGBM, and our proposed ensemble classifier were selected for tree species classification. The results show that the fused time series improved the classification accuracy by approximately 20% compared with the single-phase images. The ensemble classifier consistently achieved the highest accuracy, with a maximum improvement of approximately 3.4% compared to the best base classifier. The final classification accuracy reached 84.32%. In conclusion, it is necessary to use spatiotemporal fusion to generate dense time series to alleviate the problem of poor image availability in cloudy mountainous areas. Topographic features also help to enhance the classification precision of tree species in mountainous areas. The ensemble classifier, which combines the results of multiple classifiers, is suitable for classification based on time series images and can effectively reduce the misclassification of pixels. This study illustrates a tree species classification method integrating temporal and spatial information from remote sensing data with differing resolution in areas with poor data availability and represents a valuable reference for improved tree species mapping.
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Figure 1. The study area. The forest area is overlaid with Shuttle Radar Topography Mission elevation data. 
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Figure 2. Flow diagram of tree species classification. The content bordered by a short dotted line represents the dominant tree species to be classified, and the content in the long dotted line box is several machine learning methods for comparison. 
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Figure 3. MCD43A4 images of the base date (May 19) and two predicted dates (May 28 and October 19). 
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Figure 4. Forest inventory data of the study area in 2016. 
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Figure 5. Distribution of sampling point data used in this study. 
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Figure 6. Real Landsat images on the base date and predicted dates. 
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Figure 7. RGB composition of the fusion results. The first and second rows are the MCD43A4, Landsat 8 OLI imagery, and the fused images of the three different methods (STARFM, FSDAF, and STNLFFM) on May 28 and October 19, respectively. 






Figure 7. RGB composition of the fusion results. The first and second rows are the MCD43A4, Landsat 8 OLI imagery, and the fused images of the three different methods (STARFM, FSDAF, and STNLFFM) on May 28 and October 19, respectively.



[image: Forests 14 00107 g007]







[image: Forests 14 00107 g008 550] 





Figure 8. Correlation between the red and near-infrared bands on May 28 and October 19. (a) Correlation coefficient of the red band on May 28. (b) Correlation coefficient of the NIR band on May 28. (c) Correlation coefficient of the red band on October 19. (d) Correlation coefficient of the NIR band on October 19. 
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Figure 9. Overall accuracy and kappa coefficient of Experiments 1 and 2. (a) Experiment 1 (spectral features only). (b) Experiment 2 (spectral plus topographic features). 
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Figure 10. Confusion matrix for various classification methods: (a) KNN; (b) RF; (c) ANN; (d) LightGBM; (e) ensemble. 
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Figure 11. Classification results of forest tree species in Helong City based on the ensemble classifier and the optimal feature combination. 
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Table 1. Detailed information on remote sensing data used in this study.
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	Landsat 8
	MODIS





	Date (all in 2016)
	
	05-19, 05-28, 10-19
	05-19, 05-28, 10-19

03-21, …,10-28



	Wavelength (nm)
	Blue

Green

Red

NIR

SWIR-1

SWIR-2
	450–515

525–600

630–680

845–885

1560–1660

2100–2300
	459–479

545–565

620–672

841–890

1628–1652

2105–2155



	Resolution
	
	30 m
	500 m



	Repeat cycle
	
	16 days
	daily
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Table 2. Number of sampling points for each tree species.






Table 2. Number of sampling points for each tree species.





	Tree Species
	Training Samples
	Validation Samples





	Oak
	8946
	2236



	Larch
	6728
	1682



	Korean pine
	2170
	543



	Pinus sylvestris
	4944
	1236



	Birch
	3145
	786
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Table 3. The feature combinations of seven scenarios.






Table 3. The feature combinations of seven scenarios.





	Experiment
	Input Data
	Number of Feature Variables





	1
	Single-temporal surface reflectance (28 groups)
	6



	2
	Single-temporal surface reflectance, topographic features (28 groups)
	9



	3
	10 fused images in spring
	60



	4
	9 fused images in summer
	54



	5
	9 fused images in autumn
	54



	6
	All fused images in the time series
	168



	7
	All fused images in the time series, topographic features
	171



	8
	3 cloud-free Landsat images on May 19, May 28, and October 19 2016
	18



	9
	3 seasonal composite images of spring, summer, and autumn 2016
	18



	10
	9 seasonal composite images of spring, summer, and autumn 2015, 2016, and 2017
	54
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Table 4. Main parameter settings of the base classifiers.






Table 4. Main parameter settings of the base classifiers.





	Base Classifier
	Parameter
	Value





	KNN
	N_neighbors

N_jobs
	3

−1



	RF
	N_estimators

criterion

Max_depth

Min_samples_split

Min_samples_leaf

Max_features

N_jobs
	870

‘gini’

None

2

1

‘sqrt’

−1



	ANN
	Hidden layer sizes

Learning rate
	(400, 200, 100, 50)

0.0005



	LightGBM
	N_estimators

Learning_rate

Num_leaves

Max_depth

N_jobs
	1527

0.098

19

−1

−1
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Table 5. Comparison of original Landsat imagery on the base date and predicted date.






Table 5. Comparison of original Landsat imagery on the base date and predicted date.





	
Date

	
Correlation Coefficient




	
Blue

	
Green

	
Red

	
NIR

	
SWIR1

	
SWIR2

	
Average






	
28 May 2016

	
0.9689

	
0.9842

	
0.9717

	
0.9750

	
0.9862

	
0.9720

	
0.9763




	
19 October 2016

	
0.8123

	
0.9120

	
0.8051

	
0.8712

	
0.9121

	
0.8251

	
0.8563
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Table 6. Quantitative evaluation of spatiotemporal fusion accuracy.






Table 6. Quantitative evaluation of spatiotemporal fusion accuracy.





	
Date

	
Method

	
Metrics




	
CC

	
RMSE

	
SSIM

	
SAM

	
ERGAS






	
28 May 2016

	
FSDAF

	
0.9730

	
0.0165

	
0.9901

	
0.7942

	
2.3177




	
STARFM

	
0.9744

	
0.0158

	
0.9907

	
0.7915

	
2.2258




	
STNLFFM

	
0.9746

	
0.0156

	
0.9904

	
0.7921

	
2.2794




	
19 October 2016

	
FSDAF

	
0.9153

	
0.0258

	
0.9766

	
0.8344

	
3.2679




	
STARFM

	
0.9135

	
0.0260

	
0.9764

	
0.8427

	
3.2861




	
STNLFFM

	
0.9226

	
0.0248

	
0.9781

	
0.8329

	
3.1740
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Table 7. Classification accuracy of different classifiers.






Table 7. Classification accuracy of different classifiers.





	
Experiment

	
Kappa Coefficient

	
Overall Accuracy




	
KNN

	
RF

	
ANN

	
Light

GBM

	
Ensemble

	
KNN

	
RF

	
ANN

	
Light

GBM

	
Ensemble






	
1

	
0.5227

	
0.5561

	
0.5695

	
0.5252

	
0.5811

	
0.6456

	
0.6732

	
0.6783

	
0.6493

	
0.6895




	
2

	
0.5809

	
0.6276

	
0.6117

	
0.6229

	
0.6529

	
0.6884

	
0.7254

	
0.7086

	
0.7207

	
0.7420




	
3

	
0.6950

	
0.7141

	
0.7528

	
0.7367

	
0.7650

	
0.7710

	
0.7877

	
0.8144

	
0.8035

	
0.8241




	
4

	
0.6965

	
0.6826

	
0.7455

	
0.7111

	
0.7565

	
0.7726

	
0.7655

	
0.8083

	
0.7853

	
0.8178




	
5

	
0.6736

	
0.6879

	
0.7340

	
0.7066

	
0.7504

	
0.7556

	
0.7690

	
0.7991

	
0.7818

	
0.8092




	
6

	
0.7202

	
0.7303

	
0.7639

	
0.7601

	
0.7821

	
0.7897

	
0.7998

	
0.8215

	
0.8208

	
0.8368




	
7

	
0.7262

	
0.7338

	
0.7720

	
0.7693

	
0.7897

	
0.7943

	
0.8025

	
0.8290

	
0.8276

	
0.8432




	
8

	
0.5509

	
0.5915

	
0.5890

	
0.6121

	
0.6323

	
0.6702

	
0.7016

	
0.6915

	
0.7146

	
0.7292




	
9

	
0.5239

	
0.5581

	
0.5839

	
0.5727

	
0.6180

	
0.6497

	
0.6803

	
0.6879

	
0.6881

	
0.7184




	
10

	
0.6337

	
0.6317

	
0.6751

	
0.6736

	
0.7217

	
0.7275

	
0.7331

	
0.7596

	
0.7606

	
0.7945
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Table 8. Producer precision, user precision, and F-value (%) for each category for different methods in Experiment 7 (italics indicate the best result).






Table 8. Producer precision, user precision, and F-value (%) for each category for different methods in Experiment 7 (italics indicate the best result).





	
Class

	
Accuracy

	
KNN

	
RF

	
ANN

	
LightGBM

	
Ensemble






	
Oak

	
UA

	
77.385

	
75.930

	
79.908

	
80.906

	
82.315




	
PA

	
81.021

	
86.670

	
86.263

	
86.353

	
86.444




	
F-value

	
79.161

	
80.945

	
82.964

	
83.541

	
84.329




	
Larch

	
UA

	
82.104

	
81.596

	
85.498

	
83.333

	
87.130




	
PA

	
76.207

	
76.880

	
79.405

	
80.247

	
80.920




	
F-value

	
79.045

	
79.168

	
82.339

	
81.761

	
83.910




	
Korean Pine

	
UA

	
69.351

	
83.934

	
70.161

	
79.003

	
79.903




	
PA

	
61.876

	
51.098

	
69.461

	
60.080

	
65.868




	
F-value

	
65.401

	
63.524

	
69.809

	
68.254

	
72.210




	
Pinus sylvestris

	
UA

	
79.596

	
79.348

	
86.080

	
81.511

	
81.521




	
PA

	
82.494

	
84.818

	
83.346

	
86.057

	
88.846




	
F-value

	
81.019

	
81.992

	
84.691

	
83.723

	
85.026




	
Birch

	
UA

	
85.436

	
94.016

	
89.932

	
92.034

	
91.460




	
PA

	
89.024

	
80.894

	
89.566

	
87.669

	
89.973




	
F-value

	
87.193

	
86.963

	
89.749

	
89.799

	
90.710
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Table 9. Producer precision, user precision, and F-value (%) for each category for different methods in the other nine experiments (italics indicate the best result).






Table 9. Producer precision, user precision, and F-value (%) for each category for different methods in the other nine experiments (italics indicate the best result).





	
Class

	
Accuracy

	
KNN

	
RF

	
ANN

	
LightGBM

	
Ensemble






	
Oak

	
UA

	
69.479

	
69.533

	
76.182

	
72.064

	
75.114




	
PA

	
77.03

	
83.57

	
76.713

	
81.652

	
82.612




	
F-value

	
72.998

	
75.854

	
76.361

	
76.519

	
78.651




	
Larch

	
UA

	
74.059

	
75.173

	
76.068

	
75.198

	
78.092




	
PA

	
69.193

	
71.237

	
74.251

	
73.31

	
74.994




	
F-value

	
71.536

	
73.145

	
75.097

	
74.236

	
76.494




	
Korean Pine

	
UA

	
58.703

	
74.728

	
60.113

	
68.342

	
71.236




	
PA

	
44.408

	
35.337

	
55.413

	
41.164

	
49.706




	
F-value

	
50.241

	
47.48

	
57.227

	
51.062

	
58.237




	
Pinus sylvestris

	
UA

	
74.778

	
75.212

	
75.968

	
76.23

	
77.876




	
PA

	
74.241

	
77.551

	
79.81

	
78.524

	
81.245




	
F-value

	
74.463

	
76.274

	
77.759

	
77.323

	
79.493




	
Birch

	
UA

	
76.916

	
85.99

	
81.762

	
83.96

	
85.898




	
PA

	
77.176

	
68.956

	
80.386

	
73.012

	
78.842




	
F-value

	
77.018

	
76.452

	
81.002

	
78.032

	
82.189
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Table 10. Comparison of our proposed ensemble classifier with the deep forest algorithm.






Table 10. Comparison of our proposed ensemble classifier with the deep forest algorithm.





	Method
	Overall

Accuracy
	Kappa

Coefficient





	Deep Forest
	0.8256
	0.7662



	Ensemble Classifier
	0.8423
	0.7911
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